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Math. Slovaca 27,1977, No. 3, 307—314 

GENERALIZED CONTINUITY 
AND SEPARATE CONTINUITY 

TIBOR NEUBRUNN 

The relation between the separate continuity of a function of two variables and 
its continuity depends on the type of continuity. It is well known that the ordinary 
separate continuity does not imply continuity, while the continuity implies the 
separate continuity. When quasicontinuity is considered, then the converse is true 
(See [4], [6], [7]). The situation between the separate somewhat continuity and 
continuity was studied in [7]. This paper in its first part gives counterexamples 
showing that the separate almost continuity does not imply the almost continuity, 
as well as the almost continuity does not imply the separate almost continuity. In 
the second part some results of [6] and [7] are extended to more general theorems 
and examples are given, showing that the assumptions, which restrict the compo­
nent spaces spaces in these generalized theorems, are essential. 

1. Preliminaries 

We shall denote by X a topological space, without writing (X, &) where ^ 
denotes a topology on X. When Xand Yare topological spaces, XxYwill denote 
the topological space with the usual product topology. For a function f:Xx Y-*Z 
the symbols fx, f denote its ^-section or y-section, respectively, i.e., fx for any 
xeX \% the function defined on Y such that fx(y)=f(x, y). The y-section is 
defined analogically. Cl(_4)(int(_4)) stands for closure (interior) of A, respec­
tively, f(A)(f~l(A)) denotes the image (inverse image) of .A. 

Definition 1. IfX, Yare topological spaces, then a function f: X-> Yis said to be 
quasicontinuous at XoeX if for any open U containing XQ, and any open 
Vcontaining f(xo) there exists a nonempty open set G c Usuch thatf(G) c V. The 
function f is said to be quasicontinuous if it is quasicontinuous at any xeX. 

Definition 2. A function f: X-+ Yis said to be somewhat continuous if for any 
open GczY such that r\G) ± 0, int f\G) * 0 holds. 
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Definition 3. A function f:X-*Y is said to be almost continuous at x0eX if for 
any Vopen, Vcz Y, containing f(x0), the set C\(f~l( V)) contains a neighbourhood 
ofx0. We say that f is almost continuous if it is almost continuous at anyx e X. 

As to the almost continuity, various results concerning this type of functions were 
obtained in [2], [3], and elsewhere. But the notion itself apears as "nearly 
continuity" in [10], where it was used in connection with the problems concerning 
the open mapping theorem. 

The quasicontinuity was discussed in [4]. Now it is well known that it is 
equivalent with the semicontinuity in the sense of Levine [5], The equivalence was 
proved in [9], 

The somewhat continuity as a generalization of the quasicontinuity was intro­
duced in [1]. 

The following results may be easily obtained using the mentioned equivalence, or 
directly from the definition. (See also [8].) 

Lemma 1. A function f: X—> Y is quasicontinuous at x0 if and only if for any 
open set U containing x0 and any open V containing f(x0), int f~l( V)n U4 0. 

Lemma 2. A function f is quasicontinuous on X if and only if it is somewhat 
continuous with respect to any open U c X, i.e. if its restriction to any open UaX 
is somewhat continuous. 

2. Almost continuity and separate almost continuity. 

Example 1. On the interval ( - 1,1) x ( - 1,1) in R2 define a real function /as 

f( \ — {^ *f b° t n x anc* y a r e irrational or (jr, y) = (0,0), 
lO if at least one of JT, y is rational and (JT, y)^(0, 0). 

Then / is almost continuous at each point (JT, y), but the sections fXl), f° are not 
almost continuous when (x0, y0) = (0, 0), because none of them is almost continu­
ous at the point 0. 

Theorem 1. Let X, Y be separable metric spaces without isolated points. Then 
there exists a real function f:Xx Y—> R such that f is almost continuous at each 
(x, y)eXx Y, and a dense set CaXx Y such that for each (x0, y0)e C, the 
sections fXo and f° are not almost continuous. 

