Dušan Holý
A complete metric on the space of integrable multifunctions

Mathematica Slovaca, Vol. 45 (1995), No. 1, 63--77

Persistent URL: http://dml.cz/dmlcz/130046

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
A COMPLETE METRIC ON THE SPACE
OF INTEGRABLE MULTIFUNCTIONS

DUŠAN HOLÝ

(Communicated by Ladislav Mišík)

ABSTRACT. The notion of a multivalued integral was introduced by Aumann and the notion of an integrable multifunction (which we use) by Hai. We find a complete metric on the space of integrable multifunctions with values in a Banach separable space.

1. Introduction

The notion of an integral for a multivalued function was introduced by Aumann. The convergence theorems for multivalued integrals were discussed by Aumann [A], Schmeidler [S], and Arzstein [Ar]. These authors aimed Fatou's lemma and Lebesgue's convergence theorem with the Kuratowski convergence for measurable multivalued functions having values in the closed subsets of \(\mathbb{R}^n \). Fatou's lemma is of some use in mathematical economics [S].

Hai [Hi] studies integrable multivalued functions with values in a Banach separable space. He proved Fatou's lemmas and Lebesgue's convergence theorems for multivalued integrals mainly with the Mosco convergence but in the exive spaces.

We find a complete metric on the space of integrable multifunctions with values in a Banach separable space, which can be a useful tool in integration theory.

2. Definitions and some elementary properties

Throughout the paper, \(\Omega \) will denote a measurable space with \(\sigma \)-algebra \(\mathcal{A} \). If there is a \(\sigma \)-finite measure defined on \(\mathcal{A} \), we say that \(\Omega \) is \(\sigma \)-finite. If there is a complete \(\sigma \)-finite measure defined on \(\mathcal{A} \), we call \(\Omega \) complete.

AMS Subject Classification (1991): Primary 28B20.

Key words: Measurable multifunction, Weakly measurable multifunction, Integrable multifunction, Castaing representation of multifunction, Hausdorff distance.
DUŠAN HOLÝ

Y will be a topological space, 2^Y, the space of all subsets of Y. Following Bourbaki, we will call Y: Polish, if Y is separable and metrizable by a complete metric, Souslin, if Y is metrizable and a continuous image of a Polish space.

A relation $F: \Omega \rightarrow Y$ is a subset of $\Omega \times Y$. Alternatively, F may be regarded as a function from Ω to 2^Y. A function $F: \Omega \rightarrow 2^Y - \{\emptyset\}$ is called a multifunction.

Let $F: \Omega \rightarrow Y$ be a relation and $B \subset Y$. Denote

$$F^{-1}(B) = \{ \omega \in \Omega : F(\omega) \cap B \neq \emptyset \} .$$

A relation $F: \Omega \rightarrow Y$ is measurable (weakly measurable) if and only if $F^{-1}(B)$ is measurable for each closed (open) subset B of Y. We say that F is graph measurable if

$$\text{Gr} F = \{(\omega, y) \in \Omega \times Y : y \in F(\omega)\} \in \mathcal{A} \times \mathcal{B} ,$$

where \mathcal{B} is the σ-algebra of Borel subsets of Y, and $\mathcal{A} \times \mathcal{B}$ is understood in the usual sense.

Further we mention some properties from the papers [H], [W]:

We say that $\{f_n\}_{n \in \mathbb{Z}^+}$ is a Castaing representation of F if, for all $n \in \mathbb{Z}^+$, f_n is a measurable selector of F, and for all $\omega \in \Omega$

$$F(\omega) \subset \text{cl}\left\{ \bigcup_{n \geq 1} \{f_n(\omega)\} \right\} .$$

From [W; Theorem 5.10], we know that if (Ω, \mathcal{A}) is a measurable space with \mathcal{A} a Souslin family, Y is a Souslin space and F is a graph measurable multifunction, then F admits a Castaing representation. Notice that \mathcal{A} is a Souslin family ([KN]) if $\mathcal{A} = S(\mathcal{A})$, where $S(\mathcal{A})$ denotes the family of all sets obtained from \mathcal{A} by the Souslin operation. In case that there is a σ-finite complete measure defined on the σ-algebra \mathcal{A}, \mathcal{A} is a Souslin family ([KN]).

Further we will need the following proposition:

Proposition A. ([H]) Let J be an at most countable set, and let $F_n: \Omega \rightarrow Y$ be a relation for each $n \in J$. Then if each F_n is measurable (weakly measurable), so is the relation $\bigcup F_n: \Omega \rightarrow Y$ defined by $\left(\bigcup F_n\right)(\omega) = \bigcup F_n(\omega)$.

Proposition B. ([H]) A relation $F: \Omega \rightarrow Y$ is weakly measurable if and only if the relation $\text{cl} F: \Omega \rightarrow Y$, defined by $\text{cl} F(\omega) = \text{cl}\{F(\omega)\}$, is weakly measurable.

