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STABILITY AND INVARIANCE OF 
MULTIVALUED ITERATED F U N C T I O N SYSTEMS 

K R Z Y S Z T O F LEŠNIAK 

(Communicated by Milan Medvěd!) 

A B S T R A C T . We provide a definition of an at t ractor to a multivalued iterated 
function system (IFS) modelled on previous ones existing in the l i terature (e.g. 
[Hale, J . K.: Asymptotic Behavior of Dissipative Systems. Math. Surveys Mono
graphs 25, Amer. M a t h . S o c , Providence, RI, 1988]). Such an a t t rac tor express
ing asymptotic behaviour of a system does not need to be invariant. Then, as a 
remedy there serves the uniform Hausdorff upper semicontinuity It was recently 
shown t h a t condensing multifunctions possess a maximal invariant set which is 
compact. T h e theorem ensuring the existence of at t ractors considered here also 
exploits compactness-like hypothesis slightly stronger t h a n condensity, namely 
contractivity with respect to measure of noncompactness. Hence contractivity in 
measure and uniform Hausdorff upper semicontinuity together do guarantee ex
istence of a compact a t t ractor which is maximal invariant and unique. We also 
supply examples (e.g. unbounded attractor) and state further questions. 

1. Introduction 

The phenomenon of a fractal, a "jagged set", has a long history (e.g. the 
Cantor discontinuum, the Julia set). Although well settled in mathematics, it is 
still somehow unprecised. After B. Mandelbrot's definition (fractal — set with a 
fractional dimension), there was proposed a special class of processes — iterated 
function systems — under which the so-called self-similar sets can be produced 
([Hu]). An iterated function system (briefly: IFS) is a finite family of similitudes 
{/i> /2> • • • > fk '• X —> X} with scales less than 1 (more general — contractions). 
Such a system appears as some kind of a discrete dynamical system (cascade), 
since by an action on sets we understand the repeated operation 

A 4 / . ( A ) U / 2 ( A ) U - - . U / f e ( A ) . 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 54H25, 47H10, 47H09, 37B99. 
K e y w o r d s : i terated function system, attractor, Barnsley-Hutchinson's operator, uniformly 
Hausdorff upper semicontinuous multifunction, u-contraction. 
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A fractal is the unique limit of all possible iterations: A,F(A), F2(A),... ; the 
Banach Principle guarantees that such phenomenon occurs. The products of 
iterations (orbits) are getting closer and closer to a fractal, hence the second 
name for this "final effect" — an attractor, and the term describing the behaviour 
of the system — the asymptotic stability (comp. [H], [LM]). 

In some instances the operation1 

i D i ^ / ^ U - . U / ^ j C l 

behaves more accurately and is called Barnsley-Hutchinson's operator associated 
with IFS {/-_,..., f k } . This is easily carried over a finite family of multifunc-
tions Lpl,...,(pk\ X —o X , what results in multivalued IFS ([AG], [AF], [L]). 
Many good conditions (e.g. contractivity, compactness, upper semicontinuity, 

k 

condensity) are preserved under the set-theoretic sum </? = IJ Lpi\ X —o A", 
i = l 

ip(x) = (f1(x) U • • • U <pk(x). When a finite system of multifunctions is replaced 
with their sum, the resulting Barnsley-Hutchinson operator is the same in both 
situations (because of the additivity of closure). Therefore we only speak about 
IFS consisting of one multifunction2. 

The definition of an attractor considered here is essentially based upon [H]. 
Our approach in many points agrees with several earlier discussed situations: 
[Hu], [Ha], [H], [LM], [AG]. Fairly general theorems on existence are presented 
in [Ha], [JGP], [AF], [Ki] and [L]. Unfortunately, they appear to be weak in the 
context of asymptotic stability. The aim of this work is to shed some light on 
connections between stability, attractivity and invariance with special emphasis 
on the first. 

