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INTERSECTION GRAPHS OF TREES
AND TREE ALGEBRAS

BOHDAN ZELINKA

The concept of an intersection graph of an algebra was introduced by J. Bosak
[1], at first for semigroups. Intersection graphs of various types of algebras were
studied by various authors. The author of this paper has studied intersection graphs
of graphs [3] which were defined analogously to the intersection graphs of algebras.

Here we shall study intersection graphs of trees and of tree algebras. The special
character of a tree allows us to define intersection graphs of trees in somewhat
different way than the intersection graphs of graphs were defined.

The intersection graph of a tree T is the undirected graph whose vertices are all
proper subtrees of T and in which two vertices are joined by an edge if and only if
the corresponding subtrees have a non-empty intersection. We consider also
subtrees consisting of only one vertex.

Three algebras were introduced by L. Nebesky [2]. A tree algebra (M, P) is an
algebra with the set M of elements and with a ternary operation P satisfying the
following axioms:

. Plu,u,v)=u;
1. P(u,v,w)=P(v,u, w)=Plu, w, v):
1. PP(u,v,w), v, x)=Plu, v, P(w, v, x));
V. if P(u, v, x)+P(v,w, x)#P((u, w, x), then
P(u, v, x)=P(u, w, x).

L. Nebesky has proved that there exists a one-to-one correspondence between
tree algebras and trees ; to a tree algebra (M, P) a tree ﬁgérresponds whose vertex
setis M and x = P(u, v, w) if and only if the vertex x of T'i$ the common vertex of
the path connecting « and v, the path connecting « and w and’tlie path connecting
v and w. ‘

The intersection graph of a tree algebra (M, P) is the undirected graph whose
vertices are all proper tree subalgebras of the algebra (M, P) and in which two
vertices are joined by an edge if and only if the corresponding subalgebras have
a non-empty intersection. ]

At first we shall study intersection graphs of trees.
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Lemma 1. Let T be a finite tree, let G(T) be the intersection graph of T. The
ve tc s c G(T) corresponding to the subtrees of T which consist only of one
ver ex form an independent subset of the vertex set of G(T) of the greatest
ca dirality.

P.oof T o distinct one-vertex subtrees of T have always an empty intersection,
therei e the set of vertices corresponding to them is an independent set. If »n is the
numbe- of vertices of T, then this set has the cardinality n. Let some independent

e. m G(T) contain a vertex corresponding to a subtree of 7" with at least two
ver es. Then here exist at most n—2 subtrees of 7 which have empty
in*e ec.ons with this subtree and with each other and the considered set has at
mo t 1 vertices.

T e . Let the intersection graph G(T) of a finite tree be given. Then the
tree umquely determined up to isomorphism.

Proof. We shall describe a reconstruction of T from G(T). Find the mdepen-
de t t V in G(T) with the greatest cardinality; according to Lemma 1 it is
u qu nd consists of the vertices corresponding to one-vertex subrees. A subtree
o - n -empty intersectiors with m one-vertex subtrees if and only if it has m
v Thus if v is a vertex of G(7) not belonging to V,, then v corresponds to
a ub ree of T with m vertices if and only if it is adjacent in G(T) to m vertices of
V 1 over ices of T are adjacent if and only if they belong to the same subtree of
T 'tht o vertic s. Thus two vertices v, w of V, correspond to one-vertex
su tre s T v hose vertices are adjacent in T if and only if there exists a vertex u
o G T) otb o1gingto V,suchthat uis adjacent to both v and w and to no other
v ~ex of V,. Tats er=bles us to reconstruct 7.

T em .Let G(T) be the intersection graph of a tree T with vertices. Then
G( an be obtained from the intersection graph G(T') of some tree T’ with
n—1 v-r ‘ces by the following procedure P:

(1) Cn ose a vertex u of the independent set of G(t') whose cardinality is the
gre te . By H derote the subgraph of G(T') induced by the set consisting of u and
o [ rt es djacent tc u.

(2 o0 G(T) add a4 graph H’' isomorphic to H and vertex-disjoint with G(T")
and d nct v rtices a, b belonging neither to G(T') nor to H'.

