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GENERALIZED CONTINUITY
AND SEPARATE CONTINUITY

TIBOR NEUBRUNN

The relation between the separate continuity of a function of two variables and
its continuity depends on the type of continuity. It is well known that the ordinary
separate continuity does not imply continuity, while the continuity implies the
separate continuity. When quasicontinuity is considered, then the converse is true
(See [4], [6], [7]). The situation between the separate somewhat continuity and
continuity was studied in [7]. This paper in its first part gives counterexamples
showing that the separate almost continuity does not imply the almost continuity,
as well as the almost continuity does not imply the separate almost continuity. In
the second part some results of [6] and [7] are extended to more general theorems
and examples are given, showing that the assumptions, which restrict the compo-
nent spai:es spaces in these generalized theorems, are essential.

1. Preliminaries

We shall denote by X a topological space, without writing (X, ¥) where ¢ .
denotes a topology on X. When X and Y are topological spaces, X X Y will denote
the topological space with the usual product topology. For a function f: XX Y—»Z
the symbols f,, f denote its x-section or y-section, respectively, i.e., f, for any
x€X is the function defined on Y such that f.(y)=f(x, y). The y-section is

- defined analogically. Cl1(A)(int(A)) stands for closure (interior) of A, respec-
tively, f(A)(f '(A)) denotes the image (inverse image) of A.

Definition 1. If X, Y are topological spaces, then a function f: X— Y is said to be
quasicontinuous at x,€ X if for any open U containing Xx,, and any o})en
V containing f(x,) there exists a nonempty open set G c U such that f(G)c V. The
function f is said to be quasicontinuous if it is quasicontinuous at any x € X.

Definition 2. A function f: X— Y is said to be somewhat continuous if for any
open G c Y such that f'(G)#0, int f'(G)+# @ holds.
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Definition 3. A function f: X— Y is said to be almost continuous at x, € X if for
any V open, Vc Y, containing f(x,), the set CI(f"'( V) contains a neighbourhood
of x,. We say that f is almost continuous if it is almost continuous at any x € X.

As to the almost continuity, various results concerning this type of functions were
obtained in [2], [3]. and elsewhere. But the notion itself apears as ‘‘nearly
continuity” in [10], where it was used in connection with the problems concerning
the open mapping theorem.

The quasicontinuity was discussed in [4]. Now it is well known that it is
equivalent with the semicontinuity in the sense of Levine [5]. The equivalence was
proved in [9].

The somewhat continuity as a generalization of the. quasicontinuity was intro-
duced in [1].

The following results may be easily obtained using the mentioned equivalence, or
directly from the definition. (See also [8].)

Lemma 1. A function f: X— Y is quasicontinuous at x, if and only if for any
open set U containing x, and any open V containing f(x,), int f~'(V)nU#0.

Lemma 2. A function f is quasicontinuous on X if and only if it is somewhat
continuous with respect to any open U c X, i.e. If its restriction to any open U c X
is somewhat continuous.

2. Almost continuity and separate almost continuity.

Example 1. On the interval ( —1,1) X ( —1,1) in R’ define a real function f as

f(x, y) = {1 if both x and y are irrational or (x, y)=(0,0),
’ 0 if at least one of x, y is rational and (x, y)# (0, 0).

Then f is almost continuous at each point (x, y), but the sections f,,, f°* are not
almost continuous when (x,, yo) = (0, 0), because none of them is almost continu-
ous at the point 0.

Theorem 1. Let X, Y be separable metric spaces without isolated points. Then
there exists a real function f: X X Y— R such that f is almost continuous at each
(x,y)e XX Y, and a dense set Cc XX Y such that for each (x,, y,)€ C, the
sections f,, and f are not almost continuous.

Lemma 3. Let X be a separable metric space without isolated points. There exists
a countable dense set D c X such that X—D is dense in X.

Proof. Let B, B,, ..., B,... be a countable basis of nonempty open sets in X.
Choose x, € B, x*% € B;, x; # x*. Suppose that a sequence x,, x¥, x,, x%, ..., X,, XX.is
constructed such that x, € B,, x*e B, x,#x*fori=1, 2, ..., n. Take x,.,,, x*,, such
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that x,., # x7.\, X,.1 € B, . Evidently the sets {x,:n=1,2, ...}, {x*:n=1,2, ...}
are dense in X. We may put D={x,:n=1,2,...}.

Lemma 4. Let X be a separable metric space without isolated points. Let D be

a dense set in X. Then D = D D,, where {D,}._, is a sequence of pairwise disjoint

n=1
sets each of which is dense in X.