2. Uniform continuity. Set-convergence 

By a space we shall always mean a metric space X writh a metric d. On 
this space there acts a map (multifunction) <p: X —o X. For the theory of 
multifunctions (Hausdorff metric, semicontinuity, e tc) we refer to [HP], [D] or 
[CV]. Some useful designations are collected below: 

• closure of set A\ A, 
• distance of point x to set A: d(x,A) = inf d(x ,a) , 

a£A 

• e-ball (e -neighbourhood) around A: 0£A = { i G l : d(x,A) < e} , 
• excess of set A over set B \ 

e(A, B) = sup d(a, B) = inf {e > 0 : A C OeB} , 
a£A 

1Overlining stands for closure. 
2Infinite families are pe rmit ted in [Ki], 
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• Hausdorff metric: 

h(A,B) = max{e(A,B),e(B,A)} = inf{e > 0 : AcO£B, B C OeA} . 

From the variety of continuity concepts we choose the most common and appro
priate for our investigations. A multifunction ip: X —o X (with closed values) 
is 

• graph-closed (or Gr -closed) if and only if 

Gr(<p) = {(x,y) eXxX:xeXkye <p(x)} 

is closed in the product X x X ; 

• Hausdorff upper semicontinuous (h-u.s.c. for brevity) if and only if 

(Vx0)(Ve > 0)(3S > 0)(Vx)(d(x,x0) <S = > e[(p(x),tp(x0)] < e) ; 

• upper semicontinuous (u.s.c. for brevity) if and only if 

(Vx0)(VV open) 

(<p(xQ) C V => (3L7 open)[x0 G U & (Vx G C/)((p(x) C V)]) ; 

• /oiver semicontinuous (l.s.c. for brevity) if and only if 

(Vx0)(VV open) 

( ^ o ) n V / 0 =-> (.317 open)[x0GU & (Vx G c7)((^(x) n V ^ 0)]) ; 

• Hausdorff continuous (or h-continuous) if and only if 

(Vx0)(Ve > 0)(35 > 0)(Vx)(d(x,x0) <5 = > %(-r),<p(:r0)] < e) ; 

• uniformly Hausdorff upper semicontinuous (u.h-u.s.c. for brevity) if and 
only if 

(VA closed)(V£ > 0)(3<J > 0 ) ( ( ^ A ] C Oe<p(A)) ; 

• uniformly Hausdorff continuous (u.h-continuous for brevity) if and 
only if 

(V£>0)(3S>0)(\/xvx2)(d(x1,x2) <5 = > ftf^^), </?(x2)] < e) ; 

• Lipschitz continuous with constant L if and only if 

(^ x1,x2)\h[cp(x1),ip(x2)] ^L-d(x1,x2)J . 

Some novelty seems to be the uniform Hausdorff upper semicontinuity. To 
enlighten its connection with the uniform Hausdorff continuity we present: 
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PROPOSITION 1. The following conditions are equivalent: 

a) (p is u.h-continuous; 
b) (V£ > 0)(3 5 > 0)(^xvx2) (d(xvx2) < 5 = > e[(p(xl))(p(x2)] < e); 

c) (Ve > 0)(35 > 0)(VA)(<p(O5A) c Oe<p(A)). 

P r o o f . An easy reasoning can go through the scheme c) ==> b) = > 
a) = > c). We only prove the last implication. Note, for e > 0 there exists 
5 > 0 such that ip(Od{a}) C Oeip(a). Summing up this inclusion along all a G A 
gives the desired formula. • 

Condition c) of the above proposition is not just a displacement of quantifier 
when confronted with the expression describing the uniform Hausdorff upper 
semicontinuity. We also omit the requirement on the set A to be closed. So, what 
would happen if in the definition of a uniformly Hausdorff upper semicontinuous 
multifunction one would abandon the closedness of the set A? Then the resulting 
type of continuity, 

(VA)(Ve > 0)(3<5 > 0)(<p[OsA] C Oe<p(A)) 

(A is an arbitrary set, not necessarily closed), is stronger than the lower semi-
continuity, and does not have to be satisfied by an upper semicontinuous multi
function on a compact space (see Example 1 and Proposition 2 to follow7). 

