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ABSTRACT. In the case of regular Lagrangian L of order 1 on the tangent
bundle TM of a smooth manifold M it is known that its mechanical system Sy,
satisfying the fundamental equation of the Lagrangian formalism ig dwy = —dFE
determines a connection I' which is Lagrangian, i.e. dwp(X,Y) = 0 for all
I'-horizontal vectors X,Y on TM . In this paper the form of this property is
studied in the case of higher order tangent bundles.

Let T™M be the space of all r-jets from R into a smooth manifold M with
source 0 € R. Let L be a real smooth function on T"M . Roughly speaking,
the main idea of the Lagrangian formalism in the classical mechanics of order
r consists in a construction of a symplectic structure (Tzr_lM,de) and a

mechanical system S, of L on T2~'M, the integral curves of which satisfy
the Euler differential equation of order 2r, see [6], if r =1 and [8] in the case
of higher order.

In (3] we constructed connections which are determined by a semispray S on
T™M , see also [1]. One of them given by the Lie derivation LsJ, of the canonical
morphism J; on T"M with respect to S was studied by a number of authors
first of all in the case when S is a mechanical system of a regular Lagrangian
L on TM, [2, 4, 7]. For example, [4] showed that the connection I' = LgJ;
is Lagrangian, i.e. I' = Orthq,, I', i.e. dwr(X,Y) = 0 for all I'-horizontal
vectors X,Y on TM. In this paper we specify this property in the case of
higher order. All manifolds and mappings will be smooth.

AMS Subject Classification (1991): Primary 58F05. Secondary 70H35.
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Introduction

Throughout this paper Tf: TM — TN denotes the differential of a map
f: M — N. We recall some canonical properties of the manifold T"M . Let
(z*) be a chart on M. Then

—10(7 R—’M) (330:7(0),1:1:%,..,2},.:—3{&2-)

determines the induced chart on T"M . Let 7§: T"M — T*M,

(zhy... 2k, ., 2l) o (2., 2h)

denote the canonical projection of r-jets onto their k-subjets. Then (7f) or
Vrf is the abbreviated notation for the fibre manifold 7 : 7™M — T*M or for
the vector bundle of all 7 -vertical vectors on (7}), respectively.

There are the canonical vector fibre morphisms

r

r . : . 1 ) )
Ji =) pde_, ®9/0z,, Jk= a0 = > (Z) dz,_, ® 8/0z,
p=1 : u=k
and the canonical vector fields

Cl=pr;',6/az;',, Cr = k'.]l" c, = Z(Z)xi_k+la/az;
r=1

u=k

on T"M , where k = 2,...,r. Readers are referred for constructions of these
objects to [8] or [3].
Recall the following embedding i,.: T™*'M — TT™M ,
h= gt ly(t) = do (t = Ji=01(t +9))

(xé,...,zr+l)r—* (Thye ey Thy @Yy ennyThyy).

By [8], a semispray on T"M (a differential equation of order r + 1), is a vector
field S on T"M such that J;5 = C,, i.e. S is of the expression

r—1
S=3"«1,,0/0z} + b (xo,... 1) 8]0

J=0

It is clear that S: T"M — TT"M determines a unique section S: "M —
T™'M such that S =i,-S, S(a},...,zt) = (z},...,z:,b'). Then S+ S is
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a bijection between the set of all semisprays on T"M and the set of all sections
of the fibred manifold (77*!).

To construct connections from a semispray S we introduced in [3] a map
1s: Vr§ — TT"™M as follows. Let J; be the canonical vector bundle morphism
on T"t'M and h € T™H'M, u = «"th. Let J}: T,T™M — (Vajt'), de-
note a vector morphism such that J}(Y) = J;(Z), where Z € T,T™*'M and
Tx+1(Z) = Y . Then we define a vector bundle morphism J;: Vagt! — TT™M
such that for W € (V7r3+l)h there holds J1(W) = Y € T,T"M, where
JHY) = W. It is clear that

1, 1

T (i i i i N | [ IR i i
Ji(xg, ..y Try1,0,¢5,. 00 56041) = (xo,...,z,,cl,icz,...,r—+—Tcr_H).

