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ABSTRACT. Some limit theorems have been proved in the paper [RIECAN, B.: 
Probability theory on some ordered structures, Atti Sem. Mat. Fis. Univ. Modena 
47 (1999), 255-265] in a general ordered space. In the framework of the structure 
the strong law of large numbers is proved in this article. 

1. Introduction 

In [7] various mathematical models of quantum mechanical systems have been 
unified from the point of view of probability theory. More precisely a sequence 
of independent observables has been considered in [7]. 

Let us recall some basic notions. There is given a partially ordered set M with 
the least element 0 and the greatest element 1 and with a partial commutative 
binary operation + . 

One of typical examples is the following. Let M be the set of all functions 
/ : fi —> (0,1) measurable with respect to a given cr-algebra of subsets of fi. If the 
ordering is the usual one, then M evidently contains the least element 0 n and 
the greatest element l n . If we define the operation + as the sum of functions, 
then evidently + is only a partial binary operation. 

The basic notions of the generalized probability theory are state and observ­
able. The state corresponds to the probability measure, the observable corre­
sponds to the notion of a random variable. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 28E10, 60F05. 
Keywords : law of large numbers, fuzzy measure theory. 

This paper has been supported by grant VEGA 1/9056/02. 

бi 



BELOSLAV RIECAN 

DEFINITION 1. A state is a mapping m: M -> (0,1) satisfying the following 
properties: 

(i) m(l) = l , m(0) = 0. 
(ii) If a, b, c G M, b 4- c is defined and a = 6 + c, then 

m(a) = m(b) + m{c). 

(iii) If (an)n°=1 C M, a E M, an /< a, then m(an) /* m(a). 

DEFINITION 2. A weak observable is a mapping z: #(R) -> M (tf(R) is the 
O--algebra of Borel subsets of the set R of real numbers) satisfying the following 
conditions: 

(i) m(x{R)) = 1 . 
(ii) If A,B e #(R), A fl B = 0, then a;(.A) + z(P) exists and x(A U B) = 

x(A) + .r(J5). 
(iii) If (_4n)~=1 C B{R) and 4 n /* A, then x(,4n) Z a,(A). 

It is easy to see that for any state m: M -> (0,1) and any weak observable 
x: B{R) -> M the mapping mx: B{R) -> (0,1), defined by the formula mx = 
m o x, is a probability measure. 

If (fi,«S,P) is a probability space, then one can consider: 

M = {XA : A e S} , m: M -> (0,1), m{xA) = P{A). 

Moreover, if £: fi -> R is a random variable, then one can define an observable 
x: B{R) -> M by the formula x{B) = xr* • Evidently P, = mx. 

If £, ry are two random variables, then they are independent if 

P{C\C)riri-\D))=P{r\C))-P{ri-\D))=Pi{C)'Pv{D) 

for any C,D e B{R), what can be rewritten by the formula 

PT(C xD)=P;X Pv(C x D), (*) 

where T = (£, rj) is the corresponding random vector, PT{B) = P{T~X{B)) 
{Be B{R2)) and P^ x P is the product of measures P*, P' As a consequence 
of the equality (*) we obtain the formula 

P^ + rjr'd-oct))) =P^x Pv({{u,v) : u + v < t}) , 

which can be rewritten by the formula 

Po(Z + T1)-
1(B) = (PixPr))og-1(B), BeB(R), (**) 

where g: R2 -> R is given by g{u, v) = u + v. 
Following (**) and (*) in our general case [7] we have defined two kinds of 

independency. 

62 



ON THE STRONG LAW OF LARGE NUMBERS ON SOME ORDERED STRUCTURES 

DEFINITION 3. Weak observables xn: B(R) -> M (n = 1,2,... ) are called 
to be weakly independent if to any n there is a weak observable yn: B(R) —» M 
such that 

mo?/ = (rn x • • • x rn ) o O"1 , 
«*n v xi xn/ ijri ' 

where gn: Rn -> R is defined by the formula gn(uv . . . , un) = u^^-] h n n . 

DEFINITION 4. Weak observables xn: B(R) -> M are called to be strongly 
independent, if to any n there exists a mapping /in : B(Rn) -» M satisfying the 
following properties: 

(i) m(/in(M-)) = l . 

(ii) hn(AuB) = hn(A) + hn(B), whenever , 4 , £ e tf(Rn), Af lB = 0. 

(iii) If A{ S A, (Az)?=1 C B(R"), then /zJA.) ^ hn(A). 

(iv) m o hn = miBi x • • • x m ^ . 

Using weak independency the weak law of large numbers and the central limit 
theorem have been proved in [7]. In the paper we prove the strong law of large 
numbers, of course, by the help of strong independency. A similar approach has 
been realized in [2], in the special case of D-posets ([4]). 

