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A PROPERTY OF CONNECTIONS 
OF MECHANICAL SYSTEMS 

OF HIGHER ORDER 

ANTON DEKRET 

(Communicated by Demeter Krupka) 

A B S T R A C T . In the case of regular Lagrangian L of order 1 on the tangent 
bundle TM of a smoo th manifold M it is known tha t its mechanical system Sj , 
satisfying the fundamental equation of the Lagrangian formalism is du>L = — dE 
determines a connection T which is Lagrangian, i.e. dufju(X} Y) = 0 for all 
F-horizontal vectors X, Y on TM. In this paper the form of this property is 
studied in the case of higher order tangent bund les. 

Let TrM be the space of all r-jets from R into a smooth manifold M with 
source 0 G R . Let L be a real smooth function on TrM. Roughly speaking, 
the main idea of the Lagrangian formalism in the classical mechanics of order 
r consists in a construction of a symplectic structure (T2r~~lM,do?/,) and a 
mechanical system SL of L on T2r~lM, the integral curves of which satisfy 
the Euler differential equation of order 2 r , see [6], if r = 1 and [8] in the case 
of higher order. 

In [3] we constructed connections which are-determined by a semispray 5 on 
TrM , see also [1]. One of them given by the Lie derivation Ls J\ of the canonical 
morphism J\ on TrM with respect to S was studied by a number of authors 
first of all in the case when S is a mechanical system of a regular Lagrangian 
L on TM, [2, 4, 7]. For example, [4] showed that the connection T = LsJ\ 
is Lagrangian, i.e. T = Orthdu,L r , i.e. du>L(X, Y) = 0 for all F-horizontal 
vectors X, Y on TM. In this paper we specify this property in the case of 
higher order. All manifolds and mappings will be smooth. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 58F05. Secondary 70H35. 
K e y w o r d s : Semispray, Symplectic form, Regular Lagrangian. 
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Introduction 

Throughout this paper Tf: TM —• TN denotes the differential of a map 
/ : M —> N. We recall some canonical properties of the manifold TrM. Let 
(#') be a chart on M . Then 

h = jfo: R^M) = (*• -= 7«(0), *• = - f - , .... 4 = ^ £ - - ) 

determines the induced chart on TrM. Let 7r^: T r M —> TkM, 

( x 0 , . . . , : T j . , . . . , £ r ) i—> ( : r 0 , . . . ,xk) 

denote the canonical projection of r-jets onto their fc-subjets. Then (7r£) or 
VTT^ is the abbreviated notation for the fibre manifold 7r£ : TrM —+ TkM or for 
the vector bundle of all 7r£ -vertical vectors on (7r£), respectively. 

There are the canonical vector fibre morphisms 

jy = J2pdxP-i ®d/d4< J* = jgJ* = £ Q d<-* ®5l5< 
p = l " u=fc ^ ' 

and the canonical vector fields 

a = £>;*/&;, O* .= ^Jt'Ci = £ (f)*u+id/^i 
p = l * u = k ^ ' 

on TrM, where fc = 2 , . . . , r . Readers are referred for constructions of these 
objects to [8] or [3]. 

Recall the following embedding ir: Tr+lM -> TTrM, 

fc = ior+17(*) ~ io (* " >;=o7(* + «)) , 

(a ; 0 , . . . , -c r + 1 ) »—> ( x 0 , . . . ,xr,xx,... , x r + 1 ) . 

By [8], a semispray on TrM (a differential equation of order r + 1), is a vector 
field S on TrM such that J\S = C\ , i.e. 5 is of the expression 

r - l 

S = ^2x)^\d/dx) + 6Yx0 , . . .,xr)d/dxl
r . 

>=o 

It is clear that S: TrM —> TTrM determines a unique section S: TrM —> 
T r + 1 M such that 5 = zr - 5 , 5(arj, .-• , 4 ) = ( 4 , • • • >4> fcl)- Then 5 »-> S is 
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a bijection between the set of all semisprays on TrM and the set of all sections 
of the fibred manifold (7TJ/+1). 

