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SOME RESULTS ON THE HADWIGER NUMBERS
OF GRAPHS

JAROSLAV IVANCO

1. Introduction

In the paper presented we prove some theorems generalizing the results in [4].
We also disprove two of Zelinka’s conjectures.

We consider only finite undirected graphs without loops and multiple edges.
The concept of the Hadwiger number of a graph was defined in [2] (see also [4]),
however, we use the equivalent definition introduced in [4].

Let G be a connected graph. Then a decomposition of its vertex set V(G) into
nonempty subsets V|, ..., V, with the following properties

o) U V= V(G),

(ii) ¥,n ¥, = 0 for any two integers i, jsuchthat 1 S i< m, 1 S jS<m,i # ],
(iii) ¥ induces a connected subgraph of G forall i =1, ..., m,
(iv) ¥;u ¥ induces a connected subgraph of G for all i =1, ..., m and all
j=1, ..., m, i
is called an H-decomposition of G.
The Hadwiger number 7(G) of a connected graph is the maximal positive
integer m such that there exists an H-decomposition of G into m subsets.
Other definitions not given here will be found in [1].

2. Bounds on 1(G)

In this section we establish strict bounds of 7(G) depending on @(G) (i.e. the
maximal number of vertices in a clique of G) and ¢, (G) (i.e. the vertex covering
number of G).

Lemma 1. (B. Zelinka [4]) Let G’ be a subgraph of the graph G. Then
n(G’) = n(G).
Theorem 1. Let G be a connected graph. Then
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o(G) £ n(G) £ min(1 + a(G), [}(o(G) + [V(G))D.

Proof. As the Hadwiger number of the complete graph with n vertices is
equal to n, the inequality w(G) £ 1(G) follows evidently from Lemma 1.

Now let us assume that V), ..., ¥, is an H-decomposition of G.

Let C be a minimal vertex covering set of G, i.e. |C| = ,(G). Then the set
V(G) — Cis an independent set of G. If n(G) > 1 + ¢,(G) = 1 + |C|, then there
exist at least two sets V,, V; (i #)) of the H-decomposition of G such that
VnC=VnC=0,1ie VulV < V(G)— C. So VuVis independent and it
does not induce a connected subgraph of G, which is a contradiction. Thus

n(G) = 1 + a(G). (1)

Let I be a maximal subset of {1, ..., n(G)} such that |V}| = 1 for iel. Then
U V. induces a complete subgraph of G with |I| vertices and hence || £ o(G).

éei:we V] z 2 for je{l, ..., n(G)} — I, we get
G = 1Kl + .. + Vol Z 1+ 2(7(G) — 1) Z 20(G) — &(G).
This implies :
n(G) = 3 ((G) + IV(G))).
As n(G) is an integer, we may write
1(G) < B(@(G) + V(6] @)

Thus (1) and (2) give the desired upper bound on 7n(G).

3. The Hadwiger number of a complete multipartite graph

The complete k-partite graph is a graph whose vertices can be partitioned
into k classes U, ..., U, such that two vertices are adjacent if and only if they
belong to distinct classes. If |U| =n,; for all i =1, ..., k, then the complete
k-partite graph is denoted by K(n,, ..., n,).

B. Zelinka [4] determined the Hadwiger number of a complete bipartite
graph. Now we determine the Hadwiger number of a complete k-partite graph
for all k = 2.

Theorem 2. Letk > 2,1 < n, £ ... £ n, be integers. For the complete k-partite
graph K(n,, ..., n,) there holds

(K, ...,n)=min(l +n+ ... +m_,,Ekk+n+..+n)). 3
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proof. For n,_, =1 we have q,(K(l, ..., 1, n,)) =k — 1 and w(X(1, ...,
1, n,)) = k and thus by Theorem 1 we get

k<nKQ, .., L,n)<min(+Kk—1), B+ k—1)+n)]) = k.

Hence
n(KQ, ..., 1, n)) =min(l + (k — 1), [ (k + (k — 1) + n)).

Now, let us assume that K(m,, ..., m) (1 < m, < ... £ m) is a complete
k-partite graph with the minimal possible number of vertices such that (3) does
not hold. Then m, _, = 2, hence K(m,, ..., m;) — {u, v} (for vertices u, v belong-
ing to classes of cardinalities m, _, and m, respectively) is again a complete
k-partite graph, i.e. K(m,, ..., m,_, — 1, m; — 1). This graph contains less
vertices than K(m,, ..., m;), therefore we may determine its Hadwiger number
by (3). Two cases must be distinguished.

Case 1. If k =2 or k > 2 and m, > m, _,, then

nKmy, ...,my_;— 1, m,—1D))=min(l +m, + ... + (m,_, — 1),
Gk+m+...+m_,— D)+ m—1)D)=min(1 +m + ... + my_,,
Bk+m+...+m)) — 1. ()]

Case 2. If k > 2 and m; = m, _,, then

n(Kmy, ...om_y— 1, m—1))=min(l +m, + ... + m_s+ (m,_, — 1)+
+m =10, Fk+m+ ... +m_,+ e — 1)+ (m— 1)) =
=min(m, + ... +my_, Btk +m + ... + m))) — 1. )

However, in this case m; _, = m, = m, _, = 2 and hence

ml + see +mk—2+2 +(mk_| +mk '—ka) > k.
This implies

242m+ ...+ m) —2m,>k+m + ...+ m.
Hence

l+m+...+m_ >tk +m+...+m)=zk+m+ ..+ m))
As all numbers appearing in the relation are integers, we have
m+ ... +m_ 2Gk+m+ ... +m) (6)
By (5) and (6) we get

nK@my, ....,m_,— 1, m—1D)=min(l +m, + ... + m _,,
Bk+m+...+m))— 1. @)
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If ¥, ..., ¥, is an H-decomposition of K(m,, ..., m;) — {u, v}, then V;, ..., V,,
{u, v} is evidently an H-decomposition of K(m,, ..., m;). Thus

n(K(ml'! veey mk)) g 1 + TI(K(mh seey mk) - {u’ U}) =
=14+ nK(my, ....,m_, — 1, m—1)).

