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ON HIGHER ORDER POINT SINGULARITIES
OF SOME GEOMETRIC OBJECT FIELDS

ANTON DEKRET

Let M be a differentiable manifold, n =dimM. Let T:M be the manifold of all
k" -velocities, i.e. the space of all r-jets of mappings R*—M with the source
O € R*. It will be said that a geometric object field 0: M — TM, i.e. a crosssection
o of the fibre bundle f: T.:M—M, has the singularity of order s (shortly
s-singularity) at x e M if jio =j;O}, where O: M— T:M is such a geometric
object field that for any x e M Oi(x)=joY, Y(y)=x for any y € R*. In this paper
we study higher order singularities of some geometric object fields. Our considera-
tions are in the category C~.

1. Let (x') be a local chart on M. Let x =a'(x)3/3x’ be a vector field on M. Then
X: M— TM has r-singularity at (x,) e M if and only if

a'(x0)=0, 3a'(x0)=0,...,8,.,a'(x0) =0,

where 3;,..;, denotes 3/3x;,..,,.
Let (x', xi, ..., xi,.4,) be a local chart on T;M. Let X’ be the r-prolongation of
X on T;M. Locally

X"=a'3/3x' +3;(a') xi3/3xi+ ...+

+ @y (@)xi xt 4+ 3(a)x], 2, )0/3X], . 4,
It immediately gives

Proposition 1. The field X has at x € M the r-singularity if and only if X’ (h)=0
for any h € (T:M),.

Let m: E—»M be a fibre manifold. Let (x‘, y*) be a local chart on E. Let
X =a'(x) 3/3x' + b°(x, y) 3/3y” be a projectable tangent vector field on E. Let
X be the r-prolongation of X on J'E. Locally, for example,

€)) XP=qa'3/3x' + b*3/3y” + (3s(b*)y? — yid:i(a*) + 3,(b*))3/3y5,

where (x',y”, y7) is a local chart on J'E. It is obvious that if X has at
(x0, yo)=e € E the r-singularity, then X (h)=0 for any he(J'E)., Bh=u.
Conversely this is not true.
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Let I': E—J'E be a generalized connection on E (see for example [4]). Denote
by I, the horizontal tangent subspace determined by I'atue E, T.E=T,E,®T,.
Let Xe T,E. Then X =vX+hX,vXeT,E,, hXel,, nu=x. Let @, or y, be the
morphism of I', or the curvature morphism of I', i.e. @(X)=vX, ¢(X, Y)=¢
([X, Y]),where X, Y are such horizontal tangent vector fields that X(u)=h(X),
Y(u)=h(Y). Locally, let

C:(x', y ) (x', y*, yi=al(x', y*)).
Then

2) @ = (dy” —ai(x, y)dx")®3/3y",
Y = (3s(az)al +3,(a%))dx* ndx' ®3/3y”.

Let X =a'(x, y)3/3x’ + b*(x, y)3/dy® be a tangent vector field on E. Let ¥x¢
denote the Lie derivative of ¢ by X. Locally

3) P = (aidx* — dy®)d,(a")®I/3x' +

+ {3p(b*)al + 3. (b*)—3,(a%)a’ —3s(as)b® —ajd(a’))dx* — aids(a*)dy’} X3
/3y“.

If X has the 1-singularity at u € E, then (£x¢). = 0. The field X will be said to be

(T, r)-singular at u € E if the field ¢(X) has the r-singularity at u. Recall that

every horizontal tangent vector field on E is (I', r)-singular at any u € E and for

any integer r =0. By [2] X is conjugate with I" at u € E if (¥x¢).=0. Let Y be

a tangent vector field on E. Denote by iyy the morphism determined by

Lemma 1. Let X be a projectable tangent vector field on E. Let X be
(I, 1)-singular at u € E. Then X is conjughte with I at u if and only if ixy vanishes
at u.

Proof. Every field X =a'(x)3/3x' +b*(x, y)3/3y® is (I, 1)-singular at u =
(x0, o) if and only if

b®(xo, yo)= a;(xo, YO)a'(xo),
3s(b” (x0, ¥0)) = 3p (Q?(xo, ya))a'(xo), A
3k (b° (xo0, ¥0)) = 3i(ai'(x0, yo))a' (xo) + @i (xo, y0)3rk (@' (xo)).
Then the relation (2) and (3) complete our proof.
Lemma 1 gives

Proposition 2. Let y be the curvature morphism of I'. Then 1 vanishes at u € E if

and only if every at u(I", 1)-singular projectable tangent vector field is conjugate
with I' at u.