To construct connections from a semispray S we introduced in [3] a map 
i~s'- V-KQ —• TTrM as follows. Let Ji be the canonical vector bundle morphism 
on Tr+lM and h G T^M, u = < + 1 / i . Let J* : TuT

rM -> ( W J * 1 ) * de­
note a vector morphism such that J\(Y) = J\(Z), where Z G T ^ T r + 1 M and 
Tnr+l(Z) = Y . Then we define a vector bundle morphism J_: VTT^1 -+ TTrM 
such that for W G (V7rr+l)h there holds Ji(tV) = Y G TuT

rM, where 
J ^ y ) = TV. It is clear that 

J l ( a : 0 , . . . , -Cr_|__,0, C_, • • • > c
r + l ) = ( x 0 ? • • • ixr*cly o C 2 » • • • > , - c r + l ) • 

Let 5 : T r M —> ̂ ^M be a semispray. Using the restriction of TS on VKQ 
we set 

r 5 = Jx • TS\VlTr = _ T 1 dxl ® _ . / & ! _ . + ^ y £ " g r <M ® d/dxi . . 
a = l p = l J> 

Recall some needed facts about connections on a fibred manifold TT : Y —> M . 
A 1-form (j on F is said to be 7r-semibasic if w(X) = 0 for any X G W . 
A connection f on F is determined by its horizontal projection hp that is a 
7r-semibasic tangent value 1-form on Y such that T-K-h(X) = T7r(.K). In a chart 
(x\ ya) on Y hr = dxl ® d/dxl + Tt

a dxl ® ctydya. Then vr = id T y -**r = 
(dya — Tjada:1) ® d/dya is the vertical projection of T and HT denotes the 
vector fibred manifold of all _T -horizontal vectors _Y G Imft = K e r u r - It is 
obvious that if hp is the horizontal projection of a given connection _T on Y 
and <£>: Y —> T * M ® V F is a 7r-semibasic W-va lue 1-form on F , then hp + (p 
is the horizontal projection of the other connection on Y denoted by T + ip. 

Let Jk or 5 be the canonical vector bundle morphism or a semispray on 
TrM, respectively. In [3] we showed that fc! r j • J* is the horizontal projection 
of a connection r~kTs on the fibre manifold (nr_k). We are interested in the 
connections r~lTs and °Fs. Their coordinate expressions are as follows 

r~xrs: rsJ\ = dxi ® a/axj + • • • + dxi
r_i ® a/34-i 

J>=1 a X P 

r 

°TS: r! r | J r = cbj ® d /dz j + r! £ Brt.d/dx\ , (2) 
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where 

R* = _ 
r-n + s + l ' " r + l"sy "» ~~ Qx\. 

BÍS = 7-..-----.4Í, 4Í=---tcl.rf 
"•' r - n + s + 1 r + 1 " J a - i ° 

and for 5 = 2 , . . . , r 

л-l 

A$ ~ dxt_,+1 r-s + 2 - r d X ° + 2^ c ^ _ . + 1 + i * - " " 

R e m a r k . The connection r~l£s coincides with the one determined by 
LsJ\ , see [8]. Other connections on (TTJ.-*) can be constructed from S by 
^r-k -semibasic Vnr_k -value 1-forms on TrM. For example such forms are 
Jk + LsJk+i,- • • > Jr-i + LsJr • We refer to [3] for details. 

Connect ions induced by mechanical s y s t e m s of higher order 

First we will give a brief survey of the main classical mechanics notions on 
a smooth manifold M. We refer to [8] for detailed information on higher order 
mechanics. 

Every canonical morphism J9 on TrM determines a derivative of first order 
djt = [ijs,d] = i j jd — d i j , , where d denotes the standard exterior derivative 
and 

iJMXu--.,xp) = J2^iXi,''.,Uxj),...,xp). 
i=1 

Let / : TkM —* R be a smooth function. Regard d / as a real function on 
TTkM. Let ik: Tk+lM -> TTkM be the above recalled canonical embedding. 

* 
Then d r / = ik(df) = ]__, /x« xj ,+ 1 is a function on T^M, where we intro-

P=o p 

f 
duced the notation /_•• := _ . for further use. It is clear that dx is a deriva-p dx%

p 

tion operator which can be extended to a derivative (due to T u l c z y j e w , 
[9]) of order 0 commutative with d in the algebra A that is the quotient 
set of ( JA(T r M) by the equivalence relation according to which two forms 

a e \(TkM), P e \(T>M), k > j , are equivalent if a = (**)*/?, see [8]. 