Proof. Consider D as a subspace of the space X. Then D is separable and
without isolated points. In view of Lemma 1, there exists a set E, c D, E, dense in
D and D—E, dense in D. Suppose that for n=1, E,, E,, ..., E, have been
constructed such that E; is dense in D (and hence in X) fori=1, 2, ..., n, and such

that D — Lnj E; is dense in D. If we consider D — I:J E; as a subspace of X, thenitis

i=1 i=1

a separable subspace without isolated points. Again, according to Lemma 1, there

n n+1
exists E,,,c D —|JE, dense in X and D — |J E, dense in X too. Thus a sequence
i=1

i=1
E, E,, ..., E,, ... of pairwise disjoint sets, which are dense in X, is constructed. Put
D,=E,, n=2,3, ..., Di=Eu(D- O E,). Then D, are pairwise disjoint and

n=1

p=UJD..

n=1

Proof of Theorem 1. The space X X Y is a separable metric space without
isolated points. Choose a countable set C, dense in XX Y, such that
D=XxY-Cisdense in X X Y too. Denote {(x., y.)}_: a sequence, the set of

points of which is C. We may suppose (X,, ¥) # (X, V) if n#m. Let D= CJ D,,

n=0
where D, are pairwise disjoint dense in X X Y (see Lemma 4).
Put D¥=D, and
D7 =D, (({x.} X Y)UX X {y.}))
forn=1, 2, ..., ({a} denotes the one point set the element of which is a). The sets
D, are dense in XX Y. Let f: XX Y— R be defined as

( _{k if (x, y)eD¥ or (x, y)=(x, Yu), k=1, 2, ...
e it (x, peUDHUO)

The function f is almost continuous. In fact, if f assumes the value 0 at some
point (xo, y,), then the set of all (x, y) for which f(x, y)=0 is dense in each
neighbourhood of (%, yo), because f(x, y)=0 in each point of D,. If f assumes
a value &, then the almost continuity at any point, in which this value is assumed,
follows from the density of D%.

Now let 7 be any positive integer. Choose the point (X, ¥). Since (%., y) € D7,
we have for y#y., f(x,,y)#n. But f(x,,y) is a positive integer. Since
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f(x.., y.)=n, the section f, is not almost continuous at y,. Similarly we can prove
that f~ is not almost continuous at x,. The theorem is proved.

If a function is separately almost continuous, it need not be almost continuous.

Example 2. On the interval (—1,1)x(—1,1) consider the set
F={(x,y):0=x=1,5xSy=ux.

Define

fi(-1,1Yx{(-11)>R, as
0 if (x, y)eF—{(0,0)}
f(x, y)={0 if bot x, y are simultaneously rational or irrational and (x, y)é F
1 if x is rational, y irrational or conversely and (x, y)é F

f(0,0)=1

The function f is not almost continuous at (0, 0). The almost continuity of the
sections f,,, f* may be easily verified for each x,€ X, y,€ Y, respectively.

3. Quasicontinuity, somewhat continuity and
the corresponding separate continuities

Separate quasicontinuity implies quasicontinuity, as it was proved by Kempisty
for the case of functions of two real variables. An abstract version was given in [6]
and it is as follows.

Theorem A. Let X be a Baire space, Y second countable and Z metric. Let
f: XX Y— Z be se separately quasicontinuous. Then f is quasicontinuous.

In [7] we proved that separate somewhat continuity does not imply somewhat
continuity but the following is true.

Theorem B. Let X be a Baire space, Y second countable and Z regular. Let
f: XX Y— Z have all the x-sections somewhat continuous and all the y-sections
quasicontinuous. Then f is somewhat continuous.

It seems to be interesting to find out if the assumptions on the component spaces
may be weakened in the theorems A and B. Before the discussion of this problem
we give firstly a slight generalization of the mentioned Theorems. Since their proofs
are similar, we shall prove only one of them (Theorem 2).

Theorem 2. Let X be a Baire space, Y such that each point y € Y possesses
a neighbourhood satistying the second countability axiom and Z a regular space.
Let f: XX Y—Z be such that f is quasicontinuous for each ye Y and the
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x-sections f, are quasicontinuous with the exception of a set of the first category.
Then f is quaszcontmuous

Theorem 3. Let X be a Baire space, Y a space satisfying the second éountability
axiom and Z a regular space. Let f: XX Y— Z be such that for.each ye Y the
section f” are quasicontinuous and the x-sections f., with the exception of a set of
the first category are somewhat continuous. Then f is somewhat continuous.

Lemma 5. Let g: X— Y (X, Y arbitrary topological spaces) be quasicontinuous.
Let GcY, VcX be any open sets in X and Y, respectively, such that

g ' (G)NV+0. Then int g~'(G)NV+#4.

Proof. Let ze g~'(G)n V. Then, using the quasicontinuity at z we obtam from
Lemma 1 the desired result.

Proof of Theorem 2. Suppose that f is not quasicontinuous. Then there exists
a point (x,, y»), an open set G < Z containing f(x,, y»), and a neighbourhood
U X V of (x,, y»), where U is a neighbourhood of x, and V a neighbourhood of y,
such that (Lemma 1)

int (f"'(G)n(Ux V))=9. (1)

Without loss of generality we may suppose that V satisfies the second countabili-
ty axiom. Denote by { V, } the countable basis (in V) of open sets. Let G, be open
such that f(x,, yo) € Giccl(G,) = G. The quasicontinuity of f* at x, gives

W=int ((£°)"(G)nU+0
Put T={x:xe W; f, is quasicontinuous}. Define
A,={x:xeT; V,cint ((£.)"'(G))}.
There is

=Ja.. o )

The inclusion CJ A, c T is obvious. If x € T, then x € W hence f°(x).€ G,. Thus

n=1

f(y)eG,. The last gives f:(G)nV#0. From Lemma5 we get
int f,'(G,)nV#0, hence x € A, for some n and (2) is proved.