Lemma 3. Let Xbea separable metric space without isolated points. TheTe exists 
a countable dense set DaX such that X—D is dense in X. 

Proof. Let Bx, B2, ..., Bn... be a countable basis of nonempty open sets in X. 
Choose xxeBu x*xeBu xx = ĵr*. Suppose that a sequence JT!, jr?, JT2, x%> ..., jr„, JT* is 
constructed such that jr, e B{, jr* e Bt, jr,-5-= jr* for / =1,2 , . . . , n. Take xn+l, JT*+1 such 
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that xn+t ±x*n + {, xn+l e Bn+i. Evidently the sets {xn: n = 1, 2, ...}, {x*n:n = 1, 2, ...} 
are dense in X. We may put D = {xn:n = 1, 2, . . . } . 

Lemma 4. Let X be a separable metric space without isolated points. Let D be 

a dense set in X. Then D=\J Dn, where {Dn }T=i is a sequence ofpairwise disjoint 
n = 1 

sets each of which is dense in X. 
Proof. Consider D as a subspace of the space X. Then D is separable and 

without isolated points. In view of Lemma 1, there exists a set Ex c: D, Ev dense in 
D and D-Ex dense in D. Suppose that for AZ!=1, Ex, E2, ..., En have been 
constructed such that Et is dense in D (and hence in X) for i = 1, 2,.. . , n, and such 

n n 

that D - | J Et is dense in £>. If we consider D — | J Etas a subspace of AT, then it is 
i = i I = I 

a separable subspace without isolated points. Again, according to Lemma 1, there 
n n + l 

exists En+l cz D - (J E, dense in X and D - (J Et dense in X too. Thus a sequence 
I = I I = I 

E{, E2, ...,En,... of pairwise disjoint sets, which are dense in X, is constructed. Put 

Dn=En, n = 2, 3, ..., Z?, = EXU(D— [J En). Then A are pairwise disjoint and 
« = i 

D=\JD„. 
n = l 

Proof of Theorem 1. The space Kxyisa separable metric space without 
isolated points. Choose a countable set C, dense in XxY, such that 
D = Xx Y- C is dense in XxY too. Denote {(xn, yn)}n=i a sequence, the set of 

points of which is C. We may suppose (xn, yn) ± (xm, ym) if n£ m. Let D = Q Dn, 
n = 0 

where Dn are pairwise disjoint dense in Xx Y (see Lemma 4). 
Put Dt = D0 and 

D*n=Dn-(({xn}xY)uXx{yn})) 
for AJ = 1, 2,. . . , ({#} denotes the one point set the element of which is a). The sets 
Dn are dense in Xx Y. Let f:Xx Y-+R be defined as 

\k if (x, y)eD*k or (x, y) = (xk, yk), k = l,2, ... 
Д Д Г , Я І0 if(*,;yЖ(|J/Л)uO 

The function / is almost continuous. In fact, if / assumes the value 0 at some 
point (jtb, yo), then the set of all (x, y) for which f(x, y) = 0 is dense in each 
neighbourhood of (x0, y0), because f(x, y) = 0 in each point of D0. If / assumes 
a value k, then the almost continuity at any point, in which this value is assumed, 
follows from the density of JDJ. 

Now let n be any positive integer. Choose the point (xn, y„). Since (xn, y) £D*, 
we have for y±yn, f(xn,y)±n. But f(xn9 y) is a positive integer. Since 
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f(xn, yn) = n, the section fXn is not almost continuous at y„. Similarly we can prove 
that fn is not almost continuous at xn. The theorem is proved. 

If a function is separately almost continuous, it need not be almost continuous. 
Example 2. On the interval (—1,1) x (— 1,1) consider the set 

F={(x,y):0^x^l,L2x^y^x. 
Define 

/ : ( - l , l ) x < - l , l ) - > K , as 
TO if (x,y)eF-{(0,0)} 

f(x, y) = <0 if bot x, y are simultaneously rational or irrational and (x, y)£F 
[ l if x is rational, y irrational or conversely and (x, y)£F 

/ (0 ,0)=1 

The function / is not almost continuous at (0, 0). The almost continuity of the 
sections f0, f° may be easily verified for each x0 e X, y0 e Y, respectively. 

