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EXTENSIONS ‘OF BAUER’S IDENTICAL
CONGRUENCES

STEFAN SCHWARZ

In the present paper we shall use a part of the results obtained in [4] to prove
some identical congruences which can be considered as extensions and modifica-
tions of the famous Bauer’s congruences. (See Hardy—Wright, [2].)

For the convenience of the reader we recall some facts proved in [4] needed in
the following.

Let m=pi" ... p;" be the factorization of an integer m>1 into the product of
different prime powers. Let S, be the multiplicative semigroup of the ring of
integers (mod m). The class containing the number « is denoted by [a]. We shall
freely use the fact that S, admits also an addition.

S~ contains 2" different idempotents (including [0] and [1]). Any idempotent
e € S can be written in the form e =[p1 ... p’a], where / is either zero or o; and a
is an integer with (a, m)=1.

The idempotents of the form [p{“a] will be denoted as f; and called the maximal
idempotents of S.. Any idempotent ee€ S, which is different from [1] is
a product of maximal idempotents € S. Under the partial ordering e’ S e” <> e'e" =
= e’ the set E of all idempotents forms a Boolean algebra. The r idempotents of
the form f;=[a- m/p?], (a, m)=1, are called the primitive 1dempotents € Sm.
We have f,+f;=[1], also fi+...+f,=[1] and f; ... f,=[0].

To any idempotent e € E there exist a maximal group G(e) containing e as its
unit element and amaximalsubsemigroup P(e) of S containing e as the unique

idempbtent. Hence P(e) = {x|x € Sn, x' = e for some />0}. Clearly S,.= | P(e)
eeE

and G(e) < P(e). In particular G(1) = G([1]) is the group of order @(m) (Euler
function) containing all [a] with (a, m)=1. Note that P([1]) = G(1). .

The following (internal) direct decomposition of G(1) plays an important role.
Denote

Gi={fi+[nlfi|0<h<pi, (h, p)=1}.
Then all G; are subgroups of G(1) and we have
G(1)= Gl . Gz cve G,.
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Analogously if T, ={f +[h]f.|]0= h <p{"}, then S,, admits the following (internal)
direct decomposition:

S,,.:Tl' Tz cee 7;

Hereby T.nT;=[0] for i#}.
Let ecE, e#[1], and e=fi ... f, (1=s<r). Then the group G(e) has the
following (internal) direct decomposition

G(e)=(G;+1€) ... (Gee).
(If s=r, then e=[0] and G(e)={[0]}.)
Note for the following. The correspondence p, <> f, is one to one. There are of
course (;) different products of s maximal idempotents. For simplicity we write

e=fi ... f, having in mind that this is a typical representative of the product of s
maximal idempotents.

Denote T;= G,ul,, GNnI,=0 (1=i=r). Then the semigroup P(e) admits the
following decomposition

P(e)=1...L (G..) ... (G).
Here I, are subsemigroups of S, and InL=0if i#j. (If e=[0], P([0])=1, ... I.)
Finally if e=f, ... f;, we have (with card A=|A|)
|G(e)| = @(m/pi ... p¥)=@(pii ... p)
|P(e)| =pi*™" ... p¥ 7| Gle)].
In order to find a generalization of the Lagrange decomposition
(x—-1)(x=2)...(x—p+1)=x* "= 1(mod p),
Bauer (1902) considered the product
F(x)=usl;Im(x— v) and proved: For p,>2 we have

F(x)=(x""'=1)"" ®"Y(mod p*),

and a similar result if p;=2. Later Vandiver (1917) extended this result giving
formulas for the value of F(x) in S, (i. €. not mod p;" but mod m). He also gave

a formula for the product l_! (x — v). (See Theorem 2 and Theorem 7 below.)
The purpose of this paper is to give explicit formulae for the products

(x—v) and H (x — v), where e is any idempotent € S,.. These formulae
ve P(e)

ve G(e)
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are certainly new since a rather thorough investigation of the existing literature
shows that there is a very limited number of papers dealing explicitly with the
groups G(e) and semigroups P(e) for e#[1].

In the following we shall use only a special case of Bauer’s identity, namely the
case m=p® (a=1), the proof of which is given in [2].