Let S: T"M — T™'M be a semispray. Using the restriction of TS on Vrj

we set

r

-rs=.71-TSIVW(;:Z%dzi@a/@xi_lﬁ- 1 Z%dz{,@@/axi
p=1 4

r+1

s=1

Recall some needed facts about connections on a fibred manifold 7: Y — M.
A l-form w on Y is said to be 7w-semibasic if w(X) = 0 for any X € Vr.
A connection I' on Y is determined by its horizontal projection hp that is a
7 -semibasic tangent value 1-form on Y such that Tn-h(X) = Tn(X). In a chart
(z,y®) on Y hp =dz' ® 8/0z' + I'*dz' ® 8/0y*. Then vy = idry —hp =
(dy® — I'* dz') ® /8y is the vertical projection of I' and HI' denotes the
vector fibred manifold of all I'-horizontal vectors X € Imh = Kervp. It is -
obvious that if hpr is the horizontal projection of a given connection I" on Y
and ¢: Y 5> T*M Q@VY isa w-semibasic Vr-value 1-formon Y, then hr+¢
is the horizontal projection of the other connection on Y denoted by I"' + ¢.

Let Ji or S be the canonical vector bundle morphism or a semispray on
T™M , respectively. In [3] we showed that k!7% . J; is the horizontal projection
of a connection "“*I's on the fibre manifold (n7_,). We are interested in the
connections ""!I's and °I's. Their coordinate expressions are as follows

"s: 15y = dap ® )0z} + -+ +dzi_, @ 9/dzi_,

1 a ob’ j i
+ T Zl —a-;,}:pdzp_l ® 8/0z., (1)
p=
Ts:rl75J, = dz} ® d/dxh + 1! Z Bi‘sa/axi : (2)

s=1
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where

= Al i
Bn.s r-n+s+1 r+1° A4 = ozt

and for s =2,...,r

ob 1

Al = — dz + v
: Oz _ 1, T —s+2’ ° Z 6zr—a+1+1 omh

Remark. The connection ""['s coincides with the one determined by
LgJy, see [8]. Other connections on (7]_,) can be constructed from S by
nl_, -semibasic V]_, -value 1-forms on T"M . For example such forms are

Jk + LsJis1y. .-y Jr—1 + LsJ,. We refer to [3] for details.

Connections induced by mechanical systems of higher order

First we will give a brief survey of the main classical mechanics notions on
a smooth manifold M . We refer to [8] for detailed information on higher order
mechanics.

Every canonical morphism J, on T"M determines a derivative of first order

dj, = [t4,,d] =1;,d—dz,, where d denotes the standard exterior derivative
and

i5,0(X1,-, Xp) = > w(Xa, . Jo(XG), e, Xp)

Let f: TfM — R be a smooth function. Regard df as a real function on
TT*M . Let ix: T¥'M — TT*M be the above recalled canonical embedding.

k .
Then dr f = i;(df) = 20 fziTpyy is a function on T*+' M, where we intro-
P=

f

duced the notation ft;; = Bal for further use. It is clear that dr is a deriva-
T
P

tion operator which can be extended to a derivative (due to Tulczyjew,

[9]) of order 0 commutative with d in the algebra A that is the quotient
set of (JAMT"™M) by the equivalence relation according to which two forms
k

a € NT*M), B e NT'M), k> j, are equivalent if a = (ﬂ'}‘)"ﬂ, see [8].
Let L: T"M — R be a real function (Lagrangian of order r). Then the
mechanical system of L is a vector field Sy on T?27-1M such that

is, dwy = —dE, (3)
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where
r r
wp =Y (-1)'di'di L,  E=) (-1)'df'Ci(L)+L.
i=1 i=1

By induction it can be checked that

wp=Y Ridzi_,, E=) Rlzi+L, (4)
p:] =1
where
r—p
R=Y (UL, =l ®
9=0

q
q - it in i in
dp Ly = E L, zp ...x E Aty tuTpigey o Tputty
n=1

t1+ o Htu=g

where ¢t; <t; <.-- <t, are positive integers and

A _ q! .
(tll'-~tlnl)-~'(tkl---tk-k) - (tl]!)SISl!. . (tkl!)sk sk! )

th=tp ==t .

Let us emphasize that R? is a local function of variables z{,..., z%,_p .

2r=2 . . . .
LEMMA 1. A semispray S = Y z},,0/0z} +b'0/0x5,_, is a solution of the
s=0

equation isdwy = —dE if and only if dR}(S) = -L;;.
Proof.
duwy, = pz; dR? Adzh_,, dE= ,?; (ah dR? + R? dat) + pz;:o L,; dsj,.
Then the equation isdwy = — dE is of the form
i dRP*Y(S)dz} + E RPdz), + Z L,;dz, =0
p=0 p=1 p=0

that is satisfied if and only if

dR;(S)+L,; =0, (6)
dRIFY(S)+ R+ L,y =0, p=1,...,r—1, (7)
Ri+L;i =0. (8)
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According to (5) the relation (8) is correct. It is easy to see that dr RPT! =
—R! — L,; . Then (7) is satisfied if and only if dRF™'(S) = dr RE*'. This is

right since
r—p-—1

de'H = Z (--1)q+1 d"T(ZL,;ﬂfo, dxi).
v=1

=0

Lemma 1 is proved.