Let $F: \Omega \rightarrow Y$ be a relation and $B \subset Y$. Besides the notion $F^{-1}(B)$, we need also the notion of $F^+(B) = \{ \omega \in \Omega ; F(\omega) \subset B \}$.
3. Main results

Definition 3.1. ([HU]) Let \((\Omega, \mathcal{A})\) be complete. Let \(Y\) be a Banach separable space. Let \(F: \Omega \to Y\) be a multifunction with a measurable graph, such that there is an integrable function \(f: \Omega \to \mathbb{R}\) with the following property

\[\forall \omega \in \Omega \quad \|F(\omega)\| \leq f(\omega), \]

(i.e. \(\|y\| \leq f(\omega)\) for all \(y \in F(\omega)\), where \(\|y\|\) is a norm of \(y\)).

Then we call \(F\) an integrable multifunction.

Remark 3.2. The assumptions of Definition 3.1 guarantee the existence of a Castaing representation of \(F\).

Definition 3.3. Let \(\Omega\) and \(Y\) be as in Definition 3.1. Denote by \(\mathcal{L}\) the space of all integrable multifunctions from \(\Omega\) to \(Y\). Define the function \(L: \mathcal{L} \times \mathcal{L} \to \mathbb{R}\) as follows:

\[
L(F, G) = \inf \left\{ \varepsilon : \text{for every measurable selector } f \text{ of } F \right. \\
\left. \quad \text{there exists a measurable selector } g \text{ of } G \text{ such that } \right. \\
\left. \quad \int_{\Omega} |f(\omega) - g(\omega)| \, d\mu \leq \varepsilon \quad \text{and } \right. \\
\left. \quad \text{for every measurable selector } g \text{ of } G \right. \\
\left. \quad \text{there exists a measurable selector } f \text{ of } F \text{ such that } \right. \\
\left. \quad \int_{\Omega} |g(\omega) - f(\omega)| \, d\mu \leq \varepsilon \right\}.
\]

This definition is a generalization of the definition introduced in [M].

What is a motivation for this definition? We show that a motivation for this definition is the Hausdorff metric. Since we will work with this notion further, we briefly mention some properties of this metric.

Let \((W, p)\) be a metric space. Denote \(B_\varepsilon[v] = \{z \in W : p(z, v) < \varepsilon\}\). If \(K\) is a subset of \(W\) and \(\varepsilon > 0\), let \(B_\varepsilon[K]\) denote the union of all open \(\varepsilon\)-balls whose centers run over \(K\). If \(K_1\) and \(K_2\) are nonempty subsets of \(W\) and, for some \(\varepsilon > 0\), both \(B_\varepsilon[K_1] \supseteq K_2\) and \(B_\varepsilon[K_2] \supseteq K_1\), we define the Hausdorff distance \(h_p\) between them to be

\[
h_p(K_1, K_2) = \inf \left\{ \varepsilon : B_\varepsilon[K_1] \supseteq K_2 \text{ and } B_\varepsilon[K_2] \supseteq K_1 \right\}.
\]

Otherwise, we write \(h_p(K_1, K_2) = \infty\). It is easy to check that \(h_p\) defines an infinite-valued pseudometric on the nonempty subset of \(W\), and that \(h_p(K_1, K_2) = 0\) if and only if \(K_1\) and \(K_2\) have the same closure. Thus, if we restrict \(h_p\) to closed subsets of \(W\), then \(h_p\) defines an infinite valued metric on such sets.
In the sequel, we shall denote the set of closed nonempty subsets of a metric space W by $\text{CL}(W)$. If (W,p) is complete, then so is $(\text{CL}(W), h_p)$.

If (W,p) is a pseudometric space, we can also define the function h_p on all nonempty subsets of W. Clearly h_p is also a pseudometric.

In what follows, let Y be a separable Banach space with norm $\|\cdot\|$. To simplify notation, we shall sometimes denote the norm on Y by $|\cdot|$, rather than $\|\cdot\|$.

Put further $\varrho(x,y) = \|x-y\|$, $\varrho(x,A) = \inf\{\varrho(x,a) : a \in A\}$, and $\varrho(A,x) = \inf\{\varrho(a,x) : a \in A\}$ for a nonempty subset A of Y. Further denote by $h_{||\cdot||}$ the Hausdorff metric on $\text{CL}(Y)$ induced by ϱ.

Let \mathcal{B} denote the σ-algebra of Borel subsets of Y, and (Ω, \mathcal{A}) be a measurable space. A function $f : \Omega \rightarrow Y$ is measurable if it is measurable with respect to \mathcal{A} and \mathcal{B}.

It is easy to see that if f is measurable with respect to \mathcal{A} and \mathcal{B}, then $\omega \rightarrow |f(\omega)|$ is \mathcal{A}-measurable.

In our paper, we need the notion of an integrable function. Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space, and let Y be a Banach separable space. A function $f : \Omega \rightarrow Y$ is integrable if it is measurable and the function $\omega \rightarrow |f(\omega)|$ is integrable.

