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ON <f-SUBALGEBRAS 
OF d-TRANSITIVE cf-ALGEBRAS 

Y O U N G C H A N L E E * — H E E SIK K I M * * 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . In this paper we est imate the number of d* -subalgebras of order i 
in a d-transitive d*-algebra which is a generalization of BCK-algebras by using 
H a o ' s method. 

1. Introduction 

Y. I m a i and K. I s e k i [II] and K. I s e k i [Isl] introduced two classes of ab
stract algebras: J3CK-algebras and BCI-algebras. It is known that the class of 
BCK-algebras is a proper subclass of the class of HCJ-algebras. In [HL1], [HL2] 
Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. 
They have shown that the class of J3Ci-algebras is a proper subclass of the class 
of BCH-algebras. J. N e g g e r s and H. S. K i m [NK] introduced the notion of 
d-algebras which is another generalization of HCif-algebras, and investigated 
relations between d-algebras and BCK -algebras. J. N e g g e r s , Y. B. J u n 
and H. S. K i m [NJK] discussed ideal theory in d-algebras, and introduced the 
notions of d-subalgebra, d-ideal, cfi -ideal and d*-ideal, and investigated some 
relations among them. J. H a o [Ha] estimated the number of subalgebras of 
order i in a finite J3Cif-algebra X. In this paper we estimate the number of 
d*-subalgebras of order i in a d-transitive d*-algebra which is a generalization 
of BCK -algebras, by using H a o ' s method. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06F35, 06A06. 
K e y w o r d s : d-subalgebra, d- (d*-)algebras, adjoint matr ix, d-transitive. 
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2. Preliminaries 

A d-algebra is a non-empty set X with a constant 0 and a binary operation 
* satisfying the following axioms: 

(1) x * x = 0, 
(2) 0 * x = 0, 
(3) x * y = 0 and y * x = 0 imply x = y for all x, y in I . 

A BCK-algebra is a d-algebra (X;*,0) satisfying the following additional 
axioms: 

(4) ((x * y) * (x * z)) * (z * y) = 0, 
(5) (x * (x * y)) * y = 0 for all x, y, z in X. 

E X A M P L E 2 .1 . ([NK]) 

(a) Every .BCif-algebra is a d-algebra. 

(b) Let X := {0,1, 2} be a set with the Table 1. 

* 0 1 2 

T 0 0 0 

2 

T 
1 2 0 2 

2 1 1 0 

Table 1. 

Then (X; *, 0) is a d-algebra, but not a BCK -algebra, since (2 * (2 * 2)) * 2 = 
( 2 * 0 ) * 2 = 1*2 = 2 ^ 0 . 

(c) Let R be the set of all real numbers and define x*y := x-(x—y), x ,y € R, 
where • and — are the ordinary product and subtraction of real numbers. Then 
x*r r = 0, 0 * x = 0, x * 0 = x 2 . l f x * y = y*a : = 0, then x(x — y) = 0 and 
x2 = xy, y(y - x) = 0, y2 = xy. Thus if x = 0, y2 = 0 , y = 0 ; i f y = 0, 
x2 = 0, x = 0 and if xy 7-- 0, then x = y. Hence (R; *,0) is a d-algebra, but 
not a jBCif -algebra, since (2 * 0) * 2 ^ 0. 

DEFINITION 2.2. ([NJK]) A d-algebra X is called a d*-algebra if it satisfies 
the identity (x * y) * x = 0 for all x, y G X. 

Clearly, a BCK -algebra is a d*-algebra, but the converse need not be true. 

EXAMPLE 2.3. ([NJK]) Let X := {0 ,1 ,2 , . . . } and let the binary operation * 
be defined as follows: 

( 0 i f x < y , 
X * y : = \ l othe: otherwise. 
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Then (X, *,0) is a d-algebra which is not a BCK-algebra (see [NK; Exam
ple 2.8]). We can easily see that (X, *,0) is a d*-algebra. 

3. Main results 

J. N e g g e r s , Y. B. J u n and H. S. K i m [NJK] introduced the no
tion of d-algebras and investigated their properties related to the concepts 
of d- (d*-)ideals. With this concept we obtain a generalization of J. H a o ' s 
results [Ha] in d-transitive d*-algebras. 

DEFINITION 3 .1 . ([NJK]) Let (X; *,0) be a d- (d*-)algebra and 0 ^ / C X. 
I is called a d- (d*-)subalgebra of X if x *y G / whenever x G / and y G / . 

PROPOSITION 3.2. Let (X;*,0) be a d- (d*-)algebra and let XQ be a 
d- (d*-)subalgebra of X. Then we have: 

(a) 0EX0, 
(b) (X0; *,0) is also ad- (d*-) algebra of X . 
(c) X is a d- (d*-)subalgebra of X, 
(d) {0} is a d- (d*-)subalgebra of X. 