The form wy, being a 727" -semibasic 1-form on T?"~'M determines a fi-

bre morphism L: T2™"'M — T*T™ 1M over idr--1p such that Lp(h)(Y) =
wr(X), where X € ThT?r—lM and T1r2r'1(X) Y. In the induced chart
(xdy. o zi_y,2%,...,277Y) on T*T™"'M the map L (the Legendre transfor-
mation of L) is of the form

_ - . .
:cp 1 —xp_l, 287" = Rl(zg,...,25,_,)-
Then adding the equations

aR”
ozl

dz?"' =dR? = + (=1L, dej,_,,

u=0
which follow from (5) we get the tangent prolongation TLy of the Legendre

transformation of L.

Denote by p27=},...,pe""! the following submersions from T*T™~'M :

prr T TTIM — (Vg 2, l,)T,

p (k) = h| = (zb,...,2i_, 227170 2T,
‘/ 2r—2

-3

s=r,...,2r—2.
Pl T T M — T™ M,
PN (R) = (25, 70y).
pi"l =7y pff_" T*T™ M - T*M, k=0,...,7r—2.
The equations (9) immediately give
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LEMMA 2. Let L be a Lagrangian of order r. Then the Legendre transforma-
tion L1: T?"~IM — T*T""IM is a fibre morphism from (n27=1) into (p?r—1) -
for u=0,...,2r —2.

Let us recall some notions of geometry on T*T""!M . There is the canon-

r—1
ical Liouville from X\ = Y 2P dz} on T*T"~'M that is an 1-form such that
p=0

r—1

AX) = 2(Tpr71'X), X € T,(T*T™'M). Then dX = ) dzf Adg} is the
p=0

canonical symplectic form.

Let K be a given connection on (p37_7) having the horizontal projection of

the form

r—1 r—1
hk = de; ® 8/0z;, + Zdzf ® 8/0zF
p=0 pr=1

r—1 r—1 (10)
+ (ZK;,- dz;-’+ZR'fj d:vf,) ®8/02?.
p=1 p=0

We are interested in the connection Orthgy K, the horizontal vectors X of
which are orthogonal to all K-horizontal vectors Y on T*T"~'M according
to the form d\, ie. dA\(X,Y) = 0. It is easy to verify that the connection

Orthgy K is a connection on (p3™~') with the horizontal projection

r—1
horthay k = dzh ® 8/8zf — Y K} dad ® 8/0x},
. p=1

r—1 (11)
+> K? dz) ® 8/927 .
p=0

Return to the fundamental equation (3) of the Lagrangian formalism. Recall
T .
that the 2-form dwy = Y dRY A dzj,_, is symplectic if and only if the forms
p=1
dR?, da:;',_l , p=1,...,r, are independent in any induced chart. Then by virtue
of the relation (9) dwy, is symplectic if and only if det (inz’; ) # 0. In this case
the Lagrangian L is called regular.

In what follows, we shall consider the Lagrangian L to be regular. Now
the equation (3) ixdwy = —dE has a unique solution X = S; called the
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mechanical system of the Lagrangian L. By Lemma 1 Sj, is the semispray on
T2r=1M which satisfies the equation (6), i.e.

. .. (%2 sRmr . .
b'=(—1)’+‘L"'( T’)ﬁ‘xf‘+‘+“5)’ Li.I9=6. (12

u=0

We can find relations between the connections 2"~2's and I's on T2 1M
determined by the mechanical system S = Sp. In this case the connection
Orthgy, *"~*I's which is dw -orthogonal to 2"~?[s is a connection on (7] 2r—1 ).
To specify some properties of the connections °I's and Orthg,,, 2""2I's we use
the Legendre transformation £y, . By (9) it is clear that £y, is a local symplectic
isomorphism of the symplectic manifolds (T?"~'M,dw;) and (T*T7"'M,d)).

Let K and °H be the connections on T*T"~'M , which are the images of
the connections 2"~2I's and °I's under the Legendre transformation £y . Recall
that the difference °H —°H of two connections on (p2™~') is a p2"~! -semibasic
Vp2' 1 _value form on T*T7~'M . We will deduce that the form °H-Orthyy K
is a p2"~!-semibasic Vp?}"~!-value 1-form on T*T"~!M .