Let $\mathcal{I}(\Omega, \mathcal{A}, \mu, Y)$ be the set of all integrable functions from Ω to Y. Then $\mathcal{I}(\Omega, \mathcal{A}, \mu, Y)$ is a vector space. The formula

$$\|f\| = \int_{\Omega} |f(\omega)| \, d\mu$$

induces a seminorm on $\mathcal{I}(\Omega, \mathcal{A}, \mu, Y)$, and clearly

$$d(f,g) = \int_{\Omega} |f(\omega) - g(\omega)| \, d\mu$$

induced a pseudometric on $\mathcal{I}(\Omega, \mathcal{A}, \mu, Y)$.

Let $(\Omega, \mathcal{A}, \mu)$ be a complete space, and let (Y, \mathcal{B}) be a Banach separable space. Let $F : \Omega \rightarrow Y$ be an integrable multifunction. Put

$$S_F = \{f \in \mathcal{I}(\Omega, \mathcal{A}, \mu, Y) : f(\omega) \in F(\omega) \text{ almost everywhere}\}.$$

Then $S_F \neq \emptyset$, and S_F is a closed set in $(\mathcal{I}(\Omega, \mathcal{A}, \mu, Y), d)$ for every multifunction F with closed values.

We can identify F with S_F. Let F, G be two integrable multifunction. It is easy to verify that

$$L(F,G) = h_d(S_F, G_F).$$

If $F : \Omega \rightarrow Y$ is an integrable multifunction, then the integral or mean $E[F]$ of F is defined by

$$E[F] = \int_{\Omega} F(\omega) \, d\mu = \left\{ E(f) = \int_{\Omega} f(\omega) \, d\mu : f \in S_F \right\},$$

where $E(f)$ denotes the mean of f.

66
where \(E[f] = \int_{\Omega} f(\omega) \, d\mu \) is the usual Bochner integral. This multivalued integral was introduced by Áumann [A].

It is easy to verify that if \(F, G \) are two integrable multifunctions, then

\[
h_{|\cdot|}(E[F], E[G]) \leq L(F, G).
\]

Theorem 3.4. The function \(L: \mathcal{L} \times \mathcal{L} \to \mathbb{R} \) defined in the Definition 3.3 is a pseudo-metric.

Proof. The proof is similar as in [M].

Theorem 3.5. Let \((\Omega, \mathcal{A})\) be complete and let \(Y \) be a Banach separable space. Let \(F, G \) be integrable multifunctions from \(\Omega \) to \(Y \). Then \(L(F, G) = 0 \) if and only if \(\text{cl}\{F(\omega)\} = \text{cl}\{G(\omega)\} \) almost everywhere.

Proof.

\(\Rightarrow \) : Denote by \(\text{CL}(Y) \) the space of all nonempty closed subsets of \(Y \) and \(h_{|\cdot|} \) the Hausdorff metric on \(\text{CL}(Y) \). Let \(\mu \) be a complete \(\sigma \)-finite measure on \(\mathcal{A} \). We prove that

\[
\left\{ \omega \in \Omega : h_{|\cdot|}(\text{cl}\{F(\omega)\}, \text{cl}\{G(\omega)\}) > 0 \right\}
\]

is a measurable set with measure zero.

Let \(\varepsilon > 0 \). It is easy to verify that

\[
\left\{ \omega \in \Omega : h_{|\cdot|}(\text{cl}\{F(\omega)\}, \text{cl}\{G(\omega)\}) > \varepsilon \right\}
\]

\[
= \left(\bigcup_{n} \bigcup_{k} \left(\text{cl}^{-1}\left(B_{1/k}[y_n]\right) \cap \text{cl}G^+(Y \setminus B_{\varepsilon+1/k}[y_n]) \right) \right)
\]

\[
\cup \left(\bigcup_{n} \bigcup_{k} \left(\text{cl}^{-1}\left(B_{1/k}[y_n]\right) \cap \text{cl}F^+(Y \setminus B_{\varepsilon+1/k}[y_n]) \right) \right),
\]

where \(\{y_n : n \in \mathbb{Z}^+\} \) is a countable dense set in \(Y \). Thus

\[
\left\{ \omega \in \Omega : h_{|\cdot|}(\text{cl}\{F(\omega)\}, \text{cl}\{G(\omega)\}) > 0 \right\}
\]

is measurable.

Now we show that \(\mu\left\{ \omega \in \Omega : h_{|\cdot|}(\text{cl}\{F(\omega)\}, \text{cl}\{G(\omega)\}) > \varepsilon \right\} = 0 \) for every \(\varepsilon > 0 \). Let \(\varepsilon > 0 \). Put

\[
A_\varepsilon = \bigcup_{n} \bigcup_{k} \left(\text{cl}^{-1}\left(B_{1/k}[y_n]\right) \cap \text{cl}G^+(Y \setminus B_{\varepsilon+1/k}[y_n]) \right),
\]

and

\[
B_\varepsilon = \bigcup_{n} \bigcup_{k} \left(\text{cl}^{-1}\left(B_{1/k}[y_n]\right) \cap \text{cl}F^+(Y \setminus B_{\varepsilon+1/k}[y_n]) \right).
\]
Suppose \(\mu(A_\varepsilon \cup B_\varepsilon) > 0 \). Then either \(\mu(A_\varepsilon) > 0 \) or \(\mu(A_\varepsilon) > 0 \). Without loss of generality we can suppose that \(\mu(A_\varepsilon) > \delta \).