3 e an 1 omorphic mapping @ of H' onto H. Join every vertex x of H' by
ed w a vertices of H and with all vertices of G(T') which are joined with
(x 1 G(T).

() in a by edges with all vertices of H'.

(5) or b edges with all vertices of G(T')UH'.

Proof. Any tree T with n vertices can be obtained from a tree 7" with n—1
vert'ces by dding sgnew vertex 4, to 7' and joining it with some vertex of T".
C o ga vertex u according to (1) means choosing a one-vertex subtree of 7"
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consisting of the vertex u, with which the new vertex g, is joined. The graph H'
from (2) is the subgraph of G(T) consisting of all subtrees of T which contain the
new vertex a4, and the vertex u,. Any of these subtrees is obtained by adding a, to
some subtree of 7" containing u, and joining it with u«,. Therefore H' is isomorphic
to the subgraph H of G(T) consisting of all subtrees containing «,. The vertex a
corresponds to the subtree of T consisting only of a,. The vertex & corresponds to
the subtree 7" of T (it is not in G(T), because it is not a proper subtree of 7).
From this the steps (4) and (5) follow. Any vertex of H' is joined according to (3)
with all vertices of H, because all subtrees corresponding to vertices of H and of H’
contain u, Thus they have a non-empty intersection. To each subtree of T
containing &, and a, the isomorphic mapping ¢ assigns the tree obtained from it by
deleting a, and the edge A,u,. Thus @(x) has a non-empty intersection with some
subtree of 7" if and only if so has x.

Thus by repeating the procedure P we may obtain intersection graphs of all finite
trees with at least three vertices, starting from the intersection graph of the unique
tree with three vertices. This tree T, and its intersection graph G(T,) are in
Fig. 1.

G(T,)

o
o
n

7;; . o- ~0— -0

Fig. 1

Now we shall consider another type of intersection graphs of trees which will be
denoted by G'(T). The vertices of G'(T) are all proper subtrees of T which
contain at least one edge, two vertices are joined by an edge if and only if the
corresponding subtrees have a non-empty intersection, that is, at least one vertex in
common. _

Before proving a theorem analogous to Theorem 1 we shall introduce some
notions. . '

In the following by the word subtree we shall always mean a subtree having at
least one edge. .

Let T be a finite tree. We define the sequence 7(0), T(1), T(2), ... as follows :
(@) T(0)=T,;

(b) if k=1 and the tree T(k — 1) has at least two edges, then T(k) is obtained
from T(k — 1) by deleting all terminal vertices and all edges incident to them; if
T(k — 1) has at most one edge, then T(k) is an empty graph. As is well-known, if 6
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is the diameter of 7, thenth reate & for h ()i n 1 (6-1),
this means the least integer which * gr terthanore ua to'(é6 1.L K bethe
set of all & for which T(k) 1s non-empty.

Now let E(k) be the set of edges of T which belong to T(%), but notte T(k + 1).

Evidently E(k,)NnE(k;) = for k, # k,. Further let F(k) LkJ E(1) for each ke K.

t 0

The subgraph of 7 induced by the edge set E(k) (or F(k)) “1bed noted by R(k)
(or S(k) respectively) for each k& € K. The subgraph of a r phinduced by some set
of edges is the subgraph of this graph cons: ting of e ges of th1  t and their end
vertices. We see that E£(0)=F(0) R(0)—S(0) nd S(0) f t all of whose
connected components are stars.

If T" is some subtree of T not containing two centres of 7, then by d(7") we hall

denote the vertex of 7" whose dist nce fromt ene rerc r f m nim 1; this
vertex is determined uniquely.

Also R(k) for each ke K is a forest, all of who e ¢ n d ¢ m o ents are
stars. The graph S(k) for ke K, k=1 is a forest suc thatea h f it connected
components either does not contain edg s of E( ), or th btree of this
component induced by the edges belonging to E(k)is s .1 ] (6 1), then
S(k)=T.