The hierarchy of introduced continuity concepts for multifunction ip: X —° X 
with closed values is shown on the diagram: 

Lipschitz 

u.h-continuous 

(**) 

h-continuous u.h-u.s.c 

' ' N 
(**) 

l.s.c h-u.s.c 

> 
(**) 

Gr-closed 

(*) — reverse implication true when (D has compact values, 
(**) — reverse implication true when c/> is with a compact domain and with 
compact values. 
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One of the striking properties admitted by u.h-u.s.c. multifunctions provides: 

PROPOSITION 2. Let X be a compact metric space and (p\ X - o X be 
h-u.s.c. Then ip is u.h-u.s.c. 

P r o o f . Fix £ > 0 and A — closed (thus compact). Thanks to the Haus-
dorff upper semicontinuity, for any x e A there exists S(x) > 0 such that 

v[Os(x){x}]cOeip(x). 

By compactness of A the covering |J Os(a){a} has the associated Lebesgue 
aeA ' 

number S > 0 (see [K], [E]), i.e. 

(VaeA)(3xeA)(Os{a}c05(x){x}). 

Hence 

<p[OsA] = U <p[Ot{a}] C U <fi[Otix){x}] 
aeA xeA 

C \JOeV{x) = Oecp(A). 
xeA 

This means the uniform Hausdorff upper semicontinuity of (p. D 

Let us hint this is an analogue to the classical theorem: a continuous 
(multi)function on compactum is uniformly continuous. Additionally we offer 
an example of an u.h-u.s.c. multifunction. 

E X A M P L E 1. Let X = [0,1] (with the Euclidean metric), (p\ X -o X, 

' {0} for x < 1/2 , 

<p(x) = \ [0,1] for x = 1/2 , 

k {1} for a: > 1/2. 

It is an u.s.c. map (hence h-u.s.c.) and by Proposition 2, it is even u.h-u.s.c. 
But it is not l.s.c. (thus discontinuous). This shows the essentiality of closedness 
in the definition of an u.h-u.s.c. multifunction. 

Let us list modes of convergence we shall have in mind. With a sequence of 
sets {-4n}£°=1 one associates ([K], [HP], [BG]): 

• Lim sup An = P| IJ An (set-theoretic upper limit)] 
m n>.m 

Ls.An = P| (J An (topological upper limit); 
m n^-m 

n—ïoo 
# An „ : f t A ^^ ^ e > ° ) ( 3 n o ) ( V n > no)(An c OeA) (e-convergence). 
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Convergence with respect to Hausdorff metric will be denoted by An —> A 
n n-»oo 

(h-convergence). Observe that e-convergence to a compact set coincides with 
convergence in upper Vietoris hypertopology (see [HP], [Ki]), for we have: 

(Viv~ compact)(VU open)(if C U =-> (3e > 0)(K c 0£K C U)) . 

Also note that the e-convergence is weaker than the h-convergence and does not 
give a unique limit3. 

PROPOSITION 3. There holds: 

(i) Lim sup An C Lim sup An C Ls An = Ls An = Ls An; 

(ii) (An ^ A & A closed) = * LsAncA; 
n—>oo 

(Hi) An -±> ACB -=» An -±> B; 
n—>oo n-+oo 

(iv) Bn C An -?-> A = > Bn - ^ 4 ; 

(v) (A„ ----> A & A, - ^ B & .4 c/O5eJ) = > / I c B ; 
v n n->oo n n->co 7 

(vi) f { -4 n }^ = 1 decreasing sequence & A = f]An 8z An ----> A) 
V „ n—>oo / 

n->oo 

(vii) ({^4n}^L! decreasing sequence of nonempty compacts & A = f]Anj 

-4_ ---> -4: 

(viii) X — complete, {-4n}^L1 — decreasing sequence of nonempty closed 
subsets of X with fi(A ) —> 0 (ji denotes measure of noncompact-

n—>oo 
ness: Kuratowski's or Hausdorff's, see [D], [HP]); A — f]An imply 

n n->oo 

P r o o f . For the first statement one can consult [HP] or [K]. For the second, 
fix e > 0 and take n0 such that An C OeA for all n ^ n0. Hence 