P r o o f . Routine. • 

Note that if (X; *, 0) is a BCif-algebra and 0 ^ x0 G X , then ({0, x 0 } ; *, 0) 
is a subalgebra of X . But this does not hold in the case of d- (d*-) algebra. 

E X A M P L E 3.3. Consider Example 2.1(b). We can easily see that ({0,1}; *,0) 
is not a d-subalgebra of X . 

LEMMA 3.4. ([NJK]) Let (X;*,0) be a d-algebra. If x ^ y and x * y = 0. 
then y * x ^ 0. 

LEMMA 3.5. Le£(X;* ,0) be a d*-algebra. If x *y = z, then z*x = 0. 

P r o o f . Let z := x*y. Then z*x = (x*y)*x = 0, since X is a d*-algebra. 

• 
R e m a r k . In the above Lemma 3.5, the d*-algebra condition is necessary. Con
sider Example 2.1(b). We can see that 1*2 = 2, but 2 * 1 = 1 ^ 0 , and hence 
Lemma 3.5 does not hold. 

J. N e g g e r s and H. S. K i m [NK] introduced the notion of d-transitivity 
in a d-algebra. 

DEFINITION 3.6. ([NK]) A d-algebra (X;*,0) is said to be d-transitive if 
x * z = 0 and z * y = 0 imply x * y = 0. 
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E X A M P L E 3.7. Consider the following d-algebra X with the Table 2. 

* 0 1 2 

T 
3 

T 0 0 0 

2 

T 
3 

T 
1 1 0 0 1 

2 2 2 0 0 

3 3 3 3 0 

Table 2. 

We can easily see that 1*2 = 0, 2 * 3 = 0, but 1*3 = 1, and hence (X; *,0) is 
non-d-transitive d-algebra. Moreover, since {(1 * 3) * (1 * 2)} * (2 * 3) = 1 ^ 0 , 
(X\ *,0) is not a BCK-algebra. 

E X A M P L E 3.8. The d*-algebra in Example 2.3 is a d-transitive. 

DEFINITION 3.9. An ordered n-tuple a1,a2,...,an of elements in a d-algebra 
X is called an n -sequence. 

DEFINITION 3.10. Given an n-sequence ax,a2^..., an of a d-algebra X, we 
construct a (n — 1) x n matrix A as follows: 

a^* a2 a2 * al . . . an * a1 

A = I a l * a 3 a2 * a3 • • • an * a2 

<a^* an a2 * an n n—1 

A is called the adjoint matrix relative to the n-sequence a1? a 2 , . . . , a n . 

PROPOSITION 3 .11 . Given a distinct n-sequence al^a2,... , a n (n > 2) o/ 
elements of a d-transitive d-algebra X, let A be £/ie adjoint matrix relative to 
this sequence. Then there exists a column in A which is composed of non-zero 
elements. 

P r o o f . The proof is by induction on n . When n = 2, let ax, a2 be a 
2-sequence, where ax ^ a2 , then its adjoint matrix is 

A = (ax * a2 a2* ax). 

If a1 * a2 = a2 * ax = 0, then by (3) we have a1 = a2, a contradiction. So the 
proposition is true for the case n = 2. 

Now assume that the proposition is true for n — 1. 
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Let al,a2,...,an be a distinct n-sequence. Then the adjoint matrix relative 
to this n-sequence is 

/ a x * a2 a2 * a x 

A„ = 

a x * a 3 a2 * a 3 

a l * a n - l a2 * a n - l 

V a l * a „ a 2 * an 

a n - l * a l a n * a i \ 
an-l * a 2 a n * a 2 

Set 
/ aг*a2 

лn-l 

a2 * a^ 
a 2 * a з 

aэ т 1 * a„ o a„ * a„ 0 

n—1 n—Z n n—z 
û„ i * a„ a„ * a„ 1 / 

n—1 n n n—1 / 

a n - l * a l \ 
a n - l * a 2 

v< л n - l a 0 * a, n - l a„ i * a„ 0 / 
n—1 n—_í / 

It is obvious that A n - 1 is the adjoint matrix relative to the (n — 1)-sequence 
a1? a 2 , . . . , a n - 1 . For this (n — 1)-sequence we certainly have a{ 7-= a whenever 
i yf- jf. Then, by the induction hypothesis, we know that there exists in A n - 1 a 
column which is composed of non-zero elements. Without loss of generality, we 
can assume that the first column of A n - 1 is composed of non-zero elements, i.e., 

aг * a2 ф 0 , 

<*! * a 3 ф 0 , 
(a) 

a l * a n - l ^ ° ' 

Now, if a x * a n ^ 0 , then the elements in the first column of A n are all non-zero, 

so we are done. 