Denote V={0, 1, ..., p®—1}, V¥={ae V|(a, p)=1}, then the following
holds:

Lemma 1.(Bauer). a) If p>2, then

I, (= 0= (! = 17 (mod ). )

b) If p=2 and a>1,

1 (x=v)=(*-1)*"(mod 2°).
ve VD

Remark. When dealing with residue classes as elements € S,= we may write (1)

in the form [] (x—v) = (x*'—[1])*"" (with the sign of equality). In the
ve G(1)
following we reserve the sign of the equality for all calculations to be carried out in

Sm.
Notation. Throughout the paper we use the following notation. If A is

a nonempty subset of S., then Ulx; A] denotes the product [] (x—v) (with
veEA

coefficients € Sn).

As it does not lead to any misunderstanding we shall write x + a, a € S, instead
of [1] x + a and replace ax — a by (x — 1)a having in mind that all coefficients of the
polynomials considered are elements € S,.

If m=pi ... pi, we denote V,;={0, 1, ..., p“—1}, VI’ = {ae Vi|(a, p)=1},
V@ = {ae Vi|(a, p)>1}, so that V;= VUV,

1. The product U[x; G]

As remarked above the groups G; play an important role, so that we have to deal
first with the product

Ulx; G]= UI:L.(X -v).

We suppose m=pi* ... p. The case r=1 is not interesting since it leads to
Lemma 1. Hence we suppose r=2.

In the following Theorem 1 |G| is the cardinality of G, hence |Gi|=
pi~(pi—1) for pi=2.
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Theorem 1. With the notations introduced above we have

(=) =A% " for p>2,
Ulx: G,»]=[[(x—f",-)’—f,-]'c" ’ for p.=2, a,Z2,
x—[1] for pii=2.

Proof. Any element ve G; can be written in the form v=f + hfi, he V"

Hence

x—v=x=[fi+hf] =it )= i+ ) = (e = Do+ (= W)

and
Ulx: G]= ﬂl)[(x—1)f7+(x—h)f:]=(x—1)"'ﬁ+ﬁ I1 (x—h),

he Vi he v

where v, = @(p*).
a) For p;>2, we have by Lemma 1, (with §,=p®™").

[ r=m)=@G""-1)"(mod p?)

he viD

and, since f,[p7]=[0],
Ulx: Gl=(x=)® ™ fi+ (277 = 1) f =
=[(x =D+ =D =[{(x = D+ x£}7 = £,

whence the first formula immediately follows.
b) For p;=2, a;=2, we have by Lemma 1,
[T (x—h)=(x*-1)" (mod 2%),

heV,
Whele ﬂ ——2 fo.
i

Hence

ULx: Gl = (o= 1% fi+ (2= 1 == 17+ (6 = DA =
el
c) If p% =2 (i. e. m is divisible by 2, but not by 4), we have V{" = {1}, the group
G: reduces 1o the element fi+1- fi=[1], so that U[x: G]=x—[1].

This proves Theorem 1.
Suppose in the following again m = pi* ... p;", where r =2. We use Theorem 1 to

find Ulx: G(1)] = Ulx: GiG. ... G/].
Ulx: G(1)]= J—[ (x—v)=]1(x—v: ... v,), where v, ..., v, run indepen-
ve G,

dently over Gl,...; G.. Since [l]=fi+...+f, we may write u[x:G(1)]

= > Ulx; Gi ... G] - f; and compute each of these summands separately.

i=1
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Write v in the form

V=10 ... v,=(f1+h1f1) (ﬁ+hrfr)

with ;e V. Forany i (1=i=r) we have v - f; = 1102 ... v.f; = vfi independently
of the @(m)/| G| possible values of v, ... Vi-1Vis1 ... Ur.

Hence

Ulx; G(fi= vl:L(xfi — vﬁ)"""""ql —
= [ I—L(x_ v)]v’(m)/lc,-l fi=Ulx; G,-]"’("')/lcil .

a) If p; is odd, then by Theorem 1
Ulx: G- fi={lGe= )" = fIRY 70 =
=[xP - fi— ]9V = (xP T 1)\ GlED.
and
Ulx: G()]- fi= (" = )77 fi.
b) If m=2-ps ... p&, r=2, then since |Gi| =1,
Ulx; G)] - fi=Ulx: GI"™ - fi=(x =17 fi
c) If m=2%p3* ... py, ai=2, then
Ulx: G(1)] - fi=Ulx: G| >~ “fi=
=[x == fI7™ == )™= =)™ fo

