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NIKODYM CONVERGENCE THEOREM 

FOR UNIFORM SPACE VALUED 

FUNCTIONS DEFINED ON D-POSETS 1 

PAOLO DE LUCIA* — E N D R E PAP** 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. Nikodym convergence type theorem with necessary and sufficient 
conditions for a sequence of functions defined on a D-poset and with values in a 
uniform space is proved. 

1. Introduction 

The classical Nikodym convergence theorem says that the limit of a sequence 
of countable additive measures is again a countable additive measure. This im­
portant theorem of the measure theory has many generalizations in different di­
rections, even for non-additive set functions. E. P a p [24], [25] has investigated 
set functions with values in an arbitrary uniform space Y, without considering 
any algebraic operation on Y. 

On the other hand, by the need of mathematical foundations of proposi-
tional calculus of quantum mechanics there were developed many structures as 
quantum logic (= orthomodular poset) [5], [6], [7], [8], [9], [12], [16], [26], [29], 
orthoalgebra [15] and very recently D-poset [18] , [19]. 

In this paper, we obtain necessary and sufficient conditions for Nikodym 
convergence theorem to be true for a sequence of functions defined on a D-poset 
and with values in a uniform space. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 28A10, 28C99. 
K e y w o r d s : D-poset, <r(©)-D-poset, uniform space, orthomodular poset, MV-algebra, 
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1 The research of the first author was partially supported by Ministero del Universita e 

della Ricerca Scientifica e Technologica (Italy). The paper was completed during the stay of the 
second author at the Depertment of Mathematics "R. Caccioppoli" Universita "Federico II", 
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2. cr(®)-D-poset 

We have by [18], [19], [14] 

DEFINITION 2 . 1 . A D-poset (difference poset) is a partially ordered set L with 
a partial ordering < , maximal element 1, and with a partial binary operation 
0 : L x L —> L , called difference, such that, for a, b E L, b © a is defined if and 
only if a < b, for that the following axioms hold for a,b,c E X: 

(DPi) b©a<b; 
(DP2) b©(b©a) = a; 
(DP3) a<b <c => cQb<cQa and (c 0 a) 0 (c 0 b) = b 0 a. 

Then there exists also a minimal element 0 ( = 1 0 1 ) . 
The following properties of the operation 0 have been proved in [19]: 

(a) a 0 0 = a. 
(b) a © a = 0. 
(c) a <b ==j> b 0 a = 0 <=> b = a. 
(d) a < b =^> b0a = b «=i> a = 0. 
(e) a < b < c ==> bQa<cQa and (c 0 a) 0 (b 0 a) = c 0 b. 
(f) b<c, a<cQb => b<cQa and (c 0 b) © a = (c 0 a) 0 b. 

(g) a < b < c =i> a < c 0 (b 0 a) and (c G (b 0 a)) © a = c © b. 

For an arbitrary but fixed element a E L we define 

a 1 : = 1 0 a . 

We have: 

(i) a±A-=a; 
(ii) a < b = » b1- < a-1. 

The elements a and b from L are orthogonal, denoted by a_Lb, if and only if 
a<bL (or b^a-1). 

We define a partial binary operation 0 : L x L —> L for orthogonal elements 
a and b such that 

b < a ® b and a = (a 0 b) © b. 

This operation 0 is commutative and associative ([14]). 
The notion of D-poset covers many important examples. 

E x a m p l e 2.2. ([6], [7], [8], [10], [11], [26]) An orthomodular poset is a 
partially ordered set O with an ordering < , the least and greatest elements 0 
and 1, respectively, and an orthocomplementation J_: O —> O such that: 

(OMi) a x ± = a (aeO); 
(OM2) aWa± = l (aeO); 

368 



NIKODYM CONVERGENCE THEOREM ... 

(OM3) if a < b , then bL < a x ; 
(OM4) if a < b-1, then a V b G O; 
(OM5) if a < b , then b = aV(aVb - L ) - L . 