Define a function \(f: \Omega \times Y \to \mathbb{R} \) by \(f(\omega, y) = \varrho(\text{cl}\{G(\omega)\}, y) \). The function \(f \) is measurable in \(\omega \) for each \(y \in Y \) ([H]) and continuous in \(y \) for every \(\omega \in \Omega \). Thus \(f \) is measurable ([H]), i.e. the set \(C = \{ (\omega, y) : \varrho(\text{cl}\{G(\omega)\}, y) \geq \varepsilon \} \) is measurable. Put further \(D = C \cap \text{Gr} F \). Then the set \(P_{\Omega}(D) \) contains \(A_\varepsilon \), where \(P_{\Omega}(\omega, y) = \omega \) for every \((\omega, y) \).

Now define the following set \(E \subset \Omega \times Y \):

\[
E = \{ (\omega, y) : (\omega, y) \in D \text{ and } \omega \in A_\varepsilon \} \cup \{ (\omega, y) : (\omega, y) \in \text{Gr} F \text{ and } \omega \notin A_\varepsilon \}.
\]

Further define a multifunction \(K: \Omega \to Y \) by

\[
K(\omega) = E_\omega = \{ y \in Y : (\omega, y) \in E \}.
\]

Clearly the multifunction \(K \) has a measurable graph and \(\text{Gr} K \subset \text{Gr} F \). The assumptions of the theorem guarantee the existence of a Castaing representation \(\{ k_n \}_{n \in \mathbb{Z}^+} \) of \(K \).

Let \(k_n \) be a measurable selector of \(K \) from the Castaing representation of \(K \), and let \(g \) be a measurable selector of a multifunction \(G \). Then we have

\[
\int_{\Omega} |k_n(\omega) - g(\omega)| \, d\mu = \int_{\Omega \setminus A_\varepsilon} |k_n(\omega) - g(\omega)| \, d\mu + \int_{A_\varepsilon} |k_n(\omega) - g(\omega)| \, d\mu > \delta \cdot \varepsilon,
\]

and that is a contradiction.

\(\iff \): Let \(f \) be a selector of \(F \). We show that for every \(\varepsilon > 0 \) there is a selector \(g \) of \(G \) such that \(\int_{\Omega} |f(\omega) - g(\omega)| \, d\mu < \varepsilon \). The multifunctions \(F \) and \(G \) are integrable, and \(\text{cl} F = \text{cl} G \) almost everywhere. Thus there is an integrable function \(h: \Omega \to \mathbb{R} \) such that \(\| \text{cl}\{F(\omega)\} \| \leq h(\omega) \) and \(\| \text{cl}\{G(\omega)\} \| \leq h(\omega) \).

There is a measurable set \(A \) such that \(\mu(A) < \infty \) and \(\int_{\Omega \setminus A} h(\omega) \, d\mu < \frac{\varepsilon}{6} \).

Put

\[
M = \left\{ (\omega, y) : \varrho(f(\omega), y) = \frac{\varepsilon}{6\mu(A)} \right\}.
\]

Then \(M \) is a measurable set. Put \(N = M \cap \text{Gr} G \) and define a multifunction \(K: \Omega \to Y \) by

\[
K(\omega) = N_\omega = \{ y \in Y : (\omega, y) \in N \}.
\]
A COMPLETE METRIC ON THE SPACE OF INTEGRABLE MULTIFUNCTIONS

There is a Castaing representation of K. Let g^* be a function from the Castaing representation of K. Then we have:

$$\int_{\Omega} |f(\omega) - g^*(\omega)| \, d\mu = \int_{\Omega \setminus A} |f(\omega) - g^*(\omega)| \, d\mu + \int_{A} |f(\omega) - g^*(\omega)| \, d\mu$$

$$< \int_{\Omega \setminus A} |2h(\omega)| \, d\mu + \int_{A} |f(\omega) - g^*(\omega)| \, d\mu$$

$$\leq \frac{2\varepsilon}{6} + \frac{2\varepsilon\mu(A)}{6\mu(A)} < \varepsilon.$$

On the space \mathcal{L}, define a relation \approx by $F \approx G$ if and only if $\text{cl}\{F(\omega)\} = \text{cl}\{G(\omega)\}$ almost everywhere. Let \mathcal{L}_1 be a space of all integrable multifunctions with closed values; put $\mathcal{L}^\sim = \mathcal{L}_1/\approx$ and define

$$L^\sim : \mathcal{L}^\sim \times \mathcal{L}^\sim \to \mathbb{R} \quad \text{by} \quad L^\sim(F^\sim, G^\sim) = L(F_1, G_1),$$

where $F_1, G_1 \in \mathcal{L}_1$ and $F^\sim, G^\sim \in \mathcal{L}^\sim$. The standard proof of [K] shows that L^\sim is well defined and L^\sim is a metric on \mathcal{L}^\sim.

Theorem 3.6. Let (Ω, A) be complete, and let Y be a Banach separable space. Then the space $(\mathcal{L}^\sim, L^\sim)$, defined as above, is complete.