Proposition 3. Let X be a projectable tangent vector field on E which is
(T, 1)-singular at ue E. Let X(u)=0. Then X" (I'(u))=0.
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The proof follows from (1) and (4).

Let p: F—E be a vector bundle over the fibre bundle E®Let t: E—F be
a cross-section. T will be said to be vertically r-singular at u € E if t|g,, x = 7u, has
the r-singularity at u. Denote by b: J'E — E the fibre projection. Let us recall that
b: J'E — E is an affine fibre bundle associate with the vector bundle VTE @ T*M,
where VTE denotes the fibre bundle of vertical tangent vectors on E. Therefore
every b-vertical tangent vectors on E. Therefore every b-vertical tangent vector
Z e T,J'E determines Z € (VTE ® T*M)sn)-

Proposition 4. Let a vertical tangent vector field X on E vanishe at u € E. Then

X is vertically 1-singular at u if and only if X”(h,)=X"(h,) for any such h,,
h,eJ'E that b(h,))=b(h,)=u.

Proof. Let X=b%(x,y) 3/3y*, b*(u)=0. Then (1) gives X®(h)=
[Bs (b (w))y? + 3:(b*(u))]3/3y?, b(h)=u. In our case X is vertically 1-singular at
u if and only if 34(b*(u))=0. This gives our assertion.

Let I, I' be generalized connections on E. It will be said that I' and I have at
u € E the r-contact, or the vertical r-contact if j.I"=j.I", or ji([le.) =ju([e.),
respectively. It is known that I' and I determine the cross-section (I'—TI):
E — VTE ® T*M. Obviously, the connections I" and I" have the r-contact, or the
vertical r-contact, if and only if (I'—TI) is r-singular, or vertically r-singular.

Proposition 5. Let I'®, IV E—J’E be the first prolongations of T, I. Let
(IF'=I): E— VTEQ®T*M be vertically 1-singular at u € E. Then I and I" have the
1-contact at u if and only if I'"(u)=I"(u).

Proof. Locally, I: (x',y")—(x',y% yi=ai(x,y)), I: (&', y*)~
(', y%, yi=ai(x,y)), ([ -T): (x', y*)—>(@i(x, y) - ai(x, y)) dx' ®3/3y". Then
('-r) is vertically 1-singular at u if and only if ai(u)=ai(u), 3s(ai(u))
= 3g(ai(u)). Then using the local relation

r: (', y)—(x', y*, yf = al, yi=0u(af) + 35 (ai)at)
we get our assertion. '

2. Let the Lie group G act on M. Denote by x-g, x e M, g € G, the action of G
onM.Then G actson T\M by u-g =js(y-g), u =joy € TeM. Let us recall (see [3])
that the isotropy group of order r at xeM is the Lie group G;={ge€G,
jxg =j:g =jx idm}.

Lemma 2. LetgeG,xeM. Theng e G if and only if u-g = u for any u € T:M,
Pu=x, k=1.

Proof. Let (x', xj, ..., xi, ) be a local chart on TiM. Let jig = (x', X', gj, ...,
gi...), where g: M—M, g(m)=m-g. Let u-g = u. Using the composition of the
jets u and g, we have
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x'=x'
gxi=xi,
i Iy iz ij i
gi|i2x11x12+gix).112—xhlz

i j i, ij i
g,,“_,-,x’t,...xl,+ .t g;xfxlu.).,—x;.l.“x,.

These relations are true for any u, Bu=x, if and only if g;=4j, ¢;,,=0, ..
g,..,=0, that is if and only if jig =, idy.

.y

Lemma 3. Let g € G. Then g € G, if and only if there is such u € H'M that Bu = x
andu-g=u.

Proof. By Lemma 2, if g € G, then u-g =u for u e (H'M),. Conversely, let
there be such a u H;M that u-g = u. Then (u is invertible) (u-g)u "= uu""', that is
g =jx idum.

Let e be the unit of G. Let ¢ € (T:G)., ¢ = jo&. Then the geometric object field

x—jo(x-§)e TTM

will be said to be a (G, r, s) — object on M.

Lemma 4. Let o be a (G, q, s) object on T;M determined by ¢ € (T:G).. Then
c € T{(G) if and only if there is such a u € (T:M), that o(u)= O?%(u).