Taking for a < b 
bOa:= ( a V i 1 ) 1 , 

we obtain that the orthomodular poset O is a D-poset. 

E x a m p l e 2.3. ([2], [21]) An MV-algebra is a set M endowed with two 
binary operations © and ©, an unary operation * and two elements 0 and 1 
such that, for all a,b,c £ M, 

(MVj) a ф ò = ò a; 
(MV2) (aфb)®c = a®(bфc); 
(MV3) o 0 = a; 

(мv4) o l = 1; 

(мv5) (o*)* = a; 
(MV6) 0* = 1; 
(MV7) a a* = 1; 
(MV8) (a* ò)* ò = (a ò*)* a; 
(MV9) a ø ò = ( a * ф ò * ) * . 

Taking 
a < b -Ф=> (a Qb*)®b 

and for a<b 
bQa:= ( a © b * ) * , 

we obtain that the MV-algebra M is a D-poset. 

E x a m p l e 2.4. ([15], [14]) An orthoalgebra is a set A with two particular 
elements 0 , 1 , and with a partial binary operation ©: A x A —> A such that 
for all a,b,c E A, 

(OAi) if a © b G A, then b©a £ A and a^b = b^a\ 
(OA2) if b © c G -4 and a<§>(b®c) e A, then a © b G A and (a^b)ecE A, 

and a © (b © c) = (a © b) © c; 
(OA3) for any a £ A there is a unique b £ A such that a © b is defined, and 

a © b = 1; 
(OA4) if a © a is defined, then a = 0 . 

We have a < b if and only if there exists an element c £ A such that a © c is 
defined in A and a © c = b. An element b is the orthocomplement of a (denoted 
by a1-) if and only if b is a (unique) element of A such that b © a is defined in 
A and a © b = 1 . 

Taking for a < b 
be a := ( a © ^ ) " 1 , 

369 



PAOLO DE LUCIA — ENDRE PAP 

we obtain that the orthoalgebra A is a D-poset. We remark that each ortho-
modular poset (Example 2.2) is an orthoalgebra, but the opposite is not true 
(see example of R. W r i g h t in [15]). 

E x a m p l e 2.5. ([19], [14]) Let £(H) be the set of all Hermitian operators 
T on a Hilbert space H with O < T < I, where O and I are the zero and 
identity operators, respectively, on H. The set £(H) is a D-poset, which is not 
an orthoalgebra. 

E x a m p l e 2.6. ([18]) Let ft be a nonempty set and T the family of all 
fuzzy sets on f2, i.e., T = [0, l ] n . We have for f,g G T 

f<9<=^ f(u)<g(co) (cuen). 
Let 3>: [0,1] —> [0, oo) be an injective increasing continuous function such that 
$(0) = 0. Taking for / < g 

( g e / ) H = r 1 ^ ^ ) ) - ^ / ^ ) ) ) (W Gil) 
we obtain that T is a D-poset. 

L will always denote a D-poset. Let { a i , . . . , a n } C L. We define 

{ 0 for n = 0 , 

ai for n = 1, 

(a± 0 • • • 0 a n _i ) 0 an for n > 3 , 

supposing that ai 0 • • • 0 a n _i and ai 0 • • • 0 an exist in L. We have by [14] 
DEFINITION 2.7. A finite subset { a i , . . . , a n } of L is ^-orthogonal if ai 0 
• • • 0 an exists in L. 

n 
We say that an 0-orthogonal subset { a i , . . . , a n } of L has a 0-sHra, @ a2, 

2 = 1 

defined by 
n 

( J )a ; := ai ©••• 0 an . 
2 = 1 

We remark that the preceding 0-sum is independent of any permutation of 
elements. 
DEFINITION 2.8. A subset G of L is ^-orthogonal if every finite subset F 
of G is 0-orthogonal. 