Proof. Let $\{F_n\}_{n \in \mathbb{Z}^+}$ be a Cauchy sequence from \mathcal{L}^\sim. Without loss of generality we can suppose that for every $n \in \mathbb{Z}^+$ is

$$L^\sim(F_n^\sim, F_{n+1}^\sim) < \frac{1}{2n+1}.$$

For every $n \in \mathbb{Z}^+$ choose $F_n \in F_n^\sim$. Clearly

$$L(F_n, F_{n+1}) < \frac{1}{2n+1}$$

for every $n \in \mathbb{Z}^+$.

Let $n \in \mathbb{Z}^+$ and let $\{f_{n,l}\}_{l \in \mathbb{Z}^+}$ be a Castaing representation of F_n. For every selector $f_{n,l}$ of F_n, we choose a d-Cauchy sequence $\{f_{n,l,p}\}_{p \geq n}$ ($d(f, g) = \int |f - g| \, d\mu$) in the following way:

Let $f_{n,l,p}$ be a selector of F_p such that

$$\int_{\Omega} |f_{n,l,p}(\omega) - f_{n,l,p+1}(\omega)| \, d\mu < \frac{1}{2^p}.$$

69
DUSAN HOLÝ

For every sequence \(\{f_{n,i,p}\}_{p>n} \) there is a measurable function \(\bar{f}_{n,l} \) such that \(\{f_{n,i,p}\}_{p>n} \) d-converges to \(\bar{f}_{n,l} \). Now define the multifunction \(F \) by

\[
F(\omega) = \text{cl}\left\{ \bigcup \{ \bar{f}_{n,l} : n \in \mathbb{Z}^+, l \in \mathbb{Z}^+ \} \right\}.
\]

The multifunction \(F \) has a measurable graph ([H]), and \(\{\bar{f}_{n,l}\}_{n,l \in \mathbb{Z}^+} \) is a Castaing representation of \(F \). Now we show that \(F \) is an integrable multifunction. It is sufficient to prove that there is an integrable function \(h, h : \Omega \to \mathbb{R} \), such that \(|F(\omega)| \leq h(\omega) \) for every \(\omega \in \Omega \).

Denote \(P_K(\mathbb{R}) \) the family of all compact subsets of \(\mathbb{R} \). Define the family \(c \) of multifunctions \(\{G_n : n \in \mathbb{Z}^+\}, G_n : \Omega \to P_K(\mathbb{R}) \) by

\[
G_n(\omega) = \text{cl}\left\{ \bigcup \{|f_{n,l}(\omega)| : l \in \mathbb{Z}^+\} \right\}
\]

for every \(n \in \mathbb{Z}^+ \). The multifunctions are measurable ([H]).

On the family of all multifunctions with real values and bounded by an integrable function, we have, by Definition 3.3, defined a metric, which is in this real case denoted by \(L_\mathbb{R} \).

Since

\[
\int_{\Omega} | |f(\omega)| - |g(\omega)| | \, d\mu \leq \int_{\Omega} |f(\omega) - g(\omega)| \, d\mu,
\]

we also have

\[
L_\mathbb{R}(G_n, G_m) \leq L(F_n, F_m).
\]

Thus the sequence \(\{G_n\} \) is \(L_\mathbb{R} \)-Cauchy, and from the proof of Theorem 6.15 [M], the assumptions of which are satisfied, it is possible to see that there is an integrable function \(h : \Omega \to \mathbb{R} \) such that \(||G_n(\omega)|| \leq h(\omega) \) for each \(n \in \mathbb{Z}^+ \) and \(\omega \in \Omega \).

Now we prove that \(\{F_n\} \) \(L \)-converges to \(F \). We show that for every \(\varepsilon > 0 \) there is \(N(\varepsilon) \) such that, for every \(n > N(\varepsilon) \), \(L(F_n, F) < \varepsilon \).

Let \(h \) be an integrable function from \(\Omega \) to \(\mathbb{R} \) such that, for every \(n \in \mathbb{Z}^+ \), \(||F_n(\omega)|| \leq h(\omega) \) and \(||F(\omega)|| \leq h(\omega) \) \(\forall \omega \in \Omega \).

There is a measurable set \(A \) of finite measure such that

\[
\int_{\Omega \setminus A} h(\omega) \, d\mu < \frac{\varepsilon}{6}.
\]

Let \(g \) be an arbitrary selector of \(F \). Put

\[
P(\omega) = \left\{ y \in Y : g(y, g(\omega)) \leq \frac{\varepsilon}{3\mu(A)} \right\}.
\]
A COMPLETE METRIC ON THE SPACE OF INTEGRABLE MULTIFUNCTIONS

There is a selector \(f_{n_1,l_1} \) of a multifunction \(F \) from the above Castaing representation \(\{ f_{n,l} \}_{n,l \in \mathbb{Z}^+} \) of \(F \) such that

\[
\{ f_{n_1,l_1}(\omega) \} \cap P(\omega) \neq \emptyset
\]
on a subset \(A_1 \subseteq A \) of nonzero measure. (This is very easy to see from the fact that \(\{ f_{n,l} \}_{n,l \in \mathbb{Z}^+} \) is a Castaing representation of \(F \) and thus \(F(\omega) \subseteq \text{cl}\{ \bigcup \{ f_{n,l}(\omega) : n,l \in \mathbb{Z}^+ \} \} \).