So by (4) and (7) we get )
n(K@m,, ....,m))Zmin(l + m, + ... +m_,. Fk+m + ...+ m)]. (8)

Since w(K(m,, ..., m;)) =k and a(K(m,, ..., m))=m, + ... + m,_,, by
Theorem 1 we have

nKmy, ....om))smin(l +m + ...+ m_,, Ek+m + ... + m)]). )

(8) and (9) result in a contradiction to our assumption, which completes the
proof.

Remark 1. By Theorem 2 the complete multipartite graphs (graphs K(1, ...,
..., 1, n)) attain the upper (lower, respectively) bound in Theorem 1. Thus these
inequalities cannot be improved in general.

Remark 2. V. G. Vizing [2] suggested the study of the function A,(n)
which denotes the maximal possible number of edges of a graph with n vertices
and with the Hadwiger number k. A. A. Zykov [5] and B. Zelinka [3]

proved that A, (n) =(k — )n — <§> for k<4, n= k. B. Zelinka [3] con-

jectured that this equality is true for any two positive integers n, k, where n > k.
By Theorem 2 it is easy to prove that the complete m-partite graphs K(2, 2, ...,
...» 2) (for m = 7) are counter-examples to Zelinka’s conjecture.

4. The Hadwiger number of the Cartesian product of two stars

The Cartesian product G, x G, of the graphs G,, G, is the graph whose vertex
set is the set of all ordered pairs [u,, u,}, where u, is a vertex of G, and u, is a
vertex of G, and in which the vertices [u,, u,], [v,, v,] are adjacent if and only if
either 4, = v, and the vertices u,, v, are adjacent in G,, or u, = v, and the vertices
u,, v, are adjacent in G,.

B. Zelinka [4] proved the following theorem: Let G,, G, be two finite
connected graphs, let G, x G, be their Cartesian product. Then 1n1(G,x G,) =
= n(G,) + n(G,) — 1. He also conjectured that the equality always holds in this
relation.

In this part we determine the Hadwiger number of the Cartesian product of
two stars which will disprove Zelinka’s conjecture.
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First we prove

Lemma 2. Let G and G’ be connected homeomorphic graphs. Then
n(G) = n(G’).

Proof. Evidently, it is sufficient to consider only an elementary subdivi-
sion. Hence let G be a connected graph and uv be its edge. Let G’ be a graph
which we obtain from G by deleting the edge uv and adding the vertex w and the
edges uw and vw.

Let Uy, ..., U, be an H-decomposition of G’ and without loss of generality
letweU,. If |U)| 2 1, then U, — {w}, U,, ..., U, is an H-decomposition of G.
Thus

n(G) = n(G"). (10)
If |U,| = 1, then by (iv) n(G’) < 3. If n(G’) £ 2, then
n(G) =2 z n(G"), (11)

because {u, v} induces a complete subgraph of G. If n(G") = 3, then G’ contains
a cycle, because the Hadwiger number of any tree is equal to 2. Since a
subdivision does not give rise to a new cycle, the graph G must contain a
cycle C. By Lemma 1

n(G) 2 7(C) =3 = n(G"), (12

because the Hadwiger number of any cycle is equal to 3.
Let W, ..., ¥, be an H-decomposition of G and without loss of generality

let ve V|. Then Vu{w}, V;, ..., ¥, is an H-decomposition of G’ and so

(G’ z n(G). (13)
The assertion follows already from (10), (11), (12) and (13).
Theorem 3. Let K, , and K, ,, be stars, let K, ,x K, , be their Cartesian

product. Then
n(K, .xK, ,) =2+ min(n, m).

Proof. It can be easily seen that the graphs X, ,x K, ,, and K(1, n, m) are
homeomorphic. By Lemma 2 we have

n(Kl,nxKl,m) = U(K(l’ n, m))

By Theorem 2 we get the assertion of Theorem 3.

Remark 3. As n(K, ,) = 2, the Cartesian product K, ,x K, ,, (for n =2,
m 2 2) is a counter-example to Zelinka’s conjecture.
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Pe3sromMme
B cratbe uccnenosaHo yucyno Xaasurepa rpada. Iloka3aHel HEKOTOpbIE OLEHKH IUIS YMCIa
Xansurepa rpada. Takxe onpeaeneHs! yucyia XaaBurepa nojHoro k-10sHoro rpada u nexkaprosa

npou3BeeHUs ABYX 3Be3A. Ha ocHOBaHMHM 3THUX pe3yJIbTaTOB ONPOBEPrHYTHI ABE THNOTE3bI, KOTO-
pbie Bbicka3an 3esnuHka [3, 4].
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