Now let us have a connected component C o S(k) f some ke K which
contains an edge of E(k); all of these d s are mcd n w h d(C . Each end
vertex of an edge of E(k) different from d(C) oincde 1hd(C) her C i
some connected component of S(k —1) cont med in C (oth r 1 e th1 ed e would
be in $(0)). The vertex d(C) may comncide th such v rt x d(C’) ut not
necessarily.

Lemma 2. Let T, be a subtree of a finite tree T. Then T, 1 a ubtree of some
connected component of S(0) if and only if any two subtree of T which have
non-empty intersections with T have al o a n n-empty inters ction with each
other.

Proof. Let T, be a subtree of some connected compon nt of S(0). Then T, is
a star consisting of terminal edges of 7. Let u be the vertex of T, which is not
a terminal vertex of 7. Then each subtree of 7 which h s a non empty intersection
with 7, must contain # and thus any two uch subtr es have a non-empty
intersection with each other. Now let 7, contain n edge e which 1 not a terminal
edge of T. Let u, u, be 1ts end vertices; as ¢ s non terminal, there exists an edge
e, # e incident with «, and an edge e, # ¢ inc1 ent with «,. Th  dges e, e, cannot
have a common end vertex ; otherwise the ed es e, ¢;, e, wou d form a triangle. Let
E, (or E,) be the subtree of T formed by ¢, (or e re p ctively) and 1its end vertices.
Then E,, E, are vertex-disjoint and they both h ve n n- mpty in ersections with
T..
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Lemma 3. Let T, be a subtree of a finite tree t, let k € K. Then T, is a subtree of
some connected component of S(k) if and only if any two subtrees of T which have
non-empty intersection with T, and are not subtrees of S(k—1) have also
a non-empty intersection with each other.

Proof. Let T, be a subtree of S(k). Then it is a subtree of some connected
component C of S(k). The vertex d(C) separates any other vertex of C from all
vertices of 7 not belonging to C. Thus each subtree of 7 which is not a subtree of
S(k) and has a non-empty intersection with T, contains d(C) and any two such
subtrees have a non-empty intersection with each other. Now let T, contain an
edge e not belonging to S(k), let u,, u, be the end vertices of ¢. Then e is not
a terminal edge of 7'(k) and there exist two subtrees T, T, of T(k) such that T,
contains «, and not u,, 7, contains u, and not u,; they both have non-empty
intersections with T, but the intersection of 7, and T, is empty. The trees 7, T,
being subtrees of 7(k), are not subtrees of S(k—1).

Lemma 4. Let T be a finite tree, let k € K. Let C be a connected component of
S(k), let C’ be a connected component of S(k — 1). Let C’ be a subtree of C. Then
d(C")=d(C) if and only if each subtree of T which is not a subtree of S(k) and has
a non-empty intersection with some subtree of C has also a non-empty intersection
with some subtree of C’.

Proof follows from the fact that each subtree of 7 which is not a subtree of S(k)
and has a non-empty intersection with some subtree of C contains d(C) and there
exists at least one such subtree which does not contain any vertex of C except for
d(C) (for example the subtree formed by an edge incident with d(C) but not
belonging to C and its end vertices).

We shall introduce an auxiliary symbol G"(H). If H is a proper subtree of T,
then G”(H) is the subgraph of G'(T) induced by the set consisting of all vertices of
G'(H) (this is a subgraph of G'(T)) and of the vertex of G'(T) corresponding to
H. If H is a subgraph of T which is not a proper subtree of 7, then G"(H)=
G'(H).

Theorem 3. Let the intersection graph G'(T) of a finite tree T be given. Then the
tree T is uniquely determined up to isomorphism.