П U лn<= U ^ c o и c v -
m rì^m n^no 

The 5 being arbitrary causes Ls^ln C f] 02eA — A — A. 
£>0 

3 T h e upper Vietoris hypertopology is never Hausdorff, although it often is T x . 
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The third, the fourth, the fifth and the sixth statements are obvious. The 
last two we prove together4. Either by the Riesz or by the Kuratowski Theorem 
(see [E], [K], [D]) we immediately see the nonemptiness and compactness of 
A = f]An. Assume, on contrary, that for some open U D A, there exist infinitely 

n 

many sets An. for which An. (JL C7, i.e. An. n (X \ U) ^ 0 (closed). Defining 
Bn = An. fl (X \ U) one again obtains a decreasing sequence of nonempty closed 
sets satisfying the hypothesis of Riesz's or Kuratowski's Theorem. Therefore 
f]Bn. ^ 0. On the other hand: 
3 

f)Bnj=f)Anjn(x\u) = f)Ann(x\u) = An(x\u) = Q, 
3 3 n 

a contradiction. • 

The e-convergence plays the leading role in our investigations. It is some 
kind of uniform approximation of an intersection, what illustrates the following 
example. 

EXAMPLE 2. Let X = (0,1] x [0,1), A = (0,1] x {0}, An = (0, ^ - j x [0,1) U 
(0,1] x {0}, n = 1,2,.... All sets A,A1,A2,... are nonempty, closed and 
bounded. The family {An}n^=1 decreases and A = f]An holds. However, the 

n 
sequence {An}n

<i=1 fails to converge with respect to excess e. It is caused by 
the incompleteness of X, which made possible to keep e(An,A) positive and 
constant. 

3. Attractors 

The multifunction ip: X —o X acts on sets in a natural way through the 
operation A H-> (p(A). However, for some reasons (e.g. when (p does not pre
serve closedness or, at least, compactness) it is more convenient to consider the 
Barnsley-Hutchinson operator5 F: 2X \ {0} -> 2X \ {0} (2X — the family of 
all subsets of X) generated by </?: 

F(A) = y(A) for all A C X , A ^ 0. 

To introduce the attractivity notion, being on the one hand strong enough, 
and on the other one flexible, we consider the following iterative procedure 
(e.g. [L]): 

Fn(A)= f V{A)' W h e n n = 1 ' 
y[Fn-l(A)], when n > 1. 

4 T h e main idea is taken from [Ki; Chap. 1, Theorem 1]. 
5Of course we implicitly assume tha t a multifunction has nonempty values. 
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This is nothing else but the usual iteration of the Barnsley-Hutchinson opera
tor F. Henceforth, F will always mean the Barnsley-Hutchinson operator asso
ciated with ip. 

The main object of our study — an attractor — can be given now an appro
priate definition. We say that the set M attracts A C X under <p> : X —o A", 
whenever Fn(A) ----> M (comp. [H]). We call a closed set M an attractor, if 

n-»oo 
M attracts all sets i.e. 

(VAcX)(Fn(A) ^ M) (At) 
n—>oo 

and M is minimal with respect to the property (At). 

Recall (comp. [L], [LM]) a set A is invariant (resp. subinvariant, superin-
variant) if the relation cp(A) = A (resp. tp(A) C A, cp(A) D A) holds. By a 
set superinvariant in closure we shall understand a set A for which A C <p(A). 
Superinvariance naturally implies superinvariance in closure. Analogously, A is 
invariant in closure if A = <p(A). 

The u -limit set of A is recognized as follows: u(A) = \jSLpn(A) (comp. [H]); 
however, we will not invoke this notion explicitly. 

We would also like to point out that if additionally the multifunction ip is 
l.s.c, then instead of {Fn(A)}™=1 a more natural iteration process {(pn(A)}™=[ 

can be used to define attractivity. Indeed, the equality Fn(A) = (pn(A) makes 
this possible (comp. [LM]). 