This can be modified (due to the fact that r=2). First
1 1 a;—1 -1 a;—1
5 e(m)=5-2%" pE(p=1) .22,

where u is an integer. Next (with y=2%""u)

(x2_1)v 'f1=[(x—1)2+2(x—1)]y'f1=(x—1)¢(m)f1+

297N N, (m)—k
—1)"™E fy
(0 e A
al-1 .
It is easy to see that (2 X u)Z" is divisible by 2* and since [2*]fi =0, we finally

have Ulx; G)]fi = (x—1)*"f..
This implies:
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Theorem 2. Let m=pi" ... pY, r=2. Then

Ulx: G(1)] =2f,(xm-l — 1) e,

This formula has been (in essential) found by Vandiver (1917). Of course, since
he does not use explicitly the idempotents, his formulations are rather complicated.
(See Dickson [1], p. 89.)

2. The product Ulx : G(e)]

Let now be e any idempotent € E, e+[1]and e=f.f, ... f,, where s=1=r. We
again suppose r=2.

We shall find explicit formulas for the product I;[ (x —v), G(e) being (as
ve G(e)

above) the maximal subgroup of S, belonging to the idempotent e.
In the following we suppose s<r, since for s=r we have e=[0] and

Ulx: G(0)] =x.
The group G(e) is a direct product of its subgroups

G(e)=(G.+1e)  (G,ize) ... (Ge).
Any element ve G(e) is of the form v=wv,,, ... v,, where v,e Ge, and v, =
Fi+nf) fi... fi, e Vi, j=s+1. Hence
U[X; G(e)]=l'l(x— Ust1 --» U,), where vg4q, ..., Uy,

run independently through G,.:- e, ..., G, - e.
Write again

Ulx; G(e)]=‘_=21U[x; G(e)l - f:.
If ie{l1, 2, ..., s}, then V41 ... Ifr - f;=[0], so that
Ulx: G(e)] - fi=x'9- f.
If ie{s+1,..., r}, then vos1 ... U fi = Vsiifi- voaafi ... vofi. Since for j#ivfi=

=(fi+hf)fi ... f-fi = ffi ... f-fi = fi, we have independently of the [G(e)]

|G|
choices Of Vsa1y -ooy Vi 1° Vir1 ... Ur, that (v, ... v,)fi = vf.. Hence
Ulx: G(e)lfi= [] (fi = vf) 1= [U(x: G)' 7 1 f,
and
Ulx: G =(fi+ -+ P+ 3 (UG GO . (@)
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By Theorem 1 we have again Ulx; G/]fi=(x""'—1)'%"7"". £, if p, is odd and the
same results hold if pf=2. If p¥=2% a=2, we have Ulx;G]fi =
— (xz _ 1)|G,|/2 . f’

If all pssy, ..., p- are odd, or one of them, say p,, is even and p7 =2, we
immediately obtain

Ulx: G(e)]=(fi+ ...+ f)x' O+ (P —1)lo0ret. g

There remains the case in which one of the ps+1, ..., p,, say p,, is even and
p7=2%, aZ2. In this case the last term in (2) is
Recall that |G(e)| = p(p%it ... %) = |Goui| ... |G| If r — s =2, then (analogous-
ly to the proof of Theorem 1) the right-hand side of (3) can be rewritten as
(x=1)"° f If s=r—1,i.e. e=fi ... f-i and |G(e)| =2%"" this modification
cannot be carried out but in this case we have

U[x; G(e)] = (fl +... +f,_1)xlo(’)l + (xz_ l)lG(e)llzfr -
=f_,x|o(e)l +fi(x*— l)‘G(e)[/2= I - X+ f(x— 1)]|G<,),/2=
=(*=£)",

where B, =2%"2
We have proved:

Theorem 3. Let m=p{ ... pY and e=f, ... f,, s<r. Then

Ulx; G(e)]=(fi+ ...+ f)x'7+ 2 fi(xPt = 1)l

with the exception of the case e=fi ... f.-, and p? =2%, a, =2, in which case
Ulx; G(e)] = (x*—f)%, where B, =2,

Remark 1. In this exceptional case e is the primitive idempotent f, with the
corresponding maximal group of order |G(f,)| =2*"".

