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JÁN JAKUBÍK 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. In this note we prove that for each isometry / of an MV-algebra 
A and for each element x of the underlying set of A the relation f(f(x)) = x is 
valid. 

In [7], an explicit formula characterizing all 2-periodic isometries of 
MV-algebras has been deduced. In the present note we prove that the men­
tioned result remains valid without the assumption of 2-periodicity. 

1. Preliminaries 

For defining M"V-algebras several equivalent systems of axioms have been 
applied. Let us apply, e.g., the definition from [2]; thus an MV-algebra is an 
algebraic structure 

^ 4 = (A; 0 , 0 , - . , 0,1), 

where A is a nonempty set, © and 0 are binary operations, -i is a unary oper­
ation and 0, 1 are nulary operations on A such that the identities (M1)-(M8) 
from [2] (cf. also [7]) are satisfied. (In [2], the symbol * instead of 0 has been 
used.) 

Let A be an MF-algebra. It is well known that if we put 

x V y = (x 0 -iy) 02/, x Ay = (x® -.j/) 0 y 
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for each x,y € A, then (A; V, A) turns out to be a distributive lattice with the 
least element 0 and the greatest element 1 . The corresponding partial order on 
A will be denoted by £ . 

Further, there exists an abelian lattice ordered group G with a strong unit u 
such that A is the interval [0,u] of G, the above mentioned operations V and 
A on A coincide with the lattice operations in G (reduced to the set [0, u]) and 
for a, b G A we have (cf. [9]) 

a(&b=(a + b)Au, -ia = u — a , 

a © 6 = -i(-»a©-i&). 

It is also clear that u = 1. If x,y e A, x — y and if the symbol — denotes 
the corresponding subtraction in G, then y — x G A. 

1.1. LEMMA, (cf. [5; Lemma 1.10]) Let x,y G A, x - y. Then 

y-x = -i(x© i y ) . 

For x,y G A we put 

p(x,y) = (xVy)-(xAy). 

Hence p(x,y) is an element of A. From 1.1 we conclude: 

1.2. C O R O L L A R Y . Let x,y e A. Then 

p(x, y) = -.((a; A y) © -.(a; V y)) . 

Autometrized lattice ordered groups have been investigated in several pa­
pers (cf., e.g., [3], [4], [10], [12]). For other types of partially ordered algebraic 
structures, cf. [8], [11], and the references quoted there. 

From the well-known properties of autometrized lattice ordered groups we 
infer: 

1.3. LEMMA. Let x,y,z G A. Then we have 

(i) p(x, y) = 0; moreover, p(x, y) = 0 if and only if x = y. 

(--) p(x>y) = p(y,x)-
(iii) p(x,y) = p(x,z) + p(z,y). 

1.4. LEMMA. Let x,y,z G A. Then 

(iii') p(x,y) = p(x,z)®p(z,y). 

P r o o f . We have 

p(x, z) © p(z, y) = (p(x, z) + p(z, y)) A u. 
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Since p(x,y) GA, we get p(x,y) _ u. Then according to (iii), the relation (iii') 
must be valid. • 

In view of (i), (ii) and (iii') we say that p is an autometrization of the 
MV-algebra A\ the pair (A\p) is called an autometrized MF-algebra .4. 

A bijection / : A —•> A is defined to be an isometry of the MV-algebra A, if 

p(x,y) = p(f(x)J(y)) 

is valid for each x,y G A. 
Further, / is called 2-periodic if f(f(x)) = x for each x G A. (Sometimes 

we write f2(x) instead of f(f(x)).) 
Since the lattice (A\ V, A) is distributive, for each a G A there exists at most 

one complement (i.e., an element b G A with a A b = 0, a V b = i/); if such 
element b does exist, we denote it by a'. 

The following result has been proved in [7]. 

(a) Let f be an isometry of an MV-algebra A. Suppose that f is 2-periodic. 
Put /(0) = a . Then there exists the element a' in A and for each x G A 
the formula 

f(x) = (a - (x A a)) V (a' A x) 

is valid. 

In the present paper we prove: 

(/3) Each isometry of an MV-algebra is 2-periodic. 