PROPOSITION 4. An attractor M under (p contains all sets superinvariant 
in closure: A* C ip(A*) => A* C M. 

P r o o f . Let A* C tp(A*) = F(A*). By induction A* C Fn(A*) for all n. 

Since Fn(A*) -^ M , 
n-»oo 

A* cLsFn(A*) CM, 

thanks to Proposition 3(i),(ii). • 

We use the above observation in the next important proposition. 

PROPOSITION 5. An attractor M under u.h-u.s.c. if is a maximal one among 
all sets superinvariant in closure. Moreover, an attractor M is (maximal) in
variant set in closure, M = (f(M). 

P r o o f . Fix e > 0 and take S > 0 such that <p(OsM) C Oe/2ip(M). 
Consider any set A. Since M is an attractor, 

(3n0)(Vn>n0)(F
n(A)cOsM). 

Thus 
F»+ҶЛ) = ip(F"(A)) C <p(ösM) C Oє/2 >(M) C OeЧ>(M), 
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and this means <p(M) attracts A. By minimality of M writh respect to attrac
tion, we get inclusion M C <p(M) (superinvariance in closure). 

Containing all sets superinvariant in closure (Proposition 4) M must be 
maximal. Therefore M is also invariant in closure and consequently maximal 
(this time among sets invariant in closure). To see this, let M be maximal with 

the property M C <p(M). Hence <p(M) C <p[ip(M)] , i.e. (p(M) is superinvariant 

in closure. M being maximal, it has to contain <p(M). Altogether, M = <p(M). 
D 

Since the inclusion " C " is not a total order (there are incomparable sets), it 
is worth noticing that all sets (super)invariant in closure are inside an attractor. 
And it could not be the other way, because if Mi = (p(M{), i = 1,2, both 
maximal, then Mx U M2 = (p(Mx) U <p(M2) = <p(Mx U M2) would be greater, a 
contradiction. This means the uniqueness of an attractor6 . 

If an attractor M is compact and ip preserves compactness (e.g. the Lipschitz 
map with compact values), then M is invariant, M = <p(M) = <p(M), and 
maximal amongst invariant sets. Because ip does not have to preserve closedness 
(recall nonexpansive arctan), we were led to the concept of superinvariance in 
closure. 

After these deliberations, one may ask, whether attractors do exist? The gen
eral result on existence exploits a compactness-like assumption on multifunction 
(comp. [L]) and reads as follows (fi denotes either Kuratowski's or Hausdorff's 
measure of noncompactness, see [D], [HP]): 

THEOREM 1. Suppose X is complete and a multivalued function (p: X —o X 
satisfies: 

(i) (p is a 11 -contraction, i.e. for some L < 1 and all A C X 

n[p(A)] ^L-ti(A); 

(ii) (p is bounded, i.e. fi[(p(X)] < oo. 

Let F be the Barnsley-Hutchinson operator corresponding to (p. Then the set 
oo 

f] Fn(X) is the compact attractor to (p. 
n = l 

oo 
P r o o f . Denote M = f] Fn(X). A decreasing family of closed nonempty 

n = l 

sets {Fn(X)}°°_, has the property fi[Fn(X)] —> 0, because cp is a bounded 
L J n—i L J n—>-oo 

//-contraction. By Proposition 3 (viii) the set M is nonempty, compact and 

Fn(X) ----> M . 
n—• oo 

6 Remember that the minimality assumption and global attractivity appear together in the 
definition of an attractor. 
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For any A C X we have Fn(A) C Fn(X), so Fn(A) -^-> M (Proposi-
n—>oo 

tion 3(iv)); thus M attracts every set. There is no smaller closed set which 
could attract all sets. Indeed, assume N is a closed attracting set. By Proposi
tion 3(v) we know that M C AT, what completes the proof. • 

Remark that the set playing above the role of an attractor can be seen as 
some variant of the core ( = center) to multifunction ([GN]). 