For any other primitive idempotent which is necessarily of the form e=
fi... f-i=f, and |G(e)| = @(p?) we have (with B, =p> ")

Ulx; G(e)]=(fi+ ...+ fr-1)x O 4 (P! — 1)/ SOV D -
= x1O 4 f(xPT1 1)/ COVC D[ yp g £ (xP T = 1)) =
=[x = £
Hence we state:
Corollary 3. If f; is a primitive idempotent € S,,, then
Ulx; Gl =[x"" =%, Bi=pi,
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with the exception of the case that m is even, fi=[a - m/2*], & =2, ae G(1), in
which case

Ulx: G(f)) = (= f)", =27

Remark 2. It is worth to note the following. Suppose, e. g., that p; is odd. The
group G; and the group G(f:) are algebraically isomorphic, while

I G=n =l —fy =A% pi=pi™,

l_l (x—v)=[x""-f]",
v G

which are different polynomials (over S.).

3. The product U[x : P(e)]

In the following we shall need a Lemma.

a—-1

P
Denote Z,,=ﬂ(x—hp). Note: If V={0,1,...,p“—1}, and V©
= {ve V|(h, p)>1}, then Z, = l—‘lm(x—v) (mod p%).

Lemma 2. a) If p>2, then
Z.=x"" (mod p").
b) If p=2, a =2, then
Z.=(x*-2x)>"" (mod p%).

Remark. The first part of this Lemma is implicitly contained in paper [3].

Proof. a) Suppose p>2, the Lemma is true for a=1, since Zi=x—p=
x (mod p). Suppose that Z,=x"""' (mod p®), we prove Z,..=x"" (mod p“*").
Now

Za =jl_;i (:!jl (x— hp—jp“).

For a fixed j

a-1

P

pn—l
1 G=hp=ip)=1(x~hp)+jp" 9(x)=Z.+jp*g(x) (mod p*),
where g(x) is a polynomial independent of j. This implies
p—1

p—1
Zan=[](Za+jp"g(x))=Z2+ 227 - p* - g(x) - X j=Z0 (mod p").
1= 1=
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Since by the inductive supposition Z.=x"" +p®- gi(x) (with a polynomial
g1(x)), we have

Zanr =[x+ p* - gi(x)]P =x"" (mod p**").
This proves our Lemma for p>2.

b) Suppose p=2. The statement holds for a=2, since Z;=x(x_-2)- We
suppose that

2a-1

Z.= g (x—2h)=(x*—2x)*"" (mod 2%),

we have to prove that Z,.,=(x>—2x)*"" (mod 2**"). Now

2a-1 2a-1

Zos1= ﬂ (x—2n)(x-=2Q2* "'+ h))= H (x—2h—2°7")? (mod 2%)

(since 2(a—1)=a for @ =2). Further

2a-1

LI (x _ 2h _ 2a—1) - Za(x _ 20—1) = [(x _2a-1)2 —- 2(x __2a—1)]2ﬂ—2¢

=

=(x*—2x)*"" (mod 2%),
hence
2a—l

ﬂ (x—2h—-2"")=(x*—2x)*" +2°- g(x),
where g(x) is a polynomial. This implies finally
Zoni(x)=[(x* = 2x)" " +2°g(x)P = (x* - 2x)*"" (mod 2°*").
This completes the proof of Lemma 2.

The next theorem deals with the product ]_1 (x — v), where I has been defined in
the introduction.

Theorem 4.

(x—f)™ if pi>2,
Ulx: I.~]=[(ch—[Z]x+j'r.~)%"‘l if pi=2% a=2,
x—fi if pi=2,

where |L|=p{".
Proof. Any element ve L is of the form v =fi+ hf, he V. We have
x—v=x—-1fi+(x—h)f,, he V7,
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mxi;L]=E'(x—v)=(x—l)"'l fit+fie IJ(‘” (x—h).

a) If p;>2, by Lemma 2 (since [p?]fi=[0])
Ulx: I =(x—1)"f+ x"™f=[(x - D)f+ xfi]™ =
G-
b) If p“=2% a;=2, again by Lemma 2
Ulx: I]=(x - D"+ (x* —2x)}uf =
=[x =12+ (=20 f P = (- 2]+ )

¢) If pi=2, Vi”={0}, so that I, reduces to f; +[0]f. = f; hence Ulx: ] =x — .
This proves Theorem 4.

To find Ulx; P(e)] we may restrict ourselves to the case e#[1] since P(1)=
G(1).

