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SOME APPLICATIONS OF FRANEL —KLUYVER’S
INTEGRAL, 1I

OTO STRAUCH
1. Introduction

The aim of this paper is to find an expression of (a, ), the square of the
greatest common divisor of positive integers a, b in a form of a convergent
infinite series whose terms are polynomials in 1/a, 1/b. We shall also touch upon
the question of the rapidity of the convergence of this series. Our main tool to
do this will be the theory of uniform distribution and the following integral
involving the function fractional part {.}

[(or-Yom-Da-tis o

In 1924 J. Franel [1] used expression (1) to prove the equivalence of the
Riemann hypothesis with the estimate

J Ri(x)dx = O(N'?*%)
0

for the remainder function Ry(x) (for the definition see Part 2) of the dis-

crepancy of the Farey sequence of order n, where N = ) ¢(i) and ¢ denotes
i=1
the Euler totient function. In his paper [1] Franel only notes that (1) follows
from Fourier’s expansion of the function {.}. In the subsequent paper [2]
E. Landau gave an elementary proof of (1) (see also [3, p. 170]). However,
twenty years ago J. C. Kluyver [4] proved a more general result. If B,(x) is
the nth Bernoulli polynomial and B, = B,(0) the nth Bernoulli number, then he
proved (after a slight modification) thah
m!n! (a, b)y"*"

1
fo Bu(fax)) B((bl)dx = (=1~ 2B B T

for all positive integers m, n, a, b. In fact Kluyver constructed certain functions
z(x, y) of two real variables x and y which for positive integer values of these
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variables reduce to the greatest common divisor of x and y. Unfortunately, each
of his functions z(x, y) involves the function fractional part.

Estimates of sums involving terms on the right-hand side of (1) play a role
in the metric theory of the diophantine approximation and in the theory of the
uniform distribution. More details can be found in [5—9]. In our opinion the
first result on such sums was proved by I. S. Gal [5] who proved that

n 2
Y @ 9) < cn(loglogn)?
ij=14q;

for every finite sequence {gq;}/_, of distinct positive integers and with ¢ an
absolute constant. With this estimate, which does not depend on the sequence
{g}:_ , and which is the best possible, Gal improved an earlier unpublished result
of Erdés with cn logn on the right-hand side. This result was then extend by
T. Dyer and G. Harman [9]. They proved that for any sequences {f;}/_,, {g}/-,
of non-negative real numbers and every sequence {gq,};_, of distinct positive
integers we have )

5 (ﬁgj M)’“ <

ij=1 q:4;

" ¢’ logi ))”2 ( n ( ¢’ logj >)'/2
< (eXpl———————— : i EXp\ <
= c(i;ﬁ p<log, log(i + 1) ,-; & exp loglog(j + 1)

with ¢, ¢’ absolute constants and ¢’ < 5.

2. Preliminaries

In this chapter we shall employ the classical part of the theory of uniform
distribution. The terminology used is that from the monograph by L. Kui-
pers and H. Niederreiter [10]. Let in what follows

xl, xz, ceny xN

be a finite sequence of real numbers from the interval [0, 1]. Given such a
sequence {x,}"_, and a subinterval [0, x) of [0, 1] denote

A0, x), N, {x,})) =card{n; 1 =n <N, 0= x,<x},
Ry(x) = A(0, x), N, x,) — Nx if 0=x<1,

Ry(1) =0, @)
|Ry ()]
D} = :
VT oses N
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1 12
DY = <FJ:) R,f,(x)dx) .

The number D* is called the discrepancy, D{? the L? discrepancy and Ry(x) the
relmainder of the sequence {x,}"_,. Some other representations for D}, D{ or

J R?(x)dx are known, e.g.
0

(53
B n=1 § 2 2n2h=| 2

N? N N N
=—-§-+NZx,,2+ Y x,—2) nx,
n=1 n=1 n=1
NQ N N
=—3—+ NY xI— Y max(x,, x,)
n=1 mn=1
NQ N N N
=-3—+NZx,,——NZx,,—— Y X, — x,
n=1 n= m,n=1

3)

4

)

(6)

(7

®

©)

(10)

In (4), (7) and (8) should be supposed that the elements of the sequence {x,}"_,

are ordered according to their magnitude.

