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THE INCIDENCE SUBMANIFOLD OF RPn x G1 (RPn) 
FOR n ODD IS NONORIENTABLE 

EUGEN RUZICKY 

I should like to thank M. Hejny and M. Bozek for their help. 
The assertion given in the title will be proved. 

Notation: Bn = {x e Rn, \x\ ^ 1} w-dimensional closed ball 
Bn = {x e Rn, \x\ < 1} w-dimensional open ball 
Sn = {x eRnrl, \x\ = 1} w-dimensional sphere 
BPn — ^-dimensional real projective space 
Gi(RPn) = first Grassmannian of RPn 

F(n) = the sumbanifold of the product-manifold 
RPn x Gi(RPn) consisting of all couples (&, p) with & e p. 

Let us define a continuous map ii : Bn X RP71'1 - > R P n via b = (bi, . . . , 
bn)eBn, c= (a, . . . , c^eRP^1; k(b,c) = (l,bi, ...,bn) eRPn; b0= 1. 

The space Gi(RPn) will be endowed with generalized Pliicker coordinates. 
Then Gi(RPn) <~ RPm, 2m = n . (n + 1) — 2. The map i2 is defined as a com­
position Bn x RPn~x -> RPn X RPn — A -> Gi(RPn) of two maps, & e Bn, 
ceRP71'1, (h, c) ->((!, bi, ...,bn), (0, a, ..., cn))\-> (p0i, ...,p0n, ...,pn-i,n)e 
e RPm, where A is the diagonal and p^ = bfCj —- &/C* for i <. j are generalized 
Pliicker coordinates of a line BG, B = (1, &), (7 = (0, c) in .BPW. The map i% 
and hence i = i\ X i2 is continuous. I t is obvious i[Bn X PP71*1] ^ JP(W). 

1. i is injective. In fact, let &, &' e I?w and c, c' e RP71'1 and (&, c) -^ (&', c'). 
If & T-= &', then ii(&, c) 7-- ii(&', c'). If & = &' and c -^ c', then there exist i, / e 
e {1, .. . , n} such that c$ = c{ -^ 0, c; -7-̂  cj and i -7-- j ; hence p0% = c% = c{ = -jpoi 

and poj = Cj ̂  c'j = P0j, k(b, c) # i2(&', c'). 

2. i is embedding, because the map i is continuous, injective and both spaces 
Bn X RPn~A, F(n) are compact and Haussdorf ones. 

Theorem. The manifold F(n) is nonorientable for n odd. 
Proof . Let us suppose tha t F(n) for n = 2k + 1 is orientable. Then the 

open submanifold i[Bn X RP71"1] of F(n) is also orientable. The continuous 
map i"1 (which is in fact an embedding) describes an orientation of Bn X RP71"1 
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and hence the manifold Bn X RP71'1 with the boundary d(Bn x RP71'1) = 
= S71-1 X RP71-1 is orientable as well. The orientability of the manifold 
Bn X RP71'1 yields an orientability of the manifold S"-1 X RP71'1, which 
is a compact manifold without a boundary, thus it follows that H2n-2(Sn~1 X 
X RP71'1) = Z. 

On the other hand an easy computation shows that H2n-2(Sn~1 X RP71-1) = 
= H2n-2(RPn-1, Hotf7*-1)) + Hn-^RP71'1, Hn-^S7*-1)) = 0 for n = 2k + 1. 
which contradict our assumption. 

Corollary. H.2n-i(F(^)) = 0 for n odd. 
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