Proof. According to Lemma 2 we can find the subgraph of G'(T) which is
G"(S(0)). Then recurrently according to Lemma 3 we may find Gu(S(k)) for each
k € K. The graph G"(S(0)) consists of connected components which are cliques. If
G"(5(0))=G'(T), then S(0)=T and T is a star; it has m edges if and only if
G'(T) has 2™ — 2 vertices, because any proper non-empty subset of the edge set of
a star induces a proper subtree of this star and vice versa. If G"(S(0))# G'(T),
then each connected component of G"(5(0)) is G"(C) for some connected
component C of S(0). This component C 1s a star and has m edges if and only if
G"(C) has 2™ — 1 vertices (in G"(C) we have also the vertex corresponding to the
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whole C). Thus we can reconstruct S(0) and for each connected component of S(0)
we can find d(C); this is the centre of C. Now suppose we have reconstructed
S(k—1) and G"(S(k)) for some ke K and assume that in each connected
component C of S(k — 1) we have found d(C). Take a connected component of
G"(S(k)); this is G"(C) for some connected component C of S(k). Consider all
connected components of G"(S(k — 1)) which are subgraphs of this G"(C); any of
them is G"(C") for some connected component C’ of S(k —1). Let ¢ (C) be the set
of all such C'. According to Lemma 4 we can recognize for which connected
component C"e€ ¢ (C) of S(k—1) we have d(C')=d(C) or whether such
a component does not exist. Now we can reconstruct C. If there exists C”
mentioned above, then we put d(C") = d(C) and join it by edges of £(k) with each
d(C")forall C’' e ((C)—{C"}.1f C" does not exist, then we take a vertex d(C) not
belonging to any graph from ¢(C) and join it with all d(C") for C' e ¢ (C). Thus
we can reconstruct S(k). We proceed so until we come to k=]3(6 — 1)[; then
S(k)=T.

Now let us study intersection graphs of tree algebras. At first we shall prove
a theorem which will be convenient for our considerations. We say that a vertex z
lies between the vertices x and y in a tree T if and only if z belongs to the path
connecting x and y in 7.

Theorem 4. Let T be a finite tree, let B be a ternary relation on the vertex set of
T such that (x, y, z) € § if and only if one of the vertices x, y, z lies between the
other two. If the vertex set of T and the relation on it is given, then the tree T is
determined uniquely up to isomorphism.