We say that an 0-orthogonal subset G = {ai : i G 1} of L has an (&-sum 
in Z , 0 a;, if in X there exists the join 

iei 
flna^ := sup< r f t a i : F finite subset of I > . 
zGI ^ ; E F J 

Any subset of a 0-orthogonal set is again 0-orthogonal. 
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DEFINITION 2.9. A D-poset I is a complete D-poset (cr(e)-D-poset) if, for 
every 0-orthogonal subset (every countable 0-orthogonal subset) G of L, there 
exists the 0-sum in L. 

DEFINITION 2.10. A D-poset L is quasi-a-complete if for every 0-orthogonal 
sequence (a*) in L there exists a subsequence (a^i^M such that 0 ai G L for 

iei 
each I C M. 

R e m a r k 2.11. The notion of quasi-cr-ring is introduced by C. C o n s t a n -
t i n e s c u [4], [3]. 

We shall give now an example of a cr(0)-D-poset. 

E x a m p l e 2.12. Let S be any set of real numbers between 0 and 1, where 
S satisfies the following conditions 

(i) OeS and 1 e S ; 
(ii) if x,y G 5 , then min(l , x+y) G S; 

(hi) if x,y G S, then max(0, x+y—1) G S\ 
(iv) if x G 5 , then 1 - x G 5 . 

The operations 0 , 0 and * are defined as follows: 

x y 
x y 

* x 

= min(l , x+y), 

= max(0, x+y—1), 

= 1-x. 

The system (S,©,©,*,0,1) is an MV-algebra. If we take S = [0,1], we ob­
tain a cr-MV-algebra with respect to the operation 0 and, in this way, also a 
a(0)-D-poset, since for x < y we have that the operation 0 defined by 

xQy := ( x 0 y * ) * 

gives a cr-D-poset with respect to the operation ®D defined by 

X®DV = G / * 0 z ) * , 

which coincides with the operation 0 , i.e., 

x®Dy = (y*Qx)* = ((x ® (y*)*)*)* =x®y. 

We remark that for S = {0,1} we trivially obtain also a cr(0)-D-poset. 
But if S = the set of all rational numbers between 0 and 1, then this is a 
MV-algebra, and so also a D-poset, which is not O-(0)-MV-algebra, and so also 
not a <j(0)-D-poset. 
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3. N i k o d y m convergence theorem 

Let Y be a uniform space with the uniformity U. We denote by V the family 
of all uniformly continuous pseudometrics defined on (Y, U). 

Let L be a D-poset. 

DEFINITION 3 .1 . For d E T> the d-semivariation of a function fi : L —> Y 
with respect to a point Xo E Y is 

Ad°(o) :=sup{d(/ i (c) ,x 0) : c < 6 , c E i } (b e L). 

We define for d 6 P , xo E Y and a function fj, : L -+Y 

a^°(a,/x) := l imsup{d(L t (a©b ) ,x 0 ) : /^°(6) < — , 6 E L ) ( a e i ) . 

R e m a r k 3.2. For a set function \i denned on a quasi-a-ring £ , the pre­
vious definition of a^° coincides with that given in the paper of E. P a p 
[23]. 

We shall need, in the proof of the main theorem, the following: 

DEFINITION 3.3. A function /X: L —» Y is said to be xo-exhaustive for xo E Y 
if for each d ET> 

lim d( / i (a n ) ,x 0 ) = 0 

for each ©-orthogonal sequence (an) of elements from L . 

LEMMA 3.4. Let Y be a uniform space and L a quasi-a-complete D-poset. If 
fi : L —> Y is an xo-exhaustive function and (an) a sequence of ^-orthogonal 
elements from L, then, for each d E V and each e > 0. there exists a 
^-orthogonal subsequence (ani) of (an) such that 

S ' ť : f / i<EI 

for any I C N. 

The proof goes taking to a contradiction with the xo-exhaustivity of the 
function /x. 