Let (10) be the expression of the horizontal projection of K . Let

-1 -1
Oy = dz3 ® 8/9z + Z ;dz} ® 8/0z} + Z AP dz) ® 3/62
r=1 p=1

be the horizontal projection of the connection °H. Then by (11) the form
°H-Orthgs K is a p2™~! -semibasic and just Vp3™~!-value form if Hfj = I\U
and Hj; # -Ki.. ;- To prove these relations we will find the local functions Hj;,
Rl] ’ H2J ’ KZJ

By (1) the horizontal projection of the connection 2"~%, is

2r—2 2r—1

Zda: ®6/3x +— ng dzp ,®0/0zh,_;,
p=0

where the local functions b' are defined by (12). In another way, 2=, is
given by the equation

2r—2

dej,_, =Y Itded, I} = 5 Z(p+ )
p=0 P+l
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Then the equation of the connection K is

2r—4
OR! OR! OR! ;
dZ? = J d‘ta + 7 - dzj L2r-3 + d.’l!'-:,,._2
s=0 o<} 0733 81:2,_2
2r—-2 (13)
+(=1)"L,i,i Y TP day.
. e
Using the equations
) . 2r—4 3
dr}, _, = (-1)"L" (dz2 6R )
. .. 2r—4 2
dz},_, = (=1)" 'L [dz,ll, - Z Ry dzk
=0 "
6R2 21"-4
_ 1 ert( )] ,
Oz} ZTor— 3( ) Z
which follow from (9), we deduce from (13) that
, [ OR o
1\1],- = (azg : , + (—l)rinz;.‘Fqu’zr—2>(_1)r quJ
. 1 . .
K = (o + (1 L T3 ) (1Y L9
aRl "L u,2r—-2 r—1yqw 6R2 rrvj
+ (o + (D T )1y B (- 2 1y 2.

By (2) and (9) the horizontal projection of the connection °H is of the form

r—1 r—1
dz§ ® 8/0zf + (2r — 1)! Y _ Bj,, ,0/0zy + Y  HY dz} ® 8/0z .
s=1 r=1
. ; 1 . 1 abi .
Since Bj,._;, = Al = — dz] ,
210 = TN T @ g, 0
@r-—1)! 9v 1  9b

H] :
1= (CL L T2 dz}, _,
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Quite analogously we deduce that

i _1(_ o 1 ob 1 ob
sz - r (6.@;"‘_2 27'—1 + 3:172, 1 27‘ axzr_ ).

Using I} = o—(p + 1) » (12) and
Oz
+1 ' iy
Z( l)q ZL +eTh T Z A‘h"‘“z;’lﬁ‘l " .1:;,“_4_1“
q=0 u=1 P q tittty=gq
we obtain

K. = L"J‘G . _ . _ . 1) _ gl
Kii =450 (Lajas_, = Lai a1 =L, i 073 01) = His.

By a little more complicated calculation it can be shown that Hj; # —Kj,.

Therefore the form °H-Orthgy K is p2™~!-semibasic with values in Vp?™~!.

Then using the symplectic isomorphism £ we get the following proposition:

PROPOSITION. Let L be a regular Lagrangian. Then the connections °I" and
2r=21" determined by the mechanical system Sy of L are such that the form
OI'-Orthgy, 27~ is 727! -semibasic with values in Vi ™!,

Remarks.

1. If r = 1, then " = 217" and the Proposition asserts that °I" =
Orthg,, T, i.e. that the connection °I" is Lagrangian, compare with [4, 5].

2. In [3] large families 7¥ of natural operators ¢ of first order from the
space of a]l semisprays S on T"M into the space of connections on (7}),
k=0,. — 1, have been constructed. The simplest of them, from the point
of their coordmate expression view, are the connections (n — k)! 75 KT k. In
the case n = 3, it is proved in [5] that there are no other first order natural
operators. If S, is the mechanical system determined by a regular Lagrangian
L of order r and if I' € 7§L , then the connection Orthdws I' is a connec-

tion on (wg:_; x) - For r =2, [5] shows that Orthg,, I' does not belong to

’72: 2=k _ Our proposition demonstrates what properties the connections I and

Orthgw, I' only have. The operators ¢ do not determine all of the connections
induced by L. Every regular Lagrangian L determines other families of connec-
tions Orthg,,, I', where I' is a connection belonging to ’Y.';“L , k=0,...,2r—2.
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