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ALMOST FLOQUET LINEAR DIFFERENCE
EQUATIONS

MILAN MEDVED

The Floquet theorem for linear differential equations (see, e.g., [2] and [3]) is
formulated as follows:

Theorem 1. Let @(t) be a fundamental matrix of the linear differential equation
¢)) x=A(t)x

where xe C", A: R— M.(n) (M.(n) is the set of matrices of type nxn with
complex elements) is a piecewise continuous function which is t-periodic, i.e.
A(t + 1) = A(¢t) for all t€ R. Then there exists a constant matrix R and a t-period-
ic map P: R — M (n) such that

) D(t) = P(t)e™ forall teR.

Is it possible to extend the class of matrices 4(¢) of the system (1) for which
a type of the Floquet theorem holds? This problem is solved in the papers [1],
[4] and in the book [5]. A theorem analogical to the Floquet theorem (see, e.g.,
[7]) can also be formulated for linear difference equations as follows:

Theorem 2. Let Y, be the normed fundamental matrix of the linear t-periodic
difference equation

(3) yn+]=Anyn

(ie. A, .= A, foralln = 0 where tis a natural number),ie. Y, , = A,Y,,n =0,
Y, =1 — the unit matrix where all matrices A,, n = 0 are supposed to have
complex elements. Then there exists a regular 1-periodic, matrix valued function
T, and a regular constant matrix B such that

4 Y,=T,B" forall nz=0.

In the present paper we introduce a class of linear difference equations of the
form (3) (nonperiodic in general) for which the normed fundamental matrix Y,
(Y, = I) has the form (4) (7, is not periodic in general). Results of such type are
important for solving stability problems of linear as well as nonlinear difference
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equations (see [7]). As a specimen of the application of our results we will prove
a stability theorem concerning a linear perturbation of the difference system (3).

H. I. Freedman [4] has extended the Floquet theorem for the so-called almost
Floquet systems (AFS) which are defined as follows: The system (1) is called an
almost Floquet system if there exists a 7 > 0 such that [B(¢, 1), @(¢)] = 0 for all
te R where [U, V] = UV — VU, @(¢) is a fundamental matrix of the system (1)
and B(t, 1) = A(t + 1) — A(?). Obviously, if the matrix function A(¢) is 7-perio-
dic, then the system (1) is almost a Floquet system.

Definition 1. Let all matrices A,, n 2 0 in the equation (3) be regular, @, be the
normed fundamental matrix of this equation and let T be a natural number. We
shall say that the system (3) is a t-almost Floguet system (1-AFS) if

&) [B,(7), @] =0

for all n > 0 where B,(1) = A, 'A,, ,and [U, V] = UV — VU.
Obviously, if 4, , , = A4, for all n = 0, i.e. the equation (3) is 7-periodic, then
B,(7) = I for all n = 0 and hence the condition (5) is satisfied. This means that

every t-periodic system of difference equations of the form (3) with A4, regular
is a -AFS.

Theorem 3. Let the system (3) be a 1-AFS, @, be its normed fundamental
matrix and let ‘¥,(7) be the normed fundamental matrix of the system

(6) yn+| = B,,(T)y,,.

Then

@) D,,..=D,E()D, forall n=0.
Proof. Let us define Y,(1) = @, '®,, ., n = 0. Then

Y;+1(T) = d)n_-:ltpn+r+l = d)n-lAn_lAn+1'(1)n+t= ((Dn_]A,,—]A,,+ rd)n) (Dn_ld)n+t'

From the equality (5) it follows that @, '4,7'4,, .®, = 4, '4,, .= B,(7) and
thus we have Y, ,(7) = B,(7) Y,(7). Since Y;(7) = @,, ¥(7) = I we obtain that
Y, (1) = ¥(7) @, and thus &', . = ¥ (1) D, 01 @, . = O, ¥ (D) D..

Theorem 4. Let the system (3) be a 1-AFS, @, be its normed fundamental
matrix and

8) [C(7), B,()]=0 forall n=0

where C(1) = (®,)"". Then there exists a matrix function T, and a constant ma-
trix B such that

® o, =TB"
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(10) T,.=TL¥%(©®

for all n 20 where ¥,1) is the normed fundamental matrix of the system (6).
Moreover, y, = T,x, transforms the system (3) into the form

(11) yn+l=Byn'

We remark that the matrix @, is regular and therefore from [6, Theorem 5.
4. 1] it follows that the matrix C(7) = (®,)"" is well defined.

If the system (3) is z-periodic, then the assumption (8) is satisfied, ¥,(7) =1
for all n > 0 and thus the assertion of Theorem 4 is in coincidence with the
assertion of Theorem 2.

