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ON GENERALIZED SEMICONTINUITY-PRESERVING
MULTIFUNCTIONS

ONDREJ NATHER

The basic problem of mathematical programming is to find the supremum v of
the so-called objective function f: Y— R over some set F of constraints. One of
the most important questions is the question of stability of this optimal value v.
This question can be formulated as follows.

Let F: X— Y be a multifunction, f: XX Y— R be a function and let v: X— R
be defined as

v(x)=sup {f(x, y): yeF(x)}. (*)

Then we can ask under what conditions given on F the continuity, resp. semicon-
tinuity, of f is preserved in a certain way by v.

This question was mostly solved for continual perturbations of v (see [1], [3], [4],
[5], [7])- But we can also obtain similar results for quasicontinuity (see [6]), almost
continuity, e.t.c. In order to unify these results we use the concept of the so-called
&-continuity, which includes these types of generalized continuity. This concept
was introduced in [2] for functions and is applicable also for multifunctions.

In the whole paper we suppose the objective function f and the function v to be
finite. Note that all definitions can be modified and all theorems are valid also in
the case when the values + or —o are admitted.

If not specified, X, Y denote general topological spaces and R denotes the set of
reals with the usual topology.

1. Local sieves and ¥-semicontinuity

In [2] the following concepts are introduced.

Definition 1. A family &, of subsets of X is called a local sieve at a point x, € X
if:

1. x,€ A for any A € &,,

2. AcB and A€ ¥, implies Be %,,

3. U< %, Where U, denotes the system of all neighbourhoods of a point x.

Definition 2. A local sieve ¥, is called strongly local if AnUe ¥,, for any
Ae¥, and any Ue %,,
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In everything that follows we shall consider only strongly local sieves. Examples
of the sieves, which are not strongly local can be found in [2], where also the

following concept is introduced.

Definition 3. If ¥, is a local sieve at a point x, € X, we say the function f from X

to Y is $-continuous at x, if f~'(V) e %, for any neighbourhood V of the point
f(xo).
If we consider real valued functions, we can introduce the concept of ¥
-semicontinuity which we shall call $-order semicontinuity to distinguish it from
the &-semicontinuity of multifunctions. In the following definitions we suppose
that a local sieve ¥,, at a point x, is given.

Definition 4. A function f: X— R is said to be ¥-order upper (lower)
semicontinuous at a point xo€ X if for any €>0 there exists a set A € ¥,, such
that f(x) < f(xo) + € (f(x)>f(x;) — €) for any xe A.

Definition 5. A multifunction F: X— Y is said to be ¥-upper (lower) semicon-
tinuous at a point x, € X if for any open set V such that V > F(x,) (F(xo)nV#0)
there exists a set A € &%,, such that F(x)c V (F(x)n'V#@) for any xe A.

We shall denote by $-o.u.s.c., ¥-o0.ls.c., F-us.c., F-ls.c. the F-order upper
semicontinuity, the ¥-order lower semicontinuity, the ¥-upper semicontinuity, the

F-lower semicontinuity respectively.
Suppose that a local sieve ¥, is given for any x € X. Then a set G = X is said to

be F-open if G belongs to ¥, for any x € G. The F-closure of a set H can be
defined as the set of all x € X such that HNA # @ for any A € &,. Let the ¥-closure
be denoted by ¥-cl H and a set H will be called ¥-closed if ¥-clH=H. It is
evident that a set G is $-open iff a set X\ G is ¥-closed.

If we denote
F*(V)={x: F(x)c V},
F(V)={x: F(x)nV#0},

we can characterize the ¥-semicontinuity in this way:

A multifunction F: X— Y is F-u.s.c. (¥-ls.c.) at a point x € X iff F*(V)e &,
(F(V)e %,) for any open set V such that F(x)= V (F(x)nV#0). A multifunc-
tion F is ¥-us.c. (¥-ls.c.) at xe X iff xe F~(H) (x € F*(H)) for any closed set
Hc Y such that x e ¥-cl F