Suppose \(\mu(A \setminus A_1) > 0 \). Then by the same argument as above, there is a selector \(f_{n_2,l_2} \) from \(\{ f_{n,l} \}_{n,l \in \mathbb{Z}^+} \setminus \{ f_{n_1,l_1} \} \) such that

\[
\{ f_{n_2,l_2}(\omega) \} \cap P(\omega) \neq \emptyset
\]
on a subset \(A_2 \subseteq A \setminus A_1 \) of nonzero measure.

In this way, we obtain a sequence of disjoint subsets \(\{ A_n : n \in \mathbb{Z}^+ \} \) of \(A \) such that

\[
A = \bigcup \{ A_n : n \in \mathbb{Z}^+ \},
\]
and a sequence \(\{ f_{n_k,l_k} \}_{k \in \mathbb{Z}^+} \) of measurable selectors of \(F \).

Since \(h \) is an integrable function, then from the absolute continuity of integral it follows, that for \(\varepsilon / 6 \) there is \(\delta > 0 \) such that for arbitrary measurable set \(B \) with \(\mu(B) < \delta \) it holds

\[
\int_B 2h(\omega) \, d\mu < \frac{\varepsilon}{6}.
\]

Since \(\mu(A) = \sum_{k=1}^{\infty} \mu(A_k) < \infty \), then there is \(k_0 \) such that

\[
\mu\left(\bigcup_{k=k_0}^{\infty} A_k \right) = \sum_{k=k_0}^{\infty} \mu(A_k) < \delta.
\]

So

\[
\int_{\bigcup_{k=k_0}^{\infty} A_k} 2h(\omega) \, d\mu < \frac{\varepsilon}{6}.
\]

For \(k = 1, \ldots, k_0 \), choose \(p_k \) such that

\[
\int_\Omega \left| f_{n_k,l_k}(\omega) - f_{n_k,l_k,p}(\omega) \right| \, d\mu < \frac{\varepsilon}{k_06} \quad \text{for all} \quad p > p_k.
\]

Let \(M > \max\{ p_1, \ldots, p_{k_0} \} \). For \(p > M \), produce a selector of the multifunction \(F_p \) as follows:
Let f_p be a measurable selector of F_p. Put

$$g_p(\omega) = \begin{cases} f_{n_k,l_k,p}(\omega) & \text{for } \omega \in A_k, \ k = 1, 2, \ldots, k_0, \\ f_p(\omega) & \text{otherwise}. \end{cases}$$

Now we show that g_p is the needed selector of F_p.

$$\int_{\Omega} |g(\omega) - g_p(\omega)| \ d\mu$$

$$= \int_{A} |g(\omega) - g_p(\omega)| \ d\mu + \int_{\Omega \setminus A} |g(\omega) - g(\omega)| \ d\mu$$

$$= \sum_{k=1}^{\infty} \int_{A_k} |g(\omega) - g_p(\omega)| \ d\mu + \int_{\Omega \setminus A} |g(\omega) - g_p(\omega)| \ d\mu$$

$$\leq \sum_{k=1}^{\infty} \frac{\varepsilon \mu(A_k)}{3} + \sum_{k=1}^{k_0} \int_{A_k} |f_{n_k,l_k}(\omega) - g_p(\omega)| \ d\mu$$

$$+ \sum_{k=k_0}^{\infty} \int_{A_k} |f_{n_k,l_k}(\omega) - g_p(\omega)| \ d\mu + \int_{\Omega \setminus A} |g(\omega) - g_p(\omega)| \ d\mu$$

$$\leq \frac{\varepsilon}{3} + \sum_{k=1}^{k_0} \int_{A_k} |f_{n_k,l_k}(\omega) - f_{n_k,l_k,p}(\omega)| \ d\mu$$

$$+ \sum_{k=k_0}^{\infty} \int_{A_k} |f_{n_k,l_k}(\omega) - f_p(\omega)| \ d\mu + \int_{\Omega \setminus A} |g(\omega) - g_p(\omega)| \ d\mu$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{6} + \int_{\bigcup_{k=k_0}^{\infty} A_k} |f_{n_k,l_k}(\omega) - f_p(\omega)| \ d\mu + \frac{\varepsilon}{3}$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{6} + \int_{\bigcup_{k=k_0}^{\infty} A_k} 2h(\omega) \ d\mu + \frac{\varepsilon}{3} \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} + \frac{\varepsilon}{3} = \varepsilon$$
A COMPLETE METRIC ON THE SPACE OF INTEGRABLE MULTIFUNCTIONS

The proof of the opposite inclusion is similar.

Let us remark (see the end of this paper) that the space \(\mathcal{L}^\sim \) of integrable multifunctions from \(\Omega \to Y \) was studied also by H i a i and Umegaki in [HU]. They consider other metric \(\Delta \) on \(\mathcal{L}^\sim \).