These identities were used often in the past and some of them can be found
explicitly in [12]. For the proof of (3)—(10) refer to [10], pp. 91, 161, 110, 144,

145. Relation (10) follows immediately from (9).
The next identity is also useful.

Lemma. Given a finite sequence {x,}_, of real numbers from the interval [0, 1]

we have
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f Ri(x)dx = J J ”dRN(x)dRNu) (1)

Proof. Although the identity (11) can be proved directly by integration
by parts, we prove it using some other ideas.

It follows from the definition of the Riemann — Stieltjes integral that for all
continuous functions f: [0, 1] — R we have

L S(x)dRy(x) = zfm— J f(x)dx. (12)

Applying (12) to both variables of a continuous function f(x, y): [0, 1> = R we
receive

Z f(xm» \‘)_NZJ‘ jf(X,Y)dXdy

m.on=1

N

SO O CHRR Y S dx) il dx( 5. 1%y = N[ e )

; Jf(x x,)dRy(x) + Nj dxj S(x, y)dRy(»)
Y ! 1, Al
= fo ( ;f(x, X,) — NL Sf(x, y) dy) dRy(x) + NJ q f(x, y) dy) dRy(x) +

1 |
+ NL de Sfx, »)dRy ().
0
If the function f(x, y) is symmetrical, then we can continue with the equality

= J; Jof(x’ »)dRy(y)dRy(x) + ZNJ; Lf(x, y)dy dRy(x). (13)

If the function f(x, y) has continuous partial derivatives, then the Riemann—
Stieltjes integrals in the above equality can be replaced by the Riemann integrals
in the following way

2

f ff(x, ) ARy (x)dRy(y) = f f Ry(x) Ry(y) =
o Jo o Jo Ox 0y

Slx, y)dx dy, (14

1l 1 pl
2Nj Jf(x, »)dy dRy(x) = —2Nf J RN(x) f(x y)dx dy. (15)
o Jo
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1 x*4+y* x4y |x—yl
Fx,y)=-+ - - , (16)
(x. ) 3 2 2 2

then (10) gives

fR,Ax)dx- Y F(x,,x,) and jJF(x, y)dx dy =0.
0 Jo

vn=1

Using (13)—(15) we obtain

J Ri(x)dx = Z F(xm,x)—sz J F(x, y)dx dy

mon=1

1 1
_ f : J =GR, (AR, ()
o 2

0
1 pl 2 2
[ remorg (o2

2
yl
+aN | dy dR,(x)
—2Nf J Ry(x) < (1+x2+y2—x+y>dxdy
N 3 2 2

and (11) follows by routine calculations.
Remark 1. The identity (1%) was first used by Koksma in [11] with the

left-hand side in the form — | Ry (x)df(x) and for functions which have a
0

bounded variation and which are continuous at all points from {x,}Y_,. By
integration by parts of the left-hand side of (12) it can be shown that the Koks-
ma identity is true also for continuous functions with unbounded variation.

Remark 2. We shall apply the Lemma very often in the following version:

Let {y,,},',\":, and {z,,},’:'i, be two sequences of real numbers from the interval
[0, 1] with remainders Ry (x) and Ry (x), respectively. Let {x,}¥_, be a super-
position of { y,,},, ! ,and {z,,},',vz= 1, thatis, a sequence obtained by listing the terms
of the {y,,},, , and {z,,},,~I in some order. Then

Ry(x) = Ry (x) + Ry,(x), N=N,+ N;

and repeated applications of (11) on the sequences {x,}"_,, {y,}~,, and {z,}.2 ,

gives \

1 pl
Ry (x) Ry (x)dx = L L - 'i‘—;—y' dRy, (x)dRy,(»). (17)
0 .
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Using these sequences in (10), we have

M

J Ry, (x) Ry,(x)dx = Z F(y,ns 2,) (18)

m=1n=1

Ny N,
for every two sequences {y,},~, and {z,},%, from [0, 1].
Interesting results can be prove applying (1), (4)—(10), (17) and (18) to some
sequences. For example, let

q1> 925 -+ 4y
be a finite sequence of positive integers (not necessary distinct). Define

