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RENEWAL THEOREMS FOR RANDOM WALKS 
IN MULTIDIMENSIONAL TIME 

ABERA ABAY 

(Communicated by Lubomir Kubdcek ) 

ABSTRACT. Suppose tha t {X, Xn : n G Kr , r > 1} is a family of nonnegative, 
independent and identically distributed random variables where Kr is the set of 
r-tuples of positive integers. Let {Sn : n G Kr} denote the corresponding random 
walk in r-dimensional t ime. The paper deals with the asymptotic properties of 
its renewal function when either the mean of X is finite or when the distribution 
function F of X satisfies 1 — F(x) = x~aL(x) where L is a slowly varying 
function. 

1. Introduction and main results 

For r > 1, let Kr denote the set of r-tuples n = (nl1n2,... , n r ) where 
the components n are positive integers. Let {X, Xn : n 6 ^ r } be a family 
of nonnegative, independent and identically distributed random variables. For 
m = (m ) and n = (n •) in Kr, we say that rn < n if m. < n • for all 1 < j < r. 
If n e Kr, define 

j<n 

The sequence {Sn : n G Kr} is called a random walk in r-dimensional time. 
Note that when r == 1, {Xn : n G Kr} reduces to the sequence {Xn : n > 1} 
of independent random variables each distributed as X and Sn becomes the 

n 
ordinary partial sum, S = Yl X.. 

i = i 
Define the function Ur(x) by 

Ur(x)= ^ P { 5 n < x } . (1) 
neKr 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 60K05. 
K e y w o r d s : random walk, multidimensional t ime, renewal theorem, divisor function, slowly 
varying function. 
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Ur(x) is called the renewal function of the random walk {Sn : n £ Kr} in 
r-dimensional time. 

Note that if for n > 1, dr(n) is the number of r-tuples ra = (mx, ra2,..., rar) 
in Kr with mlm2.. .mr = n , then Ur(x) can be expressed equivalently by 

oo 

Ur(x) = Y,dr(n)P{Sn<x) (2) 
n=l 

where Sn = Xx + X2 + • • • + X n is the ordinary partial sum of n independent 
copies X- of X. 

In the present paper we study the asymptotic properties of Ur(x) as x —r oo 
which is one of the fundamental problems in renewal theory in the classical case 
of one dimensional time. For the case of multidimensional time this question has 
been studied by several authors for an integer-valued random walk and 

AUr(k) = Ur(k) - Ur(k - 1) = £ P{Sn = k} . 
n£Kr 

For two dimensional time, N e y and W a i n g e r [8] proved that if X is integer 
valued, and aperiodic with E(X4) < oo, 

AL7r(k) ~ — log k as k -> oo where ji = E(X). 

M. M a e j i m a and T. M o r i [7] replaced the moment condition by I?|.X|3 < oo 
and proved that for r = 2 or r = 3, 

AU r(fc)~ ( / ° g f c
i \

r
|
 l as k->oo. (3) 

r (r - ly.fj, 
An extension of the result of M a e j i m a and M o r i , which also gave an error 
term in (3) was obtained by G a l a m b o s and K a t a i [3] which was also later 
proved under a weaker assumption by G a l a m b o s and K a t a i [4]. The best 
result, however, was obtained by G a l a m b o s , I n d l e k o f e r and K a t a i [2]. 
They proved that (3) holds for X integer valued, aperiodic with finite mean /i 
and finite positive variance and for r = 2 or 3. 

The main results of this paper are the following theorems which give the 
asymptotic behavior of Ur(x) as x -> oo for the cases when the mean of X is 
finite or infinite. 

THEOREM 1. Let X, X1,X2,... be nonnegative, independent, identically dis­
tributed random variables such that 0 < [i = EX < oo. Then, as x —.> oo . 

Ur(x)~ _\ x^ogxy-1 for r = 1 , 2 , 3 . . . . 