2. Formulation 

Recall that we work with an algebraic system (M, < , + ) , where (M, <) is 
a partial ordered set with the least element 0 and the greatest element 1 and 
+ is a commutative partial binary operation. State is defined with respect to 
Definition 1, observable with respect to Definition 2, strong independency of a 
sequence of observables with respect to Definition 4. 

DEFINITION 5. We shall say that a weak observable x: B(R) -> M belongs 
to L1 if the following integral exists 

CO 

E(x)= J tdmx(t). 
— oo 

It belongs to L2 if the following integral exists 

oo 

I t2dmx(t). 
—OO 
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In this case we define the dispersion of x 

oo 

a2(x) = J t2 dmx(t) - E(xf 
— CO 

0 0 

= f (t-E(x))2dmx(t). 

DEFINITION 6. Let xv...,xn: B(R) -> M be strongly independent observ-
ables, hn: B(Rn) -> M the corresponding joint observable, gn: Rn —> R be a 
Borel function. Then we define an observable gn(xv ..., xn): S(R) —> M by the 
formula 

gn(xv...,xn)(B) = hnog-\B). 

DEFINITION 7. Let (M, <, +) be a lattice. A sequence (yn)n
<L1 of observables 

converges ra-a.e. to 0, if 

lim lim lim ra A yn ( ( , —)) 
p->oo fc-+oo i->oo l / \ y n \ V P pJJ 

fc+ž 
/ / i i \ \ 1 

THEOREM. Let ( M , + , < ) be the algebraic system stated above such that M 
is a lattice (with respect to < ) . Let (xn)n

<Ll be a strongly independent sequence 

of weak observables from L2 . Let ^ a 2̂ < 00 . Then 

converges m-a.e. to 0. 

П fel / n=l 

3. Proof 

Let (RN, CT(C), P) be the probability space, where C is the family of all cylin­
ders in RN and P is the infinite product of probability measures mx , mx , . . . , 
i.e. 

f W = i e » N : t1€A1,...1tnzAn})=mXi{A1).mX2(A2)-...-mXn(An). 

Define £n: RN ->• R by the formula 

£n((*.).=l)=*n-
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Then £n is a random variable and 

-V-4) = P ( C 1 ( ^ ) ) =P({(ti)Zi •• «„ €^4}) =mXn(A), 

hence Pfi = m„ . Therefore 
Sn ^ n 

jil dP = | < 2 dPfn(t) = Jt2 dmxJt) < oo, 
RN R R 

hence £n G £2 and £(£J = E(xn), a2(£n) = a2(xn). Moreover, c ^ , £3,... 
are independent. Indeed, 

-°fnC1(-4.))=-'({(-i)£i= -i€-41,...,<B€-4B}) 

= m 1̂)--.mxJAJ = P^---P^(AJ 
--P^WJ-P^1^)). 

Therefore (^n)n
<?=1 satisfies the assumptions of the strong law of large numbers, 

hence 

^Efe-^))->o p-ae-
i=l 

Define gn: R
n —> R by the equality 

9n{^-.-,un) = \J2(ui-E(Q) = \JT(ui-E(xi)) 
i—l i—l 

and put 

7 / n = f f n ( f l > - " » 0 = 5 n ° r n » 

We have proved that rjn —> 0 P-a.e.. It is equivalent to the equality 

/ fc-H 

lim lim limPÍ n * / " 1 ^ - - , - ) M =1 . 
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But 
/ k+i 

* nV((-i.ř))j 
\ n=k 

\n=k ' 

( k+i \ 

f l {("!>•••'"*+•) = K '--- ' U n)e^- 1 ( (- i ,^ ) )} 
n=k / 

= míhk+i( p|{(t*x»---»«fc+*): («!,.--,«„) e^-^C-J.J) )} ! J 

<m( / \ V i ({("i ' •••'tí^): («i'-••'"«) e - , " 1 ( ( - J , ? ) ) } ) ) 
\n=fc ' 

-».(A^»«'((-?-ř)))-»(A».((-H)))-
Therefore 

1 = lim lim lim P Í f l Ty"1 ( ( - 1 , 1 ) ) ) 
p-»oofc->ooi->oo l '_ ' n \ \ p pJJJ 

/ k+i \ 

< lim lim limm A y ( ( - ! , ! ) ) . 
- p-^OO fc->00 i->00 \ ' N n \ \ P pJJ 

We have proved that yn -> 0 m-a.e.. But 

i n 

У„ = 9n(xv •••,xn) = -J2(xi- E{Xi)). УП - ft, - X • fb' „ 

ѓ=l 
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