In [L] we have proved the existence of (nonempty) maximal invariant set for <p 
which is bounded condensing only7. So here a question arises: what about our 
attractor from the just presented theorem? Is it a maximal invariant? Undoubt
edly, the attractor given here is subinvariant. To assure its invariance one needs 
to make additional assumption on ip, it shall be u.h-u.s.c (comp. [Ki; Chap. 1, 
Theorem 1]). That is the main reason why we have introduced a class of the 
uniformly Hausdorff upper semicontinuous maps. 

4. Examples of attrac tors. Problems 

Here we briefly discuss the relevance of abstract theory on two naturally 
arisen examples. Then some questions are stated. 

E X A M P L E 3. Let <p = { / } , / : R -» R, f(x) = \x. We know very well that 

ipn(A) —r {0} (even in the Hausdorff metric), however for bounded sets A 
n-+oo 

only. When all sets are considered, the attractor is R. Of course, in the classic 
Barnsley-Hutchinson approach, {0} is the attractor to our IFS. But yet, restrict
ing (p to some bounded subinvariant set containing 0, both concepts (ours and 
the classic one) coincide. 

E X A M P L E 4. Let g0,gx: [0,1] -» [0,1], g0(x) = \x, gx(x) = \x + §. Denote 
by [x] the integer part of x (i.e. [x] = maxjn £ Z : n ^ x}) and define 
/ • : R -» R, i = 0 , 1 , as follows: 

We know that IFS {gi : i = 0,1} produces the ternary Cantor set in [0,1]. 
Taking into account the geometrical meaning of fi we see the attractor to IFS 
{fi: i = 0,1} in R: it is the multiplied copy of Cantor's set, each one belonging 
to its own integer interval. We cannot expect to obtain this attractor via an iter
ative procedure which starts at an arbitrarily chosen point/set. The attractivity 
(e-convergence) is weaker than the convergence in the Hausdorff metric. 

The conclusion from the above examples is threefold. 

7Each u-contraction is u-condensing. 
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The first: even classical attractors are boundedly asymptotic. After restriction 
to a bounded subinvariant set everything coincides. 

The second: there exist attractors asymptotically stable for all (bounded and 
unbounded) sets. 

The third: there are unbounded attractors (sometimes such trivial as the 
whole space, and sometimes rather complicated as multiplied Cantor set). 

At the end we propose some problems, which seem to be very natural: 

(A) Which closed [compact] sets are attractors to an iterated (multi)function 
system? 

(B) Can the "contractivity-compactness-condensity barrier" be crossed out? 
For example, what about multifunctions with the Lipschitz constant 
greater than 1 ? 

(C) What (physical) interpretation can so generalized attractors be endowed 
with? 

Very trivial solution to (A) is offered by taking as whole space X the de
sired set to be the attractor, and IFS {/} consisting of exactly one function 
f: X -> X, f(x) = x (identity). So one is asked: Which subsets of a fixed space 
X are attractors? Especially, which are attractors for hyperbolic IFS? 

Question (B) has been raised by J. A n d r e s and L. G o r n i e w i c z [AG] 
in context of the so-called Lifshits Theorem. Unfortunately the expectation is 
that the Lifshits constant equals 1 for most interesting hyperspaces. 

Question (C) was indicated to me by T . Schreiber (N. Copernicus Univ., 
Toruii). 
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Added in proof 

1. The uniqueness of an attractor M is implicitly used when proving Proposi
tion 5. Moreover, the attractor — if exists — has always the form M = f] Fn(X). 
This follows from the following lemma. n 

LEMMA 1. For r ^ ij > 0 and A,BcX we have 

o^Ano^Bco^Ano^B). 

2. As was observed in [COZ], Proposition 3(viii) holds true for any abstract 
measure of noncompactness /i satisfying e.g. 

(regularity) ^(A) = 0 <=> A is compact, 

and 

(ultra-additivity) ji(A U B ) - - max{/x(^4), (JL(B)} • 

3. Problem (B) from Section 4 has been solved in [L2]. 
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