Before we state the result of Theorem 2, we give the following: 
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DEFINITION. A positive measurable function L(x) defined on (_4, oo), A > 0, 
is said to be slowly varying if 

lim ^ 7 ^ = 1 for all x>0. 
t->oo L(t) 

THEOREM 2. Let X,XlyX2,... be nonnegative, independent, identically dis­
tributed random variables. Suppose that the distribution function F of X sat­
isfies 1 — F(x) = x~aL(x), as x —> oo, where 0 < a < 1 and L is a slowly 
varying function. Then, as x —» oo, 

(i) 

(ii) 

Ur(x)~- . " ' ' " ' , ^ ^ g ^ " 1 , / 0 < a < l , 
r (r — 1)!T(1 — a )F ( l + a) L(x) 

(iii) 

Ur& ~ ( r _ i)| g(1^)''"1 ^ a = X ^ e r e m ( ; E ) = | ( X - i ? ( ^ ) d ^ 
0 

R e m a r k s . 
(i) When r = 1, Ur (x) becomes U(x), the renewal function in one dimension 

and Theorem 1 reduces to the classical elementary renewal theorem. 
(ii) In the case when a = 1, fi = EX may or may not be finite. However, 

when a = 1 and /i < oo, the result of (iii) in Theorem 2 becomes the same as 
that of Theorem 1. 

The following theorem is a generalization of Theorem 1. 
n 

THEOREM 3. Let an > 0 such that A(n) = Yl ak ~ npL(n) as n -> oo 
k=\ 

for p > 0 where L is slowly varying. Suppose X , X 1 , X 2 , . . . are nonnegative, 
independent, identically distributed random variables with 0 < EX = fi < oo. If 
Sn = X1+X2 + ...+Xn, and 

oo 

G(x) = Y,anP{Sn<x}, 
n=l 

then 

G(x) = EA(N(x)) ~ \xpL(x) as x -> oo . 
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2. Proofs 

Before we give the proofs of the above theorems, we make the following 
observations. 

In the study of the asymptotic behavior of AUr(k) or Ur(x), the principal 
role is played by the divisor function dr(n). It is known that dr(n) = 0(n£) 
for any e > 0 . For r = 2, see for example H a r d y and W r i g h t [6; p . 260, 
Theorem 315], and the case r > 2 follows by induction. 

If we put 

Dr(s) = " > > ) , 
n<x 

then it is known (see T i t c h m a r s h [10; p. 313]) that 

Dr(x) = xPr(\ogx) + Ar(x) (4) 

where 

Priu) = (r^T)!^-1 + ar-^r~2 + • • • + «o . 

whose coefficients a can explicitly be evaluated from the Laurent series of the 
Riemann zeta function at s = 1, and Ar(x) = 0(xv) for some 0 < v < 1. Thus, 
from (4) we see that 

Dr(x) ~ -r--a:(logx)r~1 as x -> oo . (5) 

Next, if we define the renewal counting process {N(t) : t > 0} by 

N(t) = max{n : Sn<t], 

then the following strong law holds. 

LEMMA 1. Let 0 < /i = E(XX) < co. Then 

(i) -5-j-- -> i a.5. as t -> co ; 

(ii) < ( —|-- ) : t > 1 > is uniformly integrable for all r > 0 , 

(iii) E ( ^ ) r -^ ^r as t -> oo /Or all r > 0. 

The proof may be found in G u t [5; p 54, Theorem 5.1]. 
From the above definition of N(t) it follows that P{Sn < t} = P{N(t) > n} 

and so we see that: 
oo 

Ur(t) = "£Dr(k)P{N(t) = k} = EDr(N(t)) . (6) 
k=\ 
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We now give a proof of Theorem 1 using the above representation of Ur(t). 

P r o o f o f T h e o r e m 1. From (4) we can see that Dr(x) = f(x) + g(x) 
+ h(x) where f(x) = -^yX^ogxY'1, g(x) = ar_2x(logx)r~2 + -- + a1xlogx 
+ a0x, and h(x) < Cxv for some C > 0 and 0 < v < 1. 