1 2
{xn},l,v=|={—l_a E’ "')ﬂyl,g, ---,‘q—z, seey T 9 Ty eeny 'q—n}. (19)
q1 4, 9 92 9 q> qn 4n qn

If N= ) g, then we have
i=1

A0, x], N, {x,}) = Zl [g:x]
and Franel —Kluyver’s integral (1) gives
1 1
1 ¢ %
J R,%/(X)dx = j ( Z {q'x}> dx = — + Z (ql’ ql) . (20)
0 0 i=1 4 12 ij=1 q’q]

On the other hand, the right-hand side of (5) with respect to the sequence (19)
can be calculated to the form

L] N(x)dx——;+i > hz(zq)

2% K=

Thus together with (20) this gives that for every sequence {g;}/_, of positive
integers we have

Z =) (Z q) @n

,.qj TSR =

Note that the same result can be proved for the similar sequence

{0 L. q‘—“—l,g,l,...,qz—_—l,...,9,-1-,...,&“—1}. (22)
91 9 9 9 D 92 9n 9n n

This follows immediately from the fact that by (5) both sequence {x, },,,l and
{1 — x,}7_, have the same L? discrepancy.
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The result of type (21) can be proved using (17) also for sequence (22). This
will be the aim of the next section.

3. Main results

First we express
Wl =1 == x)

in the binomial series

_1_ ¥ 1 (2k)! N
M=1=2 s oy T 23)

Applying the Stirling formula in the following from

k! = 2kk"e"‘< n+&>, x| < 1
we obtain

(7
= . 1+
2k — 1 (21 2k —1 Jmk 4tk

An immediate consequence is that the series (23) converges uniformly for

Ix| = 1.
Substituting (23) in (17) we can prove the following result.
Theorem 1. For every triplet of positive integers a, b and X we have

1 (a by
12 ab
= i L 91 Zk: _1_.(2(’“"3))._22'_.&.
= 2(2k _ 1) (zl.k')z 2<r..r+= |<k XZ(r+.r)—2 2r a2r—l b?.v—l

. =2 .[(_l)rﬂ—l( k >_
2(r +5)@2(r+5) = 1) r+s—1

k
(1Y 2%k —=20r+5)+2
(=172 (2k—2(r+s)+2>]’

where B, denotes the rth Bernoulli number and for binomial coefficients < ; ) we put

(':)=0 if n<0 or n>m.
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Proof. First of all, it follows from (17) and (14) that

J Ry (x) Ry,(x)dx = (j Ry (x) dx) (j Ry, (x) dx) +
0 0 0

1 1
+J J 1 —|x —yl —2(1 —(x=y?) dRy (x)dRy,(»). (25)
0 JO

Since the series (23) converges uniformly, we may integrate term by term and
obtain the following

J‘ Ry, (x) Ry, (x)dx = (j Ry, (x) dx> (J Ry, (x) dx)
0 0 0

1 @R jljl Lo e P = (1 = (x = ) dRy (3).
+k§22(2k_1) 2R 0[( C(x 1)) = (1 = (x — y))dRy (x)dRy,(¥)

(26)

For the kth power we have

L L (1 = (x = »)) dRy, (x) dRy,(¥)

k! (—1)+722b I i I i+ i
-y kb 2 S sz'“dRN,(x)j yTRAR, (). (2D
’|+‘3+’3+’4=k l|!lz!l3!l4! 0 0

iy iy iy, ig 2 0

Using (12) we get

1 N,
1
x¥dRy (x) = K= Ny-—— (28)
L N,( ) ngly 1 e+ 1
and especially
| 1 N N,
J Ry (x)dx = —J xdRy (x) = —2—'—~ Y V- (29)
0 0 n=1

The identities (25)—(29) hold for every couple of the sequences { y,,}f,v'z, and

{z,,},],v’=l of real numbers from [0, 1] with the remainders Ry (x) and Ry,(x),
respectively.