Let e=fi... f, s=r, (and s=1). The semigroup P(e) admits the following
(internal) direct decomposition

P(€)=Il ve LGyir ... Gr,

where if s = r, no G, appears. Clearly |P(e)| = |L| ... |L| - |G,i] ... |G.].

Ulx; P(e)]|=I(x—v; ... VVs41 ... V,), Where vee Lk for k=5, and vi e Gi, for
k>s.

We write again U[x; P(e)] =ZU{x; P(e)]- f.

Recall vi = fi + ufi, where he V' for k=5 and b e V¥ for k>s.
a) If i=s, then v, ... v, - f;=v/f; for all possible | P(e)/| | values of the product
V1 ... Vi21Vis1 ... Uy, SO that

Ulx; P(e)lf:i= ul],(x — )Pl Il g

b) If s<r and i>s, then again v ... v.fi=vf, for all possible |P(e)|/|G,|
choices of the remaining v;, so that

Ulx; P(e))fi= HG (x —v,)F@11el,
Therefore :

Ulx; P(e))] =3 U(x; B+ > [U(x: G)]'P? 19f.. (4)
. =1 1=s5+1
c) If s=r, the same formula holds if the last term to the right is omitted.
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A) Suppose that m = pi* ... p/, r=2, where all p{*are odd or one of the factors
is 2. Then (4), Theorem 1 and Theorem 3 imply

Ulx: P@= 3= )"+ 3, (6= o™ = )70 ey =

=[fl+...+ﬂ]x|P(z)|+i;lﬁ(xpi—l_1)|P(¢)|/(p,-—1), (5)

where if s=r, the second term should be omitted so that U[x; P(e)] = x'".

There remains the case that one of the factors of m=pi* ... p/" is equal to 2%,
where o =2. In this case it is necessary to consider several possibilities.

B) Suppose first that m=2"-ps2 ... pi, a1 =2, and r=s, i.e. e=[0] and
P(e) = P([0]) = P(0).

Then
Ulx; Il]me)llllllfl =(x"-2x+ fhl)%“,m'fx =(x*- 2X)§“’(0|f1 >

and

Ulx; PO)] = (2= 208 PO, 4 (fo+ ... + )27 =

- (x’ _ 2x)§“"°"f1 + f-lx"""" = [(x’ —2x)fi+ f‘lleélmt»l - (x’ - 2xf1)5""°" .

Hereby |P(0)|=2%""ps>™" ... p7~".

C) Suppose s<r, e=fi ... f;, and the maximal idempotent which is a multiple of
[2°]is a factor of e=f; ... f,.. Write m=2%p32 ... pi", so that f; is a multiple of [2*].
We have again

Ulx: LI fi= (6% - 207,
But since |P(e)|=2%""... @(p’), |P(e)| is divisible by 2* and % |P(e)| =

=2""". y, where u is an integer. Hence
1
(x2—2x)%|P(‘)'f1 =x‘P(‘)'f1 +fi g(_l)k(Z II)k(e)|>2kx|P(z)l—k=le(e)l i,
1

1
since for k=1 the term (2 Ii(e)l)Z" is divisible by 2* and [2*]f;=[0]. For

Ulx; P(e)] we obtain the same result as in (5).
D) Suppose s<r, e=fi ... f;, and write m=p{" ... p/it - 2%, a, =2, so that the
maximal idempotent corresponding to [2%] is not a factor of e.
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By Theorem 1 we have
Ulx: Gl=[(x=}) = f1}'%,
and the last term in (4) is now
(Ulx: G f=[(xe= ) = 1 = (8 = DI -

D 1) If s=r—2, then | P(e)| is divisible by 2%, hence 3
is an integer. In this case (with B=2%""-u)

(= f=[(x =1+ 2= D))" .,
and by the same argument as in the proof of Theorem 1 (case c) we obtain
(Ulx: G )P, = (x — 1))
so that the formula (5) holds.
D2) Ifs=r—1,i.e.P(e)=1I ...I, ,- G, and |G,|=2" ', the last term in (4) is

(x> —1)!"@!f which cannot be directly reduced to a simpler form.
But in this case we have

Ulx: P(e)]=(fi+...+ 1)x“'(")| + (XZ— 1)§.P(e)|f’ -
=frle(e)|+(x2_1)%|P(e)|f [fX +(x -1)- f]zlP(e)[ _f’)é‘p(,) '