If \(A \) and \(B \) are two nonempty closed subsets of \(Y \), put
\[
\delta(A, B) = \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(A, b) \right\},
\]
the Hausdorff distance between \(A \) and \(B \) ([Be]), where \(d \) is the metric induced by the norm of \(Y \).

Let \(F_1, F_2 \in \mathcal{L}^\sim \). Taking two sequences \(\{f_{1i}\} \) and \(\{f_{2j}\} \) of measurable functions such that
\[
F_1(\omega) = \text{cl}(\{f_{1i}(\omega); i \in \mathbb{Z}^+\}) \quad \text{and} \quad F_2(\omega) = \text{cl}(\{f_{2j}(\omega); j \in \mathbb{Z}^+\}) \quad \text{for all} \ \omega \in \Omega,
\]
we have
\[
\delta(F_1(\omega), F_2(\omega)) = \max \left\{ \sup_{i} \inf_{j} \|f_{1i}(\omega) - f_{2j}(\omega)\|, \sup_{j} \inf_{i} \|f_{1i}(\omega) - f_{2j}(\omega)\| \right\},
\]
so that the function \(\omega \to \delta(F_1(\omega), F_2(\omega)) \) is measurable. Since
\[
\delta(F_1(\omega), F_2(\omega)) \leq \|F_1(\omega)\| + \|F_2(\omega)\|,
\]
the function \(\omega \to \delta(F_1(\omega), F_2(\omega)) \) is also integrable. H i a i and Umegaki define in [HU] the metric \(\Delta \) on \(\mathcal{L}^\sim \) as follows
\[
\Delta(F_1, F_2) = \int_{\Omega} \delta(F_1(\omega), F_2(\omega)) \, d\mu.
\]

A natural question is to find relations between metrics \(L \) and \(\Delta \). First we introduce some auxiliary relations.

Let \(f \) be a measurable function from \(\Omega \) to \(Y \), and let \(\sigma \) be a measurable function from \(\Omega \) to \([0, \infty] \). Then, by literature, there is a sequence of simple measurable functions \(\{f_n\}_{n \in \mathbb{Z}^+} \) such that
\[
f(\omega) = \lim_{n} f_n(\omega) \quad \text{and} \quad \|f_n(\omega)\| \leq \|f(\omega)\|, \quad n = 1, 2, \ldots, \quad \text{for each} \ \omega \in \Omega.
\]
Here, by a simple function, we mean a function with finitely many values.

Also there is a sequence of simple measurable functions
\[
\{\sigma_n\}, \quad \sigma_n: \Omega \to [0, \infty),
\]

73
for every $n \in \mathbb{Z}^+$, such that
\[
\sigma(\omega) = \lim_n \sigma_n(\omega) \quad \text{for each } \omega \in \Omega.
\]

The function $f\sigma$ is also measurable, since
\[
f(\omega)\sigma(\omega) = \lim_n f_n(\omega)\sigma_n(\omega)
\]
and $f_n\sigma_n$ is a simple measurable function.

Further, let B be a unit ball in Y (i.e. $B = \{y \in Y : \|y\| \leq 1\}$), and let $\{a_i\}$ be a countable dense set in B.

Put
\[
g_i(\omega) = f(\omega) + a_i \quad \text{for every } \omega \in \Omega, \quad i = 1, 2, ...
\]

Clearly
\[
\|g_i(\omega) - f(\omega)\| \leq 1 \quad \text{for every } \omega \in \Omega, \quad i = 1, 2, ...
\]
and
\[
\text{cl}(\{g_i(\omega) : i \in \mathbb{Z}^+\}) = \{y : \|y - f(\omega)\| \leq 1\} \quad \text{for every } \omega \in \Omega.
\]

Define the multifunction $H : \Omega \to Y$ by
\[
H(\omega) = \{y : \|y - f(\omega)\| \leq \sigma(\omega)\} \quad \text{for every } \omega \in \Omega.
\]

We show that H is a weakly measurable multifunction.

For every $i \in \mathbb{Z}^+$, let $h_i : \Omega \to Y$ be the following function:
\[
h_i(\omega) = (g_i(\omega) - f(\omega))\sigma(\omega) + f(\omega) \quad \text{for every } \omega \in \Omega.
\]

Clearly, the function h_i is measurable for every $i \in \mathbb{Z}^+$. It is very easy to verify that $\|h_i(\omega) - f(\omega)\| \leq \sigma(\omega)$ for every $\omega \in \Omega$ and every $i \in \mathbb{Z}^+$.