THEOREM 3.5. Let Y be a uniform space and L a quasi-a -complete D-poset. 
Let (fin) be a sequence of functions \xn, fin: L —> Y , such that each fin is 
Xo-exhaustive, and they satisfy the following conditions for the element xo 
from Y: 

(i) for each d E V and for each e > 0. there exists 6 > 0 such that 

d(L t n (a),x 0 ) < 6 and d(Ltn(6),x 0) < <5 
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for a <b, a, 6 e L (n eN) implies 

d(un(bQa),x0) < £;; 

(ii) for each deV and for each 8 > 0 ; there exists 7 > 0 such that 

d(/xn(a),x0) < 7 , aeL (neN) => ax
d°(a,un) <6 ( n G N ) ; 

(iii) for each deV 

lim d(un(a),u(a)) = 0 
n—+oo 

for each aeL. 

Then a is x0-exhaustive if and only if an ( n G N ) are uniformly x0-exhaustive. 

P r o o f . Let us suppose that u is xo-exhaustive, but (an) is not uniformly 
xo-exhaustive. Hence there exist e > 0, d from V and a ©-orthogonal sequence 
(a*.) of elements from L and a subsequence (/infc) such that 

d(unk(ak),x0) > e (1) 

for each k e N. By (i), we choose 8 > 0 corresponding to e > 0. By (ii), we 
choose 7 > 0 corresponding to 8 > 0. Since a is xo-exhaustive, by Lemma 3.4, 
there exists a ©-orthogonal subsequence (aki) of (a*.) such that 

/-50(©«*.)<2 (2) 

for each I C N. Now, let us denote raz- :-= /in/c. and bz- := aki (i G N) and 
ii = 1. By (iii), there exists an index i2 such that 

d ( m i 2 ( f e n ) ^ ( 6 i i ) ) < g ' (3) 

The inequality 

d(ra i2(6i1),/x(6i1)) >d(ra i 2 (6 i 1 ) ,x 0 ) - d(/i(b2 l),x0) , 

by (2) and (3), implies 
d(rai2(6i]L),a:o) < 7 . (4) 

Since nii2 is xo-exhaustive, we have by Lemma 3.4 that there exists a 0-ortho­
gonal subsequence (bf) of (02)2=^+1 such that 

(*<-)?(©-*)<£ 
for each / C N. This implies by (4) and (ii) 

< * d ° ( ^ i © © 6 i . ™i a) < 5 
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for each I C N. Using (2) we obtain 

d(ii(bix®b2
k),xo) < | 

for each k E N, and, by (iii), there exists an index i% such that 

d (m i 3 (6 i l e6 | ) ,Ax(6 i l ©6g)) < 

Hence, by the inequality 

d(mi3(bh 0 b\), fi(bh © b2
k)) > d(mi3(bh © b\), x0) - d(fi(bh © 6g), x0) , 

we obtain 
d(77143(6^ © 6 i 2 ) , a?0) < 7 , (5) 

where 6̂ 2 is chosen from the sequence (6^). Since mi3 is £0-exhaustive, by 
Lemma 3.4, there exists a ©-orthogonal subsequence (6?) of (bf)i=i2+i such 

7 
2 

that 

(<ч)ľ( tf)<š 
zGI 

for each 7 C N. This implies by (5) and (ii) 

dímiA&i. e& i a©06n,t-oj < ( 5 

z€I 

for each I C N. Continuing the preceding procedure we obtain two sequences 
0 0 

(mik) and (bik). Taking 6 = @ 6ifc, we choose by (iii) an index k0 such that 
fc=i 

d ( m i * 0 ( 6 ) ' x ° ) < r ? <6' (6) 

This follows by (2) and the inequality 

d(miko(
b), Kb)) > d(mik0(

b)> xo) -d(fi(b),xo) . 

Since, by (DPi ) , 
6 © a < 6, 

we obtain by the preceding procedure that 

d(miko(
b&a), x0) < 6. 

This, together with (i) and (6), implies by (DP2) 

e > d(mikQ (6 © (6 © biko)), x0) = d(miko(bik0), x0) 

and gives a contradiction with (1). 
The opposite statement follows by (iii). • 
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