Let L: TrM •—> R be a real function (Lagrangian of order r ) . Then the 
mechanical system of L is a vector field SL on T2r"'[M such that 

isLduL = -dE, (3) 
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where 

r r 

u;L = £(-1)*' d̂ "1 dJt L, E = £ ( - i y dif1 d(L) + L. 
i = l i = l 

By induction it can be checked that 

r r 

u;L = E ^ d 4 - i , E = Y,RH + L> (4) 
P=I P=I 

where 

«? = E(-l)g + 14^i+ f , P=l r, (5) 
g = 0 

dq
TLxiB = 2_^Ll

Xsx
1^ . . . 4 n E Ati-^xp\+ti •••xPu+«u > 

n = l t i + +-u-=» 

where t\ < t<i < • • • < tu are positive integers and 

A ql 

A(«ii...«iM)...(-*i...«*.fc) ( t n ! ) ' 1 ^ ! . . . ^ ! ! ) ' * ^ ! ' 
*ji = tj2 = • • • = *J#i . 

Let us emphasize that IZf is a local function of variables xl
0,..., xx

2r_p . 

2 r~ 2 

LEMMA 1. .4 semispray S = ^2 x%s-\-\^l^x%s + oX^l^x2r-\ *5 a solution of the 
3 = 0 

equation isdui = — d.E i/ and on/y i/ d.R-(5) = — Lx% . 

P r o o f . 

duL = £ dR* A d4_x , d£ = £ (4 dfl? + flf d4) + £ L,i dxj . 
p = l p = l p = 0 

Then the equation is duL = — dE is of the form 
r— 1 r r 

y>/*?+,(s)d4 + Y,RPidx\> + Y.H H = ° 
p = 0 p = l p = 0 

that is satisfied if and only if 

dR}(S) + Lzi=0, (6) 

dR?+l(S) + Rp + Ltp =0, p = l , . . . , r - l , (7) 

R^ + Ltir=0. (8) 
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According to (5) the relation (8) is correct. It is easy to see that dT R1- = 

-Rp
{ - Lxip . Then (7) is satisfied if and only if di?f+ 1 (5) = d T i ? ? + 1 . This is 

right since 

d^+i = _; Vi)<+i 4 f _ j,t+f+14 **£). 
g=0 \v= l 

Lemma 1 is proved. 

The form uL being a n2*-^ -semibasic 1-form on T2r 1 M determines a fi­

bre morphism CL: T2r~lM -> T*Tr'lM over i d T r - i M such that £ L ( / i ) (F ) = 

W L ( X ) , where .X G ThT2r-iM and T T T ^ ^ X ) = F . In the induced chart 

(XQ, . . . , #J.-i > £?* • • • > ^J""1) o n T*Tr"lM the map £L (the Legendre transfor­

mation of L ) is of the form 

i i p — 1 
Xp-\ — Xp-\ 1 

Then adding the equations 

Zi — R% \X0 ' * • * > X2r-p ) ' 

dx;_ , = d x ; _ , , (9) 

t'-r-l flop 

dzr1=<"?=£ I3- d *i+(^r^ 1 ^; d^-,, 
«=0 UX* 

which follow from (5) we get the tangent prolongation TCL of the Legendre 
transformation of L. 

Denote by P2r-2> • • • iPo*""1 the following submersions from T*Tr~lM : 

PГ 1 ( Л ) = Л|т/-rr-l = (^ô,...^ŕ-l^ľГ l V - ч < l), rt2r-l/^\ _ j , | _ /„i _i J2r-\-s „r—1> 
r - 1 

T 2 r - 2 - a 

6 = r , . . . , 2r - 2. 

p 2 r - l . T * T r - l M _ T r - l M j 

Pr-VCO - (xJ,...,a;J._i). 

p2 r - i = 7 r p 1 - p ^ - i : T*Tr-1M->TkM, k = Q,...,r-2. 

The equations (9) immediately give 
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LEMMA 2. Let L be a Lagrangian of order r. Then the Legendre transforma­
tion CL: T2r-XM -> T*Tr~xM is a fibre morphism from (TT^"1) into (p£r_1) 
for u = 0 , . . . , 2r - 2 . 

Let us recall some notions of geometry on T*Tr~1M. There is the canon-
r - l 

ical Liouville from A = _~] zf dxp on T*Tr~1M that is an 1-form such that 
P=o 

r - l 
X(X) = z(Tp^-ix) ^ x e Tz(T*Tr'1M). Then dX = _~ dzf A dxp is the 

p=0 
canonical symplectic form. 