Hence the assumption of 2-periodicity in (a) can be omitted. We remark 
that a result analogous to ((3) fails to be valid for isometries in autometrized 
lattice ordered groups. 

2. P roo f of (/3) 

Let A be as above. Our considerations would be trivial in the case A = {0}; 
thus we assume that A fails to be a one-element set. 

For proving (/3) we need some auxiliary results. 
It is well known that A can be represented as a subdirect product of linearly 

ordered MV-algebras (cf., e.g., [1], [6]). Hence we can suppose that there exists a 
system {A{}ieI of non-zero linearly ordered MF-algebras and a monomorphism 

?^->n^ ( n 

ІЄІ 

such that <p is a homomorphism, and for each i G / and xl G Ai (where A{ 

is the underlying set of A{) there exists a G A with (p(a)i = xl. We denote 
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(f(a){ = a-; thus 

<P(a) = (ai)iei • 
The corresponding autometrization of the AFV-algebra A{ will be denoted 

by p{. Further, we denote by 0l and V the least and the greatest element of A{, 
respectively. Clearly, 0% — 0{ and V = l{. 

In view of 1.2 we have: 

2.1. LEMMA. Let x,y e A and i e I. Then 

p(x,y)i = Pi(xi,Vi)' 

2.2. LEMMA. Let f be an isometry of A. Suppose that x,y G A, i G / , 
f(x)i = f(y)i- Then x. = y{. 

P r o o f . We have 

p(x,y) = p(f(x)J(y)), 

whence 

P(x,y)i = p(f(x)J(y)){. 

Thus according to 2.1, 

pi(xi,yi) = pi(f(x)nf(y)i)-
The assumption yields pi(f(x)iJf(y)i) = 0 and thus x{ — y{. • 

Let / be an isometry of A and i G / . We define a mapping fi:Ai-^ Ai as 
follows. Let xl G Ai. There exists x e A with xi = x2. We put 

fi(x
i) = f(x)i. (2) 

Then in view of 2.2, the mapping f{ is correctly defined; moreover, it is a bijec-
tion. 

2.3. LEMMA. Let i and f{ be as above. Then f{ is an isometry of Ai. 

P r o o f . This is a consequence of 2.1. • 

2.4. LEMMA. Le£ i G I and let g be an isometry of A{. Then we have either 
g(Oi) = 0 , ;o rg (0 , ) = l . . 

P r o o f . From the fact that A{ is linearly ordered we easily conclude that 
whenever y,z G Ai and z ^0i, then 

p(y,z)<p{Oi,li) = li. 

By way of contradiction, assume that 0̂  / g(0•) ^ 1{. Then for each y G Ai 

we have p(y,g(0i)) < li. In particular, 

h>p(9(h)>9(0i))=p(h,0i) = h, 
which is a contradiction. • 
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2.5. LEMMA. Let i and g be as in 2.4 and x% G A{. If g(0j = 0{, then 
g(x{) = x\If g(0.) = 1.. then g(x{) = \ - xi. 

P r o o f . At first assume that g(0{) = 0^. Then 

x i = x i - 0 i = /9(xi,0i) = p(5(x i),5(0 i)) 

= p(5(z i),0 i) =<?(<). 

Further, suppose that g(0i) = l i . If j ( l i ) 7̂  0 i ; then 

-i = P(-., 04) = p(5(l i), 5(0,)) = p(ff(li), l j < h , 

which is impossible. Hence g(l{) = 0 .̂ Clearly 

p(xi,li) = l i - x i , 

therefore 

5(x
i) = P(5(x

i),oi) = p(5(o;
i),5(g) 

= p(V,l i) = l i - x \ 

D 

2.6. COROLLARY. Le£ z; g and xl be as in 2.5. Then g (xl) = a: 

P r o o f of (/?). Assume that / is an isometry of A. Let i e I and let fi 

be as above. In view of 2.3, fi is an isometry of A{. Hence according to 2.6, 

for each xl G Ai. 
Let x G .A. In view of (2) we get 

for each z G / . Therefore f2(x) = x. D 

According to (/?), the assumption of 2-periodicity of / can be omitted in (a). 
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