Proof of Theorem 4. If we define T,= @,B~" for n = 0 where B =
= C(7), then obviously @, = T, B". Let w, = [B, ¥,(7)] where ¥,(7) is the normed
fundamental matrix of the system (6). The using the equality (8) we obtain that

w, 1 =[B, Y, (=B, (-, (DB=

= BB,(7) ¥,(1) — B,(1) ¥,(1) B = B,(1) B¥,(7) —

~ B,(1) ¥(1) B = B,() o,
Since w, = [B, ¥(7)] = 0, we obtain that [B, ¥,(7)] = 0,i.e. B¥,(7) = ¥,(7) B for
all n = 0. This implies that
(12) Y()B™"=B"¥(r) forall n=0.
Using (7) and (12) we obtain that

Ly:=®, B "=, () PBB" =

=@, (BB~ B™" = ®,B™"F (1) = T, (1),

i.e. the equality (10) holds. If y, = T x,, then
(T,,) 'A,T,=(®,, ,B"B") '4,&,B"=B forall n=0

and thus the equality (11) holds.

Now we prove two theorems giving criteria for the system (3) to be a 7-AFS,
which are similar to these formulated by Freedman [4] for almost Floquet
systems of differential equations.

Theorem 5. Let all matrices A,, n = 0 be regular, T be a natural number and
[B,,(7), A,] = 0 for all m, n 2 0 where B, (1) = A,,'A,, , .. Then the system (3) is
a -AFS.

Proof. If we define a,(m, 1) = [B, (1), ®,] for m, n = 0, then

a, l(m’ T) = [Bm(r)5 (Dn+ l] = Bm(T) An(pn - An (Dan(T) =
= Aan(T) q)n - Anman(T) = Anan(m’ T)'
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Since a,(m, 7) = [B,,(7), I] = 0 for all m = 0, we obtain that [B,,(7), ®,] = 0 for
all m, n 2 0 and in particular [B,(7), @,] = 0 for all n > 0, i.e. (3) is a -AFS.

Theorem 6. Let all matrices A,, n 2 0 be regular, T be a natural number and
let B,(1) = A, 'A, , . be such that [B, , (1), A,)=0foralln>20andi=0,1, ...,
..., k. Suppose that for any n 2 0, B, () satisfies the following difference equation:
(13) Ln(Zn) = Cr?ZrH-k + CanrH—k—l + ...+ C:Zn + Zn+kDr? +
+ Zn+k7lDr: + soe + ZVIDI’I( = Ex

where the matrices C,, D), F,, i = 0, 1, ..., k commute with the normed fundament-
al matrix @, of the system (3). Then the system (3) is a 7-AFS.

Proof. Let U,(7) = @, 'B,(7) @, for n 2 0. Since B, , (A4, = A,B,, (7,
we have that

Un+l(r) = Qn_+lan+l(T) (pn+l = (Dn_lAn_]BrH»](T)An(Dn =
= djn—an+I(Dn'
One can easily show by induction that
(14) U,,(=&7'B, &, for i=0,1,..,k
Therefore from the commutability hypothesis we get
L,(U,(7) = &, 'L,(B,(?) ®,= O 'F,D,=F,,

i.e. U,(7) is a solution of the difference equation (13) with the same initial
conditions as B,(7) and hence U,(7) = B,(7), or [B,(7), @,] = 0foralln >0, i.e.
(3) is a -AFS.

Example. Let B,(7) = By, i.e. A,, ,= ByA, for all n = 0, where 7is a natural
number, B, is a constant matrix and assume that

(15) [By, A]=0 forall n=0.

Then by Theorem 5 the system (3) is a 7-AFS. Since the normed fundamental
matrix of the system (6) with B,(7) = B, is ¥,(7) = B§, Theorem 3 implies the
equality

(16) D,,.=0,Bj®d, forall n=0

where @, is the normed fundamental matrix of the system (3). Using Theo-
rem 3 and the equality (16) one can show by induction that

n+ % mm—1)t
a7 D, = D,B, B™ forall m,nz=0
where B = (®,)"/". This formula implies that the stability properties of the system
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(3) substantially depend on whether the matrices B, and B have eigenvalues
inside or outside the unit circle.

As a specimen of application of the previous results we prove a theorem
concerning a linear perturbation of the system (3). To state the theorem and give
its proof we need to introduce one notion and then to prove a lemma.