If a x * a n = 0, then since ax 7-= a n , by Lemma 3.4, we have 

an * ax ^ 0. 

For 2 < i < n— 1, we shall show that we also have 

a * a • ^ 0. 

In fact, if a n * â  = 0, then since ax * a n = 0, we have 

a 1 * a i = 0 (2 < i < n — 1). 

(b) 

(c) 

(d) 

But (d) contradicts (a). By (b) and (c) we know that the n-th column of A n is 
composed of non-zero elements. Therefore the conclusion is also true for n . The 
proposition is proved by induction. • 
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PROPOSITION 3.12. Every d-transitive d*-algebra X of order n + 1 contains 
a d*-algebra of order n (n > 1). 

P r o o f . Let X = {0 ,a 1 ,a 2 , . . . , a n } be a d-transitive d* -algebra of order 

n + 1 , where a1,a2,as,...Jan are distinct non-zero elements.of X. We construct 

the adjoint matrix A n relative to a^a2)a^..., a n as follows: 

A„ = 

/ a^ * a2 a2* a^ 

\ aj * an a 2 * an 

«n-l*al an*al \ 

a„ * a 0 

* a, a^ * a„ ^n_i - " n _ 2 u,n * u,n_2 

a n- i * an an * a n - i / 

By Proposition 3.11 there exists in A n a column which is composed of non
zero elements. Without loss of generality, we can assume that the elements in 
the n-th column of A„ are all non-zero, i.e., 

n ' ' 
an *ai т̂  °> ѓ = l , . - . , n - 1 (e) 

Now we shall show that T = {0, a 1 ? a 2 , . . . , a n _ 1 } is a subalgebra of order n in 
X. In fact, if T is not a subalgebra of X, then there exist i, j (1 < i, j < n — 1) 
such that i 7- j and a{ * a- = an. Since X is a d*-algebra, by Lemma 3.5, we 
have 

(f) 

D 

«„ * ai = 0 

which contradicts (e). This completes the proof. 

As a consequence of Proposition 3.12 we may estimate the number of 
d*-subalgebras of order i in a d-transitive d*-algebra. 

THEOREM 3.13. Let X be a d-transitive d*-algebra of order n. Then 

1 <iV(i) < ( ^ I i ) (. = 1,2,....n) 

where N(i) denotes the number of d* -subalgebras of order i in X. 

P r o o f . This is a direct consequence of Proposition 3.12. • 

Acknowledgement 

The authors are deeply grateful to the referee for some valuable suggestions. 

32 



ON d*-SUBALGEBRAS OF d-TRANSITIVE d*-ALGEBRAS 

REFERENCES 

[Ha] HAO, J . : A theorem for estimating the number of subalgebras in a finite BCK-algebra, 

Kobe J. Math. 3 (1986), 51-59. 
[HL1] HU, Q. P.—LI, X . : On BCH-algebras, Math . Semin. Notes, Kobe Univ. 11 (1983), 313-320. 
[HL2] HU, Q. P.—LI, X . : On proper BCH-algebras, Math . Japon. 30 (1985), 659-661. 

[II] IMAI, Y.—ISEKI, K. : On axiom systems of propositional calculi XIV, Proc. Japan Acad. 
Ser. A Math. Sci. 42 (1966), 19-22. 

[Isl] ISEKI, K. : An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A 
Math. Sci. 42 (1966), 26-29. 

[Is2] ISEKI, K. : On BCI-algebras, Math. Semin. Notes, Kobe Univ. 8 (1980), 125-130. 
[IT1] ISEKI, K.—TANAKA, S.: Ideal theory of BCK-algebras, Math . Japon. 2 1 (1976), 351-366. 
[IT2] ISEKI, K — TANAKA, S.: An introduction to the theory of BCK-algebras, Math . Japon. 

23 (1978), 1-26. 
[NJK] NEGGERS, J .—JUN, YOUNG BAE—KIM, HEE SIK: On d-ideals in d-algebras, Math . 

Slovaca (To appear) . 
[NK] NEGGERS, J .—KIM, HEE SIK: On d-algebras, Math . Slovaca 49 (1999), 19-26. 

Received December 4, 1996 

Revised February 22, 1997 

* Department of Mathematics 
Hannam University 
Taejon 300-791 
KOREA 

' Department of Mathematics 
Hanyang University 
Seoul 133-791 
KOREA 

E-mail: heekim@email.hanyang.ac.kr 

33 


		webmaster@dml.cz
	2012-08-01T12:52:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