Summarily we have proved the following two statements:

P(e)| =2 '-u, where u

Theorem 5a. Letm=p{" ... p, r=2. Then U[x ; P(0)] = x'"' with the excep-
tion of the case that m is even and one of the factors, say p'", is 2% with a, Z2. In
this case Ulx; P(0)] = (x* — 2xf,)} P!,

Theorem 5b. Let m=pi' ... py, r=2, and e=f, ... f,#[0], Then
Ulx; P(e)]=[fi+ ...+ £]x™+ 3 fi(xP7 = 1)!"N P with the exception of

1=s+1
the case that s=r—1 and p7=2%, a =2, in which case Ulx: P(e)]=
(x* - f')%lr(e)!.

Remark 1. The second case in Theorem 5Sb corresponds to the case of
m=pi ... p’'2%, a, =2, and e is a primitive idempotent of the form f, = [Zﬂ’ . a],
aeG(1).

For any other primitive idempotent f, of the form

e=fi= [ a.],p.#Z a e G(1),

the formula (5) may be rewritten as follows:

U[x : P(f,)] =f“le(e)4 +f'(xp‘—1 _ l)lP(z)!/(p.—l) —
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— [f_ . xp,-—l +f»(xp,-—l _ 1)]|P(f,)|/(p,-—1) — (xp.‘—l _ﬁ)il’(!,-)l/(pi-l)-
Corollary 4. For a primitive idempotent we have

Ulx; P(f)] = (x7" = f;)P@VeD

with the exception of the case that m is even, f; = [2ﬂ" a], @22, ae G(1), in which
case
Ulx; P(f)] = (x* = fi)}IPO,

Remark 2. Itseems to be worth to remark that IT(x — v), v running through all
elements € P(0) (i. e. all nilpotent elements € S.) is in “most cases” x'*®!. But by
Theorem 5 a this is not true if m is divisible by 2%, a, =2. The corresponding result

1
(x* = 2x£,)}'""! can be rewritten. Since (ZP/EO)>2" for k=3 is divisible by 2%, at

most three terms are #[0] and a simple calculation shows that

1O _ | P(0)|f, - IP©)]-1 for a, =2
x r X a =2,
Ulx: P(O)]—{xlr(on_ |PO)] - £, - x'P=* = | P(0)| f:x'*®'for @, =3.

To have a numerical example consider, e. g., m=5 -2’>=40. Here f, =[16],
f>=1[25], P(0)={[0],-[10], [20], [30]}.
Ulx : P(0)] = x(x — [10])(x — [20])(x —[30]) =
=(x*—2-[25]x)*=x*+[20]x’ + [20]x°.

Theorems 3 and 5b lead to the following remarkable result:

Theorem 6. Let m=pi" ... py, r=2, and e#[0]. Then
Ulx; P(e)] = Ulx; G(o)]",
where L =|P(e)|/|G(e)|.

Proof. Due to the orthogonality of the set {f;}, the formula of Theorem 3
implies for any integer k=1:

Ulx; G =(fi+...+ f,)< 19 4 '_ilfi(x”"" )

Putting k=|P(e)|/|G(e)| the right-hand side gives exactly the formula of
Theorem 5b.

Our statement holds also in the exceptional case mentioned in Theorem 3 and
Theorem 5b, since in this case
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Ulx: G(e)] = (x" = ), Ulx: P(e)] = (" = )",

Finally it is true also if e=[1], since in this case |P(e)|=|G(e)|.

Remark. If [e]=[0], Ulx: G(0)] =x, so that Theorem 6 is true if m is odd or
m is divisible by 2 but not by 4. In the exceptional case mentioned in Theorem 5a,
the statement of Theorem 6 does not hold.

4. The product U[x; S.]

In order to find the formula for the product I(x — v), where v runs trough the
whole semigroup S.., we recall that S,,= T, ... T,, where T; has been defined in the
introduction.

It is natural to find first the product Ulx: T;].

Since T;= G,ul, we have Ulx; T;]=U[x; G]- Ulx; L].

Theorem 7. a) If p,>2, then

Ulx: T]=[(x = f)" — xf]* Bi=pi".
b) If p;=2, Ulx; T = (x - f)(x—[1]).
c) If pi*=2%, a,=2, then

Ulx: T)=(x"=2x+f)" [(x = ) = f]", vi=2""".