Proof. For any two vertices x, y of the vertex set V(T) of T let B(x, y) be the
set of all ze V(T) such that (x,y, z)€ef; evidently x € B(x, y), y€ B(x, y),
y € B(x, y). The set B(x, y) consists of all vertices of the path connecting x and y
and of all vertices z such that x lies between y and z or y lies between x and z. Let
% be the family of the sets B(x, y) for all pairs x, y. Let x,, y,) is minimal with
respect to the set inclusion in 9. Let T(x,, y,) be the subgraph of 7 induced by the
set B(xo, yo); it is evidently a subtree of T. Suppose that T(x,, y,) is not a path.
Then T(x,, yo) contains a vertex u of the degree at least three in T(x,, y,). Let v,
v, U5 be three vertices of T(x,, y,) adjacent to . If u is an inner vertex of the path
connecting x, and y,, then at least one of the vertices v,, v,, v; does not belong to
this path, without loss of generality let such a vertex be v,. If x, lies between « and
Yo, then at least two of the vertices vy, v, v; are separated from y, by x,; let these
vertices be v,, v,. Analogously, if y, lies between u and x,. Consider the set
B(v,, yo). Let z€ B(vy, y,). If z lies between v, and y,, then either z lies between
X, and y,, Or x, lies between z and y,, thus z € B(x,, y,). If v, lies between z and y,,
then also x, lies between z and y, and z € B(xo, Yo)- If y, lies between z and v,, then
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¥, lies also between z and x, and again z € B(x,, y,). We have B(v, yo) < B(Xo, Yo)-
Now if u is an inner vertex of the path connecting x, and y,, then according to the
above considerations x, € B(v,, yo). If x, lies between « and y,, then v, & B(v,, o).
If y, lies between x, and u, then we consider B(v,, Xx,) instead of B(v,, y,) and
prove analogously B(v,, x,) < B(x,, yo) and v, & B(v,, X,). In all of these cases we
have found a proper subset of B(x,, y,) which is in & and this is a contradiction
with the minimality of B(x,, y,). This means that T(x,, y,) must be a path. Let x,,
y: be the terminal vertices of this path. Any vertex from B(x,, y,) lies between x,
and y,, thus B(x,, yo) < B(xi, y;). Suppose that there exists some z € B(x,, y;)—
B(x,, y,). The vertex z cannot lie between x, and y,, otherwise it would belong to
B(x,, o). If x, lies between y, and z, then so do all vertices of the path connecting
x, and y,, which is T(x,, yo), in particular also x, and y,. As both x, and y, lie
between y, and z, either x, lies between y, and z, or y, lies between x, and z; in
both these cases z € B(xo, yo). Analogously, if y, lies between x, and z. We have
B(x,, y,) = B(x,, Yo) and thus B(x,, y,) = B(x,, yo). Now suppose that x; is not
a terminal vertex of 7. Then there exists a vertex z, such that z, # x, and x, lies
between y, and z,. This means z, € B(x,, y,) = B(x,, o), but z, does not belong to
the path connecting x, and y,, which is a contradiction. Thus x, is a terminal vertex
of T. Analogously we prove that y, is a terminal vertex of 7. Thus each minimal set
in 4 is the set of vertices of some path connecting two terminal vertices of T; it is
easy to prove also vice versa. Thus let B be a minimal set in 3. This means that B is
the vertex set of some path P; in 7 connecting two terminal vertices of 7. Let x,, y,
be the terminal vertices of Py, let X; (or Yj3) be the set of vertices z in B such that
no vertex of T of degree at least three lies between x, (or y, respectively) and z. We
have x, € xg, y, € Y, therefore Xz #@, Ys#0. Furtherlet Z=B— (XzuYg). f T
is a path, then B is the vertex set of T and we have X, = Yy =B, Z=40. Let x, (or
y.) be the vertex from Z whose distance from x,; (or y, respectively) is minimal.
The degree of the vertex x, (or y,) is evidently at least three; let x; (or y,
respectively) be a vertex adjacent to x, (or y, respectively) which does not belong
to B. Now let xeB, yeB. If xeX, yeYs, then we have x,e B(x, y),
ys€B(x, y), thus B(x, y)¢ B. Analogously if x€ Yy, y€ Ys.If x € X3, y € Z, then
y:€B(x,y). lf xe Yy, ye Z, then x;€B(x,y). If xe Z, ye Z, then x,€ B(x, y),
y:€B(x,y).Butif xe X5, ye Ys or x€ Yy, y € X, then B(x, y)=B. Thusif T is
not a path, we find all minimal sets B of & and in each of them we determine X,
and Y. These sets B correspond uniquely to paths in 7 whose terminal vertices
are terminal vertices of 7'; they are their vertex sets. The sets X, Y5 for all such
sets B correspond to terminal vertices of 7 by such a way that each of these sets is
a set of all vertices of T with the property that no vertex of degree greater than two
lies between such a vertex and the terminal vertex of T corresponding to this set.
Thus we determine the number of terminal vertices of 7 and for any two of them
we determine their distance ; this is the number of vertices of the set B Such that X,
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and Y corr po dtothse tie m Acc rdingto A. A Zykov[4] the
tree Tisunq lydtrmmnd

Theorem 5. Let the inter ction r ph G(M, P) of a finite tr e algebra (M, P)
be given. Then the tree algebra (M, P) 1 determined uniquely up to isomorphism.

Proof. Analogou ly as in the p oof of Th orem 1 we can determine the set of
vertices of G(M, P) which orre pond to ne lem nt subalgebras of (M, P) and
for any other vertex of G(M, P) ecande rmin which elements are contained in
the subalgebra correspo din tothi ve t ( e.with which one element subalgeb-
ras it has a non-empty interse tion) Ea h one- 1 ment or two element subset of
(M, P) is a subalgebra f (M, P) Ath e lementsub t {x,y,z} of (M, P)is
asubalgebraof (M,P), ad n fP(x, z 1 equaltosome oftheelements x,
y,z. Thisoccursifandonl (x z)ef hu we canrecon truct the relation 8.

According to Th or m we then r ntru t the tree T o which the tree
algebra (M, P) cor pn . the c r pn nce bt e n trees and tree
algebras is on -to-one, r ot th tr al eba (M, P).
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