We are now in the position to prove our theorem. Using (20) and (29) we
obtain for the sequences

0 1 -1
R R A

a a a

(30)
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{znrllvil:{_o_al’---, b—‘:‘l}, N2=b

b b b
that | L1 @by
R(x)dx =~ 4 — & 9)
ﬁRa(X) »(x) dx 4+12 prat (1)
1 1
JRa(x)dxf R,,(x)dle. (32)
0 0 4

The well-known formula

N-—1 k 1
-y (e ke,
gives |
S k+1> B
x*dR,(x) = —( ) 33
J(‘)Y ) rglk—}—l r a ! (33)

Substituting (33) into (27) and after interchanging the order of the summations
we see that

L L (1 = (x = »))"dR,(x)dR,(»)

_ 3y B B LtV A A W
g Wtipthtig=k LV LVEYVEY 20+ 41
2ip+iy2r
21;:——1325
' 1 .(21’,+i3+1>_(2i3+i3+1>
2+ iy + 1 r s
& B B,
= e . e — - Si(r, 5). 34)

Since

S,(1,)=2, S2,1)=0, S,2,2)=0,
we may write

' Y B B
ﬁLm—u~nW—a—u—Wmmvm&m= Y e Sirs)
r+sz4 (35)
From (31), (32), (35) and (26) we get

2 0 ] 2k
1 (@b _ 1 k) B, 59 6
12 ab K=22Qk — 1) (2"k')2 riznal” v b‘ bt
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Let us transform S, (r, s) into a more suitable form. Writing

LSOl Z 5 = f0x) = (o) [0y, = f(0)

and substituting
1
P —(’”') it k>
plldx™™' Lo Lo if k<r

into S,(r, s) we obtain

Si(r, s)
3 5 k!(—l)"'“‘z.z’i‘_l[d'*' xzf,+i3]"='._l_[d“' vz,-w‘]“'
_i|+iz+i3+i4=k il i i P ldxn! e=o0 8! Ldx*" "7 =0
B Z k!(—l)il+i2'2i3‘;l_‘ ([ ar+x—l x2il+i3y2i2+i3]\'=l._v=l
Wthenti=k 01 rtst \Lox "oy ! e =1.y=0
_{ orte—? xzi,+i3y2i2+.‘3j|x=o"v=l)
Ox"~ 'y~ =0.y=0
1 ar+x—2 =1 y=1
S| Ay Ry } -
r!s! ([ax"'ay""( =) i=1.p=0
ar+.\-~2 . x=0.y=1
st 37
[ax"'ay""( (x—»)) o, (37)
This can be rewritten in the following way:
Let
r—1 Ji
S, _(x,p)= ar—l (1 —(x — ) = Z (_rfla_
ax f|+--»+ik=’—|j]!...jk!axll
(1 --my.. L z
PN — (= (x = y)),
X
4! 1y ah
B )= (== y D&
d r—1 X - ) S i
) it etie=r=1 b g b dyh
a—-py. Ly
R - (= =),
'}}
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d-! r—nt d"

€, () = =y = |
Y dy"'( ») qHeta=r= b i dy”

d”
(l—yz)...g—jk(l—yz),

y
jl—(x—y)z if s=0
o L) =2(x—y) if s=1
e L R it s=2
L0 if s=3
(1—(1—y)? if s=0
_d o J20—y) if s=1
b‘(y)—dy-v(1 ==92, Cf s=2
L0 if s=3
(1 -2 if s=0
_d ) Y if s=1
cx(y)—dys(l =95 -
\0 if Sg3

We see that a,(1, y) and b,(y) are distinct only it s = 1 and moreover a,(1, y) =
= —b,(p). Since now j, + ... +jy,=r—1,j,<2,n =1, ..., k the parity of the

number of j, = 1 is equal to the parity of r — 1. Thus

' A, (L yy=(=1Y""%,_,0).
Similarly

A, 0, 9)=(=1y""6,_(y), B_,(0)=(=1)""%,_ ().