We shall prove that for each n the set A, is nowhere dense in W. Let S< W be
any open set. Since § X V, « U X V is a nonempty open set, we have, according to
(1) that there exists a point (u, v)eS X V, such that f(u, v)e G. Let G, be
a neighbourhood of f(u, v) such that G,n G, =@. From the quasicontinuity of f* at
the point u there exists a nonempty open set S, = S such that f(x, v) € G, for any
xeS,. Hence f(x,v)¢G,.- Thus vdf;(G,) for any xeS,. The last gives
V. ¢int ((£.)"'(G,)). And so S;nA, =0 and the fact that A is nowhere dense in W
is proved. This and (2) imply that T is of the first category, which is a contradiction.

What is interesting is the fact that in Theorem 3 we.can not substitute the
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assumption of the second countability by a *“‘locally’ second countability as it was
done in Theorem 2.

Example 3. T=(0, 1) will serve as an index set. To each e T an isometric
image of the metric space X = (0, 1) with the usual metric will be associated. We
may suppose Y,nY, =@ for ¢t#¢'. If necessary we shall denote by v, the
corresponding image of y € (0, 1) in the space Y,. We write simply y instead of v,.
The sets Y, are supposed to have the order structure taken over from (0. 1).

Put Y= {J Y.. As to the topology, G is open in Y if G=J G, where G, are

teT teTl
openin Y,. R =(— =, ) is considered to have the usual topology. We can see that
in Y any point y posesses a neighbourhood satisfying the second countability
axiom. For any t€ T the function ’f: X X Y,— R is defined as:

0 if x<t¢, y(=y,), rational
1 if x<t¢, y irrational
“f(x, y)=0if x=1¢, 0<y=;
if x=1¢, 5<y<l1
if x>¢, y irrational
if x>¢, y rational

On the product X X Y define f: XX Y— R as:
fe, y)="f(x,y) if yeY,

Forany y € Y, f is a quasicontinuous function. In fact, if y € Y, then y(=y,) € ¥,
for exactly one € T. Hence f(x)=""f(x). Thus if y is rafional

_—

0if x<¢
1if x>¢
P(x)=0if x=¢, 0<ys;
1if x=¢, 3;5y<l1
The quasicontinuity of f” may be easily veriffied. The situation for y irrational is
similar.
For any x € X the function f, is somewhat continuous. Take any G = R open and
such that f~'(G) #@. Then G contains at least one of the numbers 0, 1. Since
£(6)= U 1(G)
and for ¢ = x the set ’f;'(G) contains at least one of the open intervals (0, 3), (3, 1),
we have int f;'(G)+#@. Thus f, is somewhat continuous.
The function f is not somewhat continuous as a function of two variables. In fact,
if G=(3,3), then f'(G)#0, but int f'(G)=0.
The following example shows that the assumption of X being a Baire space, in
Theorem 3, is also essential.
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Example 4. In what follows let X be the set of all rational numbers in (0, 1)
with the usual topology. Let Y= (1, «) be the set of all real numbers greater than
1, again with the usual topology. Let {r.},-, be a sequence of all the rational
numbers of X(r,# r,, for n#m).

Put
if x<r,, n<y<n+1, y rational

0

1 if x<r,, n<y=n-+1, y irrational
0if x=r,, n<y=n-+;

1if x=r,, n+:<y=n+1

0 if x>r,, n<y=n+1, y irrational
1 if x>r,, n<y=n-+1, y rational

“fx.y)=

Define f: XX Y—R:
fxy)="f(x,y), if n<y=n+1.

The quasicontinuity of the sections f* and the somewhat continuity of f, may be
veriffied similarly as in the preceding example. Similarly as in example 3 we can
check that f is not somewhat continuous.
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OBOBUIEHHAS HEIMPEPBIBHOCTb U HEIPEPBIBHOCTb CEYEHWH

Tu6op HeitGpyH
Pe3ome

B paGoTe uccrenyeTcs CBA3b MeXAY HEMPEPLIBHOCTbIO (DYHKUMM [ABYX MEPEMEHHBIX HA MPOU3-
BENlEHMH TOMOJOTHYECKMX MPOCTPAHCTB M HENMPEPHIBHOCTHIO €/ CEYEHHH B CIyYae HENpPEePbIBHOCTH
B HEKOTOPOM 060011eHHOM cMbicie. C 3TOi TOYKH 3PEHUS UCCNEAYIOTCA KBA3MHENPEPBLIBHOCTD, MOYTH
HENpPEPBLIBHOCTD M ApYyrue (CMOTpHU onpenesieHust B pabote). [1atoTcst 06061eHUs HEKOTOPBIX Pe3yib-
TaTOB, KACAOIMXCS MIMEHHO KBAa3UHENPEPBIBHOCTH. M IaHbI HOBbIE PE3YJbTAThI 1151 HEKOTOPBIX APYIHX
THINOB HENPEPbIBHOCTE.
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