3. Quasicontinuity, somewhat continuity and 
the corresponding separate continuities 

Separate quasicontinuity implies quasicontinuity, as it was proved by Kempisty 
for the case of functions of two real variables. An abstract version was given in [6] 
and it is as follows. 

Theorem A. Let X be a Baire space, Y second countable and Z metric. Let 
f:Xx Y^>Z be se separately quasicontinuous. Then f is quasicontinuous. 

In [7] we proved that separate somewhat continuity does not imply somewhat 
continuity but the following is true. 

Theorem B. Let X be a Baire space, Y second countable and Z regular. Let 
f:Xx Y^>Zhave all the x-sections somewhat continuous and all the y-sections 
quasicontinuous. Then f is somewhat continuous. 

It seems to be interesting to find out if the assumptions on the component spaces 
may be weakened in the theorems A and B. Before the discussion of this problem 
we give firstly a slight generalization of the mentioned Theorems. Since their proofs 
are similar, we shall prove only one of them (Theorem 2). 

Theorem 2. Let X be a Baire space, Y such that each point yeY possesses 
a neighbourhood satisfying the second countability axiom and Z a regular space. 
Let f:Xx Y^>Z be such that f is quasicontinuous for each yeY and the 
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x-sections fx are quasicontinuous with the exception of a set of the first category. 
Then f is quasicontinuous. 

Theorem 3. Let X be a Baire space, Ya space satisfying the second countability 
axiom and Z a regular space. Let f:Xx Y-+Z be such that, for each yeY the 
section f are quasicontinuous and the x-sections fx, with the exception of a set of 
the first category are somewhat continuous. Then f is somewhat continuous. 

Lemma 5. Let g: X—> Y (X, Y arbitrary topological spaces) be quasicontinuous. 
Let GczY, VczX be any open sets in X and Y, respectively, such that 
g~x(G)nV±0. Then int g~l(G)nV+0. 

Proof. Let z e g'\G)n V. Then, using the quasicontinuity at z we obtain from 
Lemma 1 the desired result. 

Proof of Theorem 2. Suppose that / is not quasicontinuous. Then there exists 
a point (x{), y{)), an open set GczZ containing f(x{), y{)), and a neighbourhood 
U x V of (x(), y{)), where U is a neighbourhood of x{) and V a neighbourhood of y{) 

such that (Lemma 1) 

int (rl(G)n(ffx V)) = 0. (1) 

Without loss of generality we may suppose that V satisfies the second countabili­
ty axiom. Denote by { Vn) the countable basis (in V) of open sets. Let G, be open 
such that f(x0, yQ)eGx c c l (G , ) cG . The quasicontinuity of f° at x{) gives 

W=\nX((f°yl(Gx))nU±0 
Put T= {x: x e W; fx is quasicontinuous}. Define 

An = {x:xe T; Vn c int ((/J"'(G,))}. 
There is 

T=\jAn. (2) 
n = I 

The inclusion (J A, <-= Tis obvious. If xe T, then xeWhence f°(x)e Gx. Thus 
n = i 

fx(y0)eGx. The last gives f~\Gx)nV40. From Lemma 5 we get 
int/7 !(G,)n V±0, hence xeAn for some n and (2) is proved. 

We shall prove that for each n the Set An is nowhere dense in W. Let S c= W be 
any open set. Since Sx V^cf /x Visa nonempty open set, we have, according to 
(1) that there exists a point (u, v)eSx Vn such that f(u,v)eG. Let G2 be 
a neighbourhood of f(u, v) such that G2nGx = 0. From the quasicontinuity of f° at 
the point u there exists a nonempty open set S^S such that f(x, v)eG2 for any 
xeSx. Hence f(x, v)i Gx. Thus v4f~\Gl) for any xeS^ The last gives 
Vn(t int ((/x)_1(Gi)). And so StnAn = 0 and the fact that A is nowhere dense in W 
is proved. This and (2) imply that Tis of the first category, which is a contradiction. 