Let K be a given connection on (#^.-2) having the horizontal projection of 
the form 

r—1 r—1 

hK = _l dxj, ® d/dx], + ~l <-*? ® 9/dzf 

(10) 

+ ( E KU dzJ + E K?J dxi] ® a la 2° • 
\ p = l p=o / 

We are interested in the connection OrthdA K, the horizontal vectors X of 
which are orthogonal to all if-horizontal vectors Y on T*Tr~1M according 
to the form dA, i.e. dX(X, Y) = 0. It is easy to verify that the connection 
OrthdA K is a connection on (p0

r~X) with the horizontal projection 

r - l 

ftorthdA K = dxl
0 (8) d/dx0 - ^2 Kpj dxo ® dldx]> 

P=i 

r - l 

+ Y,Kjid4®d/dzf. 
P=o 

( П ) 

Return to the fundamental equation (3) of the Lagrangian formalism. Recall 
r 

that the 2-form dcj_ = _~] di?f A dxp_1 is symplectic if and only if the forms 
p=i 

dR? , dxp_1, p = 1,..., r, are independent in any induced chart. Then by virtue 
of the relation (9) du>_ is symplectic if and only if det {Lxixj) ^ 0. In this case 
the Lagrangian L is called regular. 

In what follows, we shall consider the Lagrangian L to be regular. Now 
the equation (3) ixdu_ = — dE has a unique solution X = S_ called the 
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mechanical system of the Lagrangian L. By Lemma 1 SL is the semispray on 
T2r~lM which satisfies the equation (6), i.e. 

6* = (-1Y+1L" f £ f3-- iH + Lz'A , LXrX.L°i = S{ . (12) 

We can find relations between the connections 2r~2Ts and °Ts on T2r~lM 
determined by the mechanical system S = SL . In this case the connection 
Orthdu;L

 2r""2-TS which is du>L -orthogonal to 2r~2Ts is a connection on (~lr"1) . 
To specify some properties of the connections °Ts and Orthdu^ 2r~2Ts we use 
the Legendre transformation CL . By (9) it is clear that CL is a local symplectic 
isomorphism of the symplectic manifolds (T2r~lM, AUJL) and (T*Tr~lM, dA). 

Let K and °H be the connections on T*Tr~lM, which are the images of 
the connections 2 r _ 2Fs and °Ts under the Legendre transformation CL . Recall 
that the difference °H — °H of two connections on (Po r_1) 1S a Po^"1 -semibasic 
Vplr~l -value form on T*Tr~lM. We will deduce that the form 0#-OrthdA A' 
is a p2

Q
r~l-semibasic V p ^ - v a l u e 1-form on T*Tr~lM. 

Let (10) be the expression of the horizontal projection of K. Let 

r - l r - l 

0H = dz° ® d/&r j + £ Hl
pj dxt ® a/9x; + ̂  fff• dxj (8) d/dz\ 

p = l p = l 

be the horizontal projection of the connection °H. Then by (11) the form 
°H-Orthd\K is a p^r~l -semibasic and just Vp\r~l -value form if H[- = ~K\-

and H\i ^- —K\i. To prove these relations we will find the local functions H\-, 
zri jji rsi 
-tMj;> n2j > JX2j-

By (1) the horizontal projection of the connection 2r~2TsL is 

j>=0 p = l P 

where the local functions bl are defined by (12). In another way, 2 r~2FsL is 
given by the equation 

d*u = £ -7 <-*j, I? = &(p+D-0- • 
p = 0 OXp+\ 
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T h e n the equat ion o f the connection K is 

dzo = y W dx:s + JE- dxl_3 + __S_ d-J 
' --- f)rJ " ^1 2 r 3 ft*J 2 r 2 

í-í Ö-І ö-žг-З ь 2 г - 2 

+ ( - 1 ) r £ x .x iE^ > ^. 
p=0 

(13) 

Using the equations 

--ir-3 = i-vrv (<-*_ - E f | «-**) 
5 = 0 

2 r - 4 

2 r - 4 

d - i - E ^ -
5 = 0 ^^ 

which follow from (9), we deduce from (13) that 

Kit = (^-;+(-iY£-«. r-7 , 2 r"2)(--r ,- i , i 

A " = ( ' S ~ 3
+ i ~ i y L t i ^ r ; ' ' 2 r ~ 3 ) { ~ i ) r L 9 i 

+ (^+(-1)r^-"r ;'2ri (- l r lx"(-s ("1)rzvJ)-
By (2) and (9) the horizontal projection of the connection °H is of the form 

r - l r - l 

dxj ® ð / a - j + (2r - 1)! £ .Bjr_i,. ö / ð - І + ^ #f; <-*o ® д/дz? . 
P = i * = i 

1 
Since .Bžr_,,i - j£yA\ - (2r)! Q^ d x° ' 

(2r - 1)! 96- i dfc-
li (2r)! ft-j^, 2r & i p _ i ' 
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Quite analogously we deduce that 

rri 1 ( db{ 1 Ob1 1 dbU__\ 
2j r \dx{r_2 2r - 1 + &r j r _. 2r Qx{r_x ) 

Using J ? = i ( p + l ) - ^ , (12) and 
Cx p + i 

r-p q 

*? = D-1)^1 E^.-t.-.-fe E -v....*;^ •••*;-.+.. 
<7=0 u=l t l + . + t u = g 

we obtain 

-Kl
u = +4-Ljq(Lxix< -Lxi x*-rL{ ••- ^L1, . J = HL . 