Now we show that
\[
\text{cl}(\{h_i(\omega) : i \in \mathbb{Z}^+\}) = H(\omega) \quad \text{for every } \omega \in \Omega.
\]

If $\sigma(\omega) = 0$, then clearly $H(\omega) = \text{cl}(\{h_i(\omega) : i \in \mathbb{Z}^+\})$. Now let $\omega \in \Omega$ be such that $\sigma(\omega) \neq 0$. It is sufficient to prove that
\[
H(\omega) \subset \text{cl}(\{h_i(\omega) : i \in \mathbb{Z}^+\}).
\]

Let $y \in H(\omega)$ and $\varepsilon > 0$. We show that for the set
\[
O_y = \{z \in Y : \|y - z\| < \varepsilon\}
\]
the following relation holds:
\[
O_y \cap (\{h_i(\omega) : i \in \mathbb{Z}^+\}) \neq \emptyset.
\]
A COMPLETE METRIC ON THE SPACE OF INTEGRABLE MULTIFUNCTIONS

Clearly, we can write \(y \) as \(f(\omega) + c \), where \(c \) is an element from \(Y \) with \(\|c\| \leq \sigma(\omega) \). Further, put

\[
y_1 = \frac{y}{\sigma(\omega)} + f(\omega) - \frac{f(\omega)}{\sigma(\omega)}.
\]

Then we have

\[
\|y_1 - f(\omega)\| = \left\| \frac{y}{\sigma(\omega)} + f(\omega) - \frac{f(\omega)}{\sigma(\omega)} - f(\omega) \right\| = \frac{1}{\sigma(\omega)} \| y - f(\omega) \| \leq 1.
\]

Put

\[
O_{y_1} = \left\{ z \in Y : \|z - y_1\| < \frac{\varepsilon}{\sigma(\omega)} \right\}.
\]

There is \(i \in \mathbb{Z}^+ \) such that \(g_i(\omega) \in O_{y_1} \). We show that \(\|h_i(\omega) - y\| < \varepsilon \).

\[
\begin{align*}
\|(g_i(\omega) - f(\omega))\sigma(\omega) + f(\omega) - ((y_1 - f(\omega))\sigma(\omega) + f(\omega))\| \\
= \|g_i(\omega)\sigma(\omega) - y_1\sigma(\omega)\| = \|g_i(\omega) - y_1\|\sigma(\omega) < \varepsilon.
\end{align*}
\]

The multifunction \(H : \Omega \to Y \) is weakly measurable because the multifunction \(P : \Omega \to Y \) defined by \(P(\omega) = \{h_i(\omega) : i \in \mathbb{Z}^+\} \) is weakly measurable ([H]).

The following example shows that there are two multifunctions \(F \) and \(G \), for which \(L^\sim(F, G) < \Delta(F, G) \).

Example. Let \(\Omega = Y = \mathbb{R} \) with the usual metric. Put

\[
\begin{align*}
F(\omega) &= 0 \quad \text{if } \omega \in (-\infty, -1) \cup (0, \infty), \\
F(\omega) &= \{1, 2\} \quad \text{if } \omega \in (-1, 0), \\
G(\omega) &= 0 \quad \text{if } \omega \in (-\infty, 0) \cup (1, \infty), \\
G(\omega) &= \{0, -2\} \quad \text{if } \omega \in (0, 1).
\end{align*}
\]

It is very easy to verify that \(\Delta(F, G) = 4 \) and \(L^\sim(F, G) = 3 \).

Proposition 3.7. \(L^\sim(F, G) \leq \Delta(F, G) \) for all multifunctions \(F \), \(G : \Omega \to Y \).

Proof. Suppose that there are multifunctions \(F \), \(G \) for which

\[
L^\sim(F, G) > \Delta(F, G), \quad \text{where } \Delta(F, G) = \int \sigma(\omega) \, d\mu = a,
\]

and \(\sigma(\omega) \) is the Hausdorff distance between \(F(\omega) \) and \(G(\omega) \).

Hence, one of the following possibilities is true:
1. There is f, a selector of the multifunction F such that
\[
\int_{\Omega} \|g(\omega) - f(\omega)\| \, d\mu > a
\]
for every selector of the multifunction G.

2. There is g, a selector of the multifunction G such that
\[
\int_{\Omega} \|g(\omega) - f(\omega)\| \, d\mu > a
\]
for every selector f of the multifunction F.

Suppose condition 1 is true. The multifunction
\[
H(\omega) = \{y : \|f(\omega) - y\| \leq \sigma(\omega)\}
\]
is weakly measurable, as we proved above; so H has a measurable graph. Hence
\[
H(\omega) \cap G(\omega) \neq \emptyset \quad \text{for every } \omega \in \Omega
\]
because $\sigma(\omega)$ is the Hausdorff distance between the sets $F(\omega)$ and $G(\omega)$ and $f(\omega) \in F(\omega)$. Put
\[
P(\omega) = H(\omega) \cap G(\omega) \quad \text{for every } \omega \in \Omega.
\]

Then P is a graph measurable multifunction. There is a selector p of the multifunction P for which
\[
\int_{\Omega} \|f(\omega) - p(\omega)\| \, d\mu \leq \int_{\Omega} \sigma(\omega) \, d\mu = a
\]
because p is a selector of the multifunction H. But that is a contradiction because p is also a selector of the multifunction G. \hfill \Box

REFERENCES

A COMPLETE METRIC ON THE SPACE OF INTEGRABLE MULTIFUNCTIONS

Received October 16, 1992
Revised August 5, 1993

Department of Mathematics
Faculty of Materials Science
and Technology in Trnava
Slovak Technical University
in Bratislava
Paulínska 16
SK – 917 24 Trnava
Slovakia