Hence we see that 

Dr(N(t)) = f(N(t)) + g(N(t)) + h(N(t)). 

We now claim that as t - ) o o , 

(ii)tf(-w)->°. 
(in)E(^m)^0. 

The above together with (6) will then imply that, 

Ur(t)~j;f(t)={r___)tW<>&t)r~1 ™ t^oo 

which is what we want to prove. 
To prove (i), we observe that 

r - l 
f(N(t)) = N__l (logN(t)\ 

f(t) t V log* ) 

Since ^^- -> - a.s. as * -» oo, it follows that l o f 0 ^)^ -> 1 a.s. as t -» oo. 
Furthermore for t > e, 

< ^(ТЧТО-
Hence we see that for t > e, 

/W) 
/(*) 

Thus, using Lemma 1 (ii) we conclude that < fu) '- t > e> is uniformly 

integrable for all r > 0. Since fu\ —> ~ a.s. as t -» oo, we see that (i) holds. 

Next we consider, 

g(N(t)) _ ( br_2 b0 \ f(N(t)) 

f(t) v logN(t) (logJV(t))'- 1) /(*) 
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where bk = (r — 1)! ak for k = 0 , 1 , . . . , T — 2. However, for k > 1 and large t 

1 f(N(t)) < /(At(i)) 

(log.V(i))fe /(*) " /(*) ' 

and so < / m n0g Iv(t))r f is u m f ° r m i y integrable for all T > 0. Now since 

do N(t))k fit) ~* ^ a , s- as t -> oo, for all k > 1, we see that 

V (log«(())' /(') J 

Hence, from (7) we conclude that (ii) holds. 

Finally, to prove (iii) observe that 

h(N{t)) ^ C f(N(t)) 
, , , . < , - - - ~ T , , , where C > 0 . (8) 

/(*) _ (N(t))'-V(log.V(t))r_1 /(*) 

Note that the expression on the right side of (8) is uniformly integrable for T > 0. 
Moreover, as t —> oo this expression converges to 0 a.s. Thus we conclude that 
(iii) holds and this proves Theorem 1. • 

In order to prove Theorem 2 we need the following two lemmas. 

L E M M A 2. 

(i) If L is a slowly varying function, then lim °fna.„ — 0. 

(ii) If L1 and L2 are slowly varying and L2(x) —> oo as x —> oo. then 
Lx(L2(x)) is slowly varying. 

For the proof see S e n e t a [9; pp. 18-19]. 

LEMMA 3. Suppose 1 — F(x) = x~aL(x) as x -> oo where 0 < a < 1. L is 
t 

slowly varying and m(t) = J(l — F(y)) dy. Then, as s —•> 0 + 

o 
OO 

(i) / e~st (1 - F(t)) dt ~ r ( l - a)sa~1L(l/s) for0<a<l, 
o 
OO 

(ii) / e~st rn(t) dt - 7771(1/5) for a = 1. 
0 

376 



RENEWAL THEOREMS FOR RANDOM WALKS IN MULTIDIMENSIONAL TIME 

P r o o f . 

(i) Let 0 < a < 1. Then, 

oo oo 

f e-st(l-F(t)) di = ! e-stt~aL(t) dt 
0 0 

oo 

= 5Q-X f e-uu~aL(u/s)du. 

0 

Since L ^ v j -> 1 as 5 —> 0+ for all u > 0, by the dominated convergence 
theorem it follows that 

oo oo 

! e _ u u~aL(u/s) du ~ L(l/s) í e~u u~a àu as 5 -> 0+ . 

o o 

Hence, 

oo oo 

í e~st (1 - F(t)) dt ~ sa~lL(l/s) í e~u u~a du as з -> 0 + 

o 
a - l ; - - Ц l - a ^ Д l / з ) . 

(ii) Suppose a = 1. Then, m(t) is slowly varying and the result holds by (i) 
of the Lemma for a = 0. • 

We now give a proof of Theorem 2. 