By a little more complicated calculation it can be shown that H\- ^ —K^i • 

Therefore the form °if-OrthdA K is p%r~l -semibasic with values in Vp\r~l . 

Then using the symplectic isomorphism CL we get the following proposition: 

PROPOSITION. Let L be a regular Lagrangian. Then the connections °i~ and 
2r~2P determined by the mechanical system SL of L are such that the form 
°jT-Orthdu;L

 2r~2r is 7TQr_1 -semibasic with values in F T T ^ - 1 . 

R e m a r k s . 

1. If r = 1, then °F = 2 1 ~ 2 r and the Proposition asserts that °F = 
Orthdu;L °-T', i.e. that the connection °F is Lagrangian, compare with [4, 5]. 

2. In [3] large families 7* of natural operators </> of first order from the 
space of all semisprays S on TnM into the space of connections on (7r£), 
k = 0 , . . . , n — 1, have been constructed. The simplest of them, from the point 
of their coordinate expression view, are the connections (n — k)\ T£~ Jn-k • In 
the case n = 3 , it is proved in [5] that there are no other first order natural 
operators. If SL is the mechanical system determined by a regular Lagrangian 
L of order r and if F G 75 , then the connection Orthdu;Ls L is a connec­
tion on (TT^Z^-A;) • ~b r r ~ 2> [5] shows that Orthdu;Ls L does not belong to 
7 | r ~ 2 ~ * . Our proposition demonstrates what properties the connections F and 
Orthdu;L r only have. The operators <j> do not determine all of the connections 
induced by L . Every .regular Lagrangian L determines other families of connec­
tions Orthdu;L r, where F is a connection belonging to 7 5 L , k = 0 , . . . , 2r — 2 . 

86 



A PROPERTY OF CONNECTIONS OF MECHANICAL SYSTEMS OF HIGHER ORDER 

REFERENCES 

[1] DE ANDRES, L. C—DE LEON, M — RODRIGUES, P. R.: Connections on tangent 
bundles of higher order, Demonstratio Math. XXII (1989), 607-632. 

[2] CRAMPIN, M.: Alternative Lagrangians in particle dynamics. In: Proc. of Conf. DifF. 
Geom. and its AppL, Brno 1986, J. E. P. University, Brno, 1987, pp. 1-12. 

[3] DEKRET, A.: Ordinary differential equations and connections. In: Proc. of Conf. DifF. 
Geom. and AppL, Brno 1989, World Scientific, Singapore, 1990, pp. 27-32. 

[4] DEKRET, A.: Mechanical structures and connections. In: Proc. of Conf. DifF. Geom. and 
AppL, Dubrovnik 1988, University of Novi Sad, Novi Sad, 1989, pp. 121-131. 

[5] DEKRET, A.: Connections deduced from mechanical system of second order. In: Proc. 
of Colloquium of DifF. Geom., Eger (Hungary) 1989, Soc. J. Bolyai, Budapest, 1992, 
pp. 201-213. 

[6] KLEIN, J.: Espaces variationnels et mechanique, Ann. Inst. Fourier (Grenoble) 12 (1962), 
1-124. 

[7] KLEIN, J.: Almost symplectic structures in dynamics. In: Proc. of Conf. DifF. Geom. and 
its AppL, Brno 1986, J. E. P. University, Brno, 1987, pp. 79-90. 

[8] DE LEON, M.—RODRIGUES, P. R.: Generalized Classical Mechanics and Field Theory. 
North-Holland Math. Stud. 112, North-Holland, Amsterdam-New York, 1985. 

[9] TULCZYJEW, W.: Sur la differential de Lagrange, C R. Acad. Sci. Paris Ser. I 280 
(1975), 1295-1298. 

Received June 7, 1990 Department of Math. and Descript. Geom. 

Revised January 30, 1992 Masarykova 24 

960 53 Zvolen 

Slovakia 

87 


		webmaster@dml.cz
	2012-08-01T08:10:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