Proof. If ¢=ji&eTi(G:). and ue(TiM),, then o(u)=ji(u-5)=0%(u).
Conversely, let o(u)=07%(u). Let B'c=(T.G). be the 1-subjet of c. Let
c ¢ T!(G)).. Then B'c é T:(G:).. Denote by T(B'c) = T.G the tangent subspace
determined by 'c. Then there is such an X e T(B'c) that X ¢ T.G~. Let X be the
fundamental tangent vector field on T;M generated by X. Obviously
X(u)e TB'o(u). Therefore X (u)=0. Let us recall (see for example 3.1 of [1]) that
if X(u)=0, then XeT.G,, where G, denotes the isotropy group of u. By
Lemma 2 we get: G is the isotropy group of any h € (TiM),. Hence X € T.G:.
Therefore ¢ € T (G?).

Let (z*) be a local chart on M, e = (0, ..., 0). Let £' =f'(x’, z*) be the equations
of the action of G on M. Let ¢ =(c3, cipy ---» Ciy.2,) € (T5G).. Then

(x )= (X', 3. (f (x, €))c,s vy By (F (x5 €))ertoc it .+ 3a(f (x, €))CR, )

is the (G, q, s)-object n on M determined by c. Locally, n has the r-singularity at
(x0) if and only if

(5) Bu(f (X0r €)¢E =0, ..., By, (FICH S ..+ B )cE, 2, =0,
3.3 (f)cf =0, ..., Buy a, O (f)cs,...cla+ ...+ 3adu(f)cs, 4, =0

aa aklmk,(fl)cg = 0’ esey aal...aq akl...k, (fi)cj\lll---cf\x: +... + aaakl--»kr(fi)c:\zlu-/\q = 0'
Let h=(x', x{, ..., xi, ) e Te(M), u=jsp. Let g=(9“)e G. Then
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© k=)= @), )= g%,
ai(fl(x" ga))xi, ceey ail-uir(f‘(xi’ ga))xﬂx::"' . ai(fl(xl’ ga))x,n...r,)-
Calculating the coordinate form of the (G, g, s)-object on T:M determined by
c=jiEe(TiG). we get

Proposition 6. Let & be a (G, q, s)-object on M determined by c € (T;G).. Then
& has the singularity of order r at x e M in and only if o(u)=O%(u) for any
u € (TM),, where o is the (G, q, s)-object on T.M determined by c.

Now Proposition 6 and Lemma 4 give

Proposition 7. Let a (G, q, s)-object & on M be generated by c € (T?G).. Then &
has at x e M the singularity of the order r if and only if ¢ € (T?G?)..
Using (6) we have

Proposition 8. A subgroup H = G is the isotropy group of order r at x € M if and
only if H is the isotropy group of order r — q at any u e (T:M),, q=r.

Let @ be a Lie groupoid of operators on the fibre manifold E. Let us recall (see
[4]) that every section & of the Lie algebroid depl @ determines the tangent vector
field X on E. It follows from Proposition 7 that X is vertically r-singular at u € E,,
mu = x, if and only if £(x) € T.(G,)», where (G, )» = @ is the isotropy group of the
order r at u. Let y,, ¥, be connections on @. Let I';, or I',, be the connection on E
determined by v,, or y,, respectively. By Proposition 7, I'y and I, have the vertical
r-contact at u € E if and only if y,—y,€ T(G,). @ T*M, au=x.
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OCOBBEHHOCTH BBICHIETO IOPSIIKA HEKOTOPLIX ITOJIEN
TFTEOMETPMYECKHUX OBBEKTOB

AHTOH JlekpeT
Pesiome
IMycts M puddepenuupyemoe MHoroo6pasue. Ilyctes Ti NMpOCTPaHCTBO BCeX r-CTpyeH OTOG-
paxennit R* — M ¢ nauanom B O € R*. ITone reomeTpudeckux 00beKTOB 0: M — TiM uMeeT B TOUKe'
x €M p-ocobenHocTb, ecnu jio =j20%, rae Op: M— T;M Takoi reoMeTpHYecKHi OGBEKT, YTO

Oi(y)=jéy, y(z)=y nna kaxmoro zeR*. B craThe HaiieHbl HEKOTOpble MOCTATOYHbIE
W HEOOXOUMBIE YCIIOBHS JUISl p -OCOGEHHOCTEH HEKOTOPBIX MOJIEH reOMETPUYECKHX OOHEKTOB.
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