Proof. By Theorem 1 and Theorem 4 we obtain for p,>2

Ulxs T)=(x = )" - [(x = f)™" = fi]" =

=[G =F)" = (= f)f)r =[x = f)™.

The remaining cases follow directly from the corresponding statements of
Theorems 1 and 4.

Any element v € S,, can be written uniquely in the form v =t ... t,, with t.e T,.

For any ve S, v fi=(t ... t,) - fi=tf; independently of the m/p{" possible values
of ty ... ticativy ... b,
Hence

Ulxs Sal - fi= [T fi = vf) = ’ll(xf.- —1f)“=(Ulx; T])“ - f,

where u,=m/pf

Since Ulx; Sm]= Z Ulx; S»] - f.» we have finally

r

Ulx; Sn] =§ Ulx; T]“f..
a) If p;>2, we have (with B;=p{"™")
Ulx: T fi=((x" = x]" - f) =" =x)" " f..
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b) If p;=2,
Ulx; T]™fi=[(x = f)(x = D™= (x*—x)""- f..
c) If p¥=2% a;=2, (with v;=m/2%)
Ulx; T]"fi=(x*=2x)™" - (x* =)™ - fi=
=[(x*—x)’=2(x* =)™ f..
We have proved:
Theorem 8. Let m=pfY ... p7. If all p; are odd or m is divisible by 2 but not
by 4, then

Ulx; Sul= 3+ (6% = x)™". ©)
If m=2%p3 ... p¥, u =2, then
Ulx s Sl =[( = x) =207 = D)"™*fs + 33 (a" = 5)™" %

Remark. The first term in (7) can be directly computed and we obtain
(analogously to the Remark after Corollary 4):

2 2 2 /4 (y"'/z +% ym/Z—l) ) fl’ for a1 = 2’
(" =x) =2(x"=x)]""fi=
(ymlz +% ym/2-l +% ym/2—2) . fl, fOl' o 23,

where y=x"—x.

The formula (6) has been proved (in essential) by Vandiver. His formula for
-U[x; Sm] in the case of m even (as reproduced in Dickson [1], p. 89) is not
correct. The correct result is (7).

5. Concluding remarks

Theorems 1 and 4 enable to find also formulae for Ulx; G ... G,
Ulx; I ... L), U[x; Ti ... T.,] with s < r. We omit this since these products seem to
be of minor interest. :

There are several applications of the results obtained. We outline one of them.

Suppose, e. g., that m is odd (and r=2).

Let e=f; ... f, be a non-primitive idempotent € Sn (i. €. s=r —2). Then putting
x =0 in the formula of Theorem 3 we obtain

[—1]'G(z)l . uElJ(,)u::,,elle)u: s+1'|'...+f,=1—-f1—,..—f,=f_l __,f::e_
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If e = f is a primitive idempotent € S,., then Corollary 3 implies (with B, = pi*™'):

(-1 ] w= [] u=[-fl=—fi=-e.
ue G(e) ue G(e)
Hence (if m is odd) U u is e for any non-primitive idempotent and —e for any
ue G(e)
primitive idempotent € S».. By considering also the case of m even, we arrive at

Theorem 8, 1 of paper [4], where the value of [] u has been derived directly.

ue G(e)
Also Theorem 8, 2 of paper [4] follows immediately from Theorem 6.
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OBOBUIEHUS CPABHEHMH M. BAY3PA
Stefan Schwarz

Pe3iome

Iycts Sa— MyJbTHIIMKAaTHBHAs MONyrpynna kojsua knaccoB Bbryetos (mod m). Ilycts e
— uaeMnoTeHT € S, G(e) u P(e) — MakcuManbHasi rpylna M MakCHMalbHasi NONYTPyNNa NpHHaA-
nexamas U uaeMmnoteHty e. Llenblo cratbu sBasercs BeluMcneHde npousseaenus I(x—v), roe v
npoGeraet Bce 3nemeHTbl € G(e) u € P(e) coorBecTBeHHO. OCHOBHBIMH Pe3yNbTaTaMH SIBASIOTCS
¢opmynbl nanuble B Teopeme 3, B Teopemax S5a, b u B Teopeme 6.

224



		webmaster@dml.cz
	2012-08-01T00:20:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