Definition 2. 4 norm | - || on R" is called adapted to given continuous linear maps
P:R"->R"i=1,2, if|P| £ max (o, 0), i =1, 2 where o = max (|4, |4, ...,

veos [, @0 =max (v, Ivil, ..., IV,]), &is Vi, i =1, 2, ..., n, are eigenvalues of P,
and B, respectively and || S| = sup ||Sx|.
ixl =1

Lemma 1. Let two linear and continuous maps P.: R" - R", i = 1, 2, be given.
Then there exists a norm on R" adapted to these maps.

Proof. By [8, p. 312] there exist norms |-|,, |-, on R” such that
1Al =
= o and ||R|, = o where ||S||, = sup ||Sx|, i =1, 2. The function x - max-
Ixl = 1

“ +(lxlly, x|l is the wanted norm on R".

Theorem 7. Let the system (3) be a t-AFS with B,= A, 'A,, .= B, for all
n = 0 where B, is a constant matrix. Assume that the matrices B = (®,)"* and B,
have all their eigenvalues inside the open unit circle where @, is the normed
Sfundamental matrix of the system (3) and let [B, By)) = 0. Then the system

(18) Xnt+1 = (An + Dn)xn

is asymptotically stable provided
(19) Y kT |ID || < oo
n=1

where k = max (O', Q)v O = max (ll‘lls |}”2|’ ceey M’nl)’ 0 = max (|V1|7 |V2|’ ceey |Vn|),
A Vi i=1,2, ..., n are eigenvalues of B and B, respectively, || -| is a norm on
R" adapted to the maps B and B,, y(n) = B(n) v+ % p(n)[B(n) — 1]t where
a:N—> Nn|[0, 7)and B: N — N are such functions defined on the set N of natural
numbers that any ne N can be written as n = a(n) + f(n) t.

Proof. By [7, p. 36] the solution of the nonhomogeneous difference equa-
tion

(20) X, 1= A%, + £,

satisfying the initial condition x, = & has the form

n—1

1) X, = 0,06+ 3 PP,
v=0
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By this variation of the constant formula we can write the solution x, of (18)
satisfying the condition x, = & as

n—1
(22) Xp = (an)n;15+ Z ¢nd>v_+llexv'
v=0
Let M, = max |®,| and M, = max |®,'| where | -| is a norm on R" adap-
0sn=srt 0sn=sr

ted to the maps B and B,. By Lemma 1 such an adapted norm on R" exists.
Using the equality (17) and the assumption [B, By] = BB, — B, B = 0 we obtain
that for any m, n =2 0

1 1
a(n) + 5 f(n)[B(n) — 1] 7 —a(m) — 5 f(m)[B(m) — 1]t
OB, = D,y By . BAne. g g

-1
" Fa(m) s

1.e.
(23) q)" (p';l — (pa(") Bé’("’ —am) plAn) — flm)]t, B(f(") — &(m) (pa—(':l)

where the functions a, § are as in theorem and (i) = £ (i) [B(i)) — 1] z. Since
IByll <k <1and ||B| <k <1, we obtain from (23) that

(24) D, D | < M, M, k™ ~7 forall m,n=0, n=m
where the function y is as in the theorem. Substituting (24) in (22) gives

n—1
7(n) — y(ng) _
Il < M Mok 4 % MMy kT DD x|
v=0

for all n = n, and this implies that
n—1
k=7 x, )l < MyMy k™" 4+ Y MMy k™0 10D (kT x ).
v=0

From [7, Corollary 1], which is an analogy of the Gronwall inequality, it follows
that

n—1
k="x, | < M, M-k ™™™ exp [Man(Z k"“’-“””nuvnﬂ
0

v=

for all n = n, and thus we have

(25) x| £ M-k™ for all n=n,

where M = M1 Mz.k_ﬂno),exp [MIMZ ( Z kW —rv+ I)HDV">:| The assump-
v=20

tion (19) implies that M < oo. Therefore the theorem follows from the inequal-
ity (25).
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CUCTEMBbI JIMHENHBIX PA3BHOCTHBIX YPABHEHUM I[OUYTU OJIOKE

Milan Medved
Pe3oMme
B cTaThe BBeneH KJIacC PA3HOCTHBIX JIMHEMHBIX CHCTEM NoyTH DJioKe U NOKa3aHO 060GLIEHHE
TeopeMbl PJIoKe 1y THHEHHBIX Pa3HOCTHBIX CHCTeM. MCnosib30BaHHEM ITOM TeOpeMbl JOKa3aHa

O/1Ha TeopeMa 00 yCTOHYMBOCTH, KOTOPAs KacaeTcs JIHHEHHOI O BO3MYILCHHUS IaHHOM pa3HOCTHOM
chcTeMbl noyTH Piroke.

373



		webmaster@dml.cz
	2012-08-01T03:55:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