What is interesting is the fact that in Theorem 3 we. can not substitute the 
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assumption of the second countability by a "locally" second countability as it was 
done in Theorem 2. 

Example 3. F=(0, 1) will serve as an index set. To each te T an isometric 
image of the metric space X = (0, 1) with the usual metric will be associated. We 
may suppose Y,nYt> = 0 for t+t'. If necessary we shall denote by y, the 
corresponding image of y e (0, 1) in the space Y,. We write simply y instead of y,. 
The sets Y, are supposed to have the order structure taken over from (0, 1). 

Put Y= (J Yt. As to the topology, G is open in Y if G= (J G, where G, are 
t e T t e l 

open in Yt. R = (- oo, oo) j s considered to have the usual topology. We can see that 
in Y any point y posesses a neighbourhood satisfying the second countability 
axiom. For any te T the function U)f: Xx Y,-+R is defined as: 

0 if x<t, y( = y,), rational 
1 if x<t, y irrational 

(t)f(x,y) = 0 if x = t, 0 < y g ; 
1 if x = t, {<y<\ 
0 if x>t, y irrational 
1 if x>t, y rational 

On the product XxY define /: X x Y-+R as: 

f(x,y) = {,)f(x,y) if yeY, 

For any y e Yy f is a quasicontinuous function. In fact, if y e Y, then y( = y,) e y, 
for exactly one te T. Hence f(x) = 0)f(x). Thus if y is rational 

0 if x<t 
1 if x>t 

f(x) = 0 if * = /, 0<y^k 
1 if x = t, i -=y<l 

The quasicontinuity of f may be easily veriffied. The situation for y irrational is 
similar. 

For any xeXthe function fx is somewhat continuous. Take any GaR open and 
such that f~\G)±0. Then G contains at least one of the numbers 0, 1. Since 

f:l(G)=u<0f:l(G) 
t e T 

and for t = x the set 0)rl(G) contains at least one of the open intervals (0, \), G, 1), 
we have intf~1(G)^0. Thus fx is somewhat continuous. 

The function / is not somewhat continuous as a function of two variables. In fact, 
if G = ( i | ) , then f~l(G) * 0, but int f~l(G) = 0. 

The following example shows that the assumption of X being a Baire space, in 
Theorem 3, is also essential. 
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Example 4. In what follows let X be the set of all rational numbers in (0, 1) 
with the usual topology. Let Y= (1, °°) be the set of all real numbers greater than 
1, again with the usual topology. Let {r„}r=i be a sequence of all the rational 
numbers of X(r„±rm for n^m). 

Put 
0 if x<rn9 n<y^n + l, y rational 
1 if x<rn, n<y = n + l, y irrational 
0 if x = rn, n<y^n+\ 

{n)f(x,y) = l if x = rn, n+{-<y^n + l 
0 if x>rn, n<y~n + l, y irrational 
1 if x>rn, n<y^n + l, y rational 

Define/: Xx Y->R: 

f(x,y) = in)f(x,y), if n<y^n + l. 

The quasicontinuity of the sections f and the somewhat continuity of fx may be 
veriffied similarly as in the preceding example. Similarly as in example 3 we can 
check that / is not somewhat continuous. 
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ОБОБЩЕННАЯ НЕПРЕРЫВНОСТЬ И НЕПРЕРЫВНОСТЬ СЕЧЕНИЙ 

Тибор Нейбрун 

Резюме 

В работе исследуется связь между непрерывностью функции двух переменных на произ­
ведении топологических пространств и непрерывностью ей сечений в случае непрерывности 
в некотором обобщенном смысле. С этой точки зрения исследуются квазинепрерывность, почти 
непрерывность и другие (смотри определения в работе). Даются обобщения некоторых резуль­
татов, касающихся именно квазинепрерывности, и даны новые результаты для некоторых других 
типов непрерывностей. 
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