P r o o f of T h e o r e m 2. Let f(s) and (p(s) be the Laplace-Stieltjes trans­
forms of F(x) and Ur(x), respectively. That is, 

oo oo 

f(s) = f e~sx dF(x) and <p{s) = f e~sx dUr(x). 

0 0 

If we let, 
oo 

Q(s) = Y/dr(k)sk 

k=l 

then we observe that ip(s) — Q(f(s)). From (5), and Karamata's Tauberian 
theorem (see F e l l e r [1; p. 447, Theorem 5] it follows that 
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Since f(s) -» 1~ as s —> 0 + , the above implies that 

rt-'Viyi-wMA))'"' ** s"0+' (9> 

We now consider asymptotic relations of 1 — f(s) as s -» 0 + . If 0 < a < 1, 
oo 

then we see that 1 — f(s) = s / e~ 5 t ( l — F(t)) dt and so by Lemma 3 we get 
o 

1 - f(s) ~ r ( l - a ) s a L ( l / s ) as s -> 0 + . (10) 

oo 

On the other hand, for a = 1 we have 1 — f(s) ~ s2 / e~5t m(t) dt. Hence from 
o 

Lemma 3 we conclude that for a = 1, 

1 - f(s) ~ sm( l / s ) as s -> 0 + . (11) 

We now consider the following three cases. 
Case (i). Suppose 0 < a < 1. Then, from (9) and (10) we get 

r - l 

(12) 

(13) 

^(S) ~ (r - 1)! r(l - a)s«L(l/s) V°S \ r ( l - a)saL(l/s)) ) 
as s -> 0 + . 

However, 

log (r(i-a)U(i/3)) =
 alog(1/s) -log(r(1 - a)L(1/s)) 

~ a log ( l / s ) as s -» 0 + 

since ^ ^ / ^ —r 0 as s -» 0 + by Lemma 2(i). Hence, in this case from (12) 

and (13) we get 

^ ( S ) ~ S ( r - l ) ! r ( l - « ) L(l/s) aS S ^ ° • 
Thus, by Karamata's Tauberian theorem it follows that 

Tr , v a r _ 1 X a ( logx) r - 1 

^ ( g ) ~ ( r - l ) ! r ( l - « ) r ( l + «) L(x) » * - > « > • 

Case (ii). Suppose a = 0. Then, from (9) and (10), we get 

\ \ r - l 

l og ' * 
i r ^ L f i / s ) , , . 

y ( a ) ~ ( r - l ) ! L(l/s) aS S ^ ° • 
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In this case, lim L(x) = 0 and so l o g ( ^ y ) is slowly varying by Lemma 2(ii). 

Thus by Karamata's Tauberian theorem, it follows that 

log 
r - l 

r W ( T - 1) ! L(x) 

Case (iii). Suppose a = 1. In this case, (9) and (11) imply that 

\ \ r - l 

log' 1 

" • » - - ( , - l / m / l ' / * ) ' " - s " 0 + - < 1 4 ) 

However, since m(x) is slowly varying and m(x) —> oo as x -» oo, it follows by 

Lemma 2 that ^ f f f i 1 / ) " -* 0 as s -> 0+. Hence ^ ( ^ ^ y ) ~ log(l /s) as 

5 —r 0+, and so from (14), we have 

n • ! 1 (logCl/^)) '"1 _ , n + 

¥ > ( 5 ) ~ 5 7 7\7 7T7^ a s 5 _ > 0 • 
(r — 1)! m(l/s) 

Therefore, by Karamata's Tauberian theorem, it follows that 

TT < \ * ^ ( l ogx ) r _ 1 

rV y ( > - 1 ) ! m(x) 

This proves Theorem 2. • 

R e m a r k s . 
(i) The proof of Theorem 2 can be easily modified to give another proof of 

Theorem 1. 
(ii) We omit the proof of Theorem 3 since its proof is almost identical to that 

of Theorem 1. 
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