Since b,(1) = ¢,(0) for s =0, 1, 2 and s = 3, we also have
B,_\(1) = (5,_1(0)
Applying this in (37) we obtain

r—1 r+s—2 r=1 r+s—2
S,(r, 5 = &) ([d (- —y)Z)“] ~[d ~ —y?)‘]
dyr+s !

r!S! dyr+xf2

v =0

-_—(_iJ_(zlii:Z_(l _yz)k] —
r!s! dyr+s—2 =0

_l:dr+.rk2 (] __yz)kj| (1 +(~])r+.tv2))
dyr+s~2 =1 '

r=1>
vy=0

(3%)
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Cauchy’s integral formula implies

d" AV § _ nj2 '

im0 =] ()

d o2\ _ 1Y D2k —n n
im0 ] (),

where<k>=0foroddnand< " >=0fork>n.
n/2 n—k

Combining (38) and (39) we obtain that S,(r, s) = 0 for odd r + 5. Since
r + s = 4 in the sum (36) and B, = 0 for each odd s > I, we can replace r — 2r,
and s — 2s. Using (39) for r + s > k we see that S, (2r, 2s) = 0. This gives in
expression (36) that Theorem 1 holds for X = 1. The rest of the proof follows
from the first of the next two elementary relations:

For the sake of simplicity put

<a by =

(39)

(a, b) b)

ab

Then )
(Xa, Xb) = {a, by, {a*, b*> = (a, b)* (40)

for all positive integers a, b, X.
Finally, observe that applying the second relation of (40), Theorem | can be

rewritten to the form ,
1 ((a, b)2>’
12 \ ab

= 72 l (2k)' i I (2(r + S))' BZr . BZ.\‘ .
=222k = 1) (2"k')2 = Xz"" -2 2r 2" e

S

-2 B k
- i)
20r+5)Q2r+s)—1) r+s—1

_ _Ik‘22k—2(r+\)+2< k )]
(=D 2k —2(r+s)+ 2

for every positive integer a, b, X, Y.
We finish this section by proving

s
Theorem 2. In Theorem I the remainder )" of the infinite series does not
exceed b=kt

9-—X— min {a, b}, 41

JK

for every positive integer u, b, X, K.
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Proof. If : [0, 1> - R is a continuous function, then as in the preceding
section we obtain

1l 1 1
L Lf(x, Y)dRy, (x)dRy,(y) = J; dRNz(y)L S(x, y)dRy (x)

-y | J(x, 2)dRy () ~ N, f dny(x, »)dRy, (%)

n=1
N,

=3 - L Ry, (x)df(x, z,) + NZL dyL Ry, (x)df(x, »). (42)

n=1

Consequently, if f has a bounded variation with respect to x and y, then

’ L L S(x, y)dRy (x)dRy,(¥)

1 1
< 2N, N, min {Dz"&. S“PJ Id.f(x, )I, D}, Supf Id, f(x, y)I} (43)
y 0 X 0

for every couple of sequences {y, ,},V;, and {z,,},],vz=l with the discrepancy D},
and DY, respectively. With
Sy =1 = (x =y

and using
f O m ) dr =1 = (1 =y —[(1 = (1 =y — 1] £2
o |0x

the relation (43) gets the form

1 pl
f f a-(x- y)z)"dRNl(x)dRNz(y)I S 4NN, min{D}%, D}}.  (44)
0 JO

Moreover, applying (3) to the sequences of the form (30) we get
pr=1, pr=1
a b
Hence

j J (1= (x = y))*dR,(x) dR”‘”l < 4-min {a, b},
0 JO

Using (24) we have

@ 1 (2k)! r dx 1
: <053 ——=1.06—.
=;+1 22k — 1) (2%k!)? K x+/x JK

k
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Thus, together

= 1 2k
2 ke
k=K+12(2k — 1) (2°k")

L L [(1— (&= p)) = (1 = (x = p))IAR,(x)dR,())

=

1
9.— min{aq, b}.

% }
Finally, substitution of a — Xa, b — Xb implies (41).
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HEKOTOPBIE NPUMEHEHUSA UHTETIPAJIA ®PAHEJIA —KJIYBIBEPA, 11
Oto Strauch
Pc3ome

B pabote paznoxcH Haubosblunit oblumii aeautesns B psaa. B aoka3zaTtesnbcTBe NpUMEHEHA
TEOpPUS PABHOMEPHOTO PACMPE/IC.ICHUS NOCIEI0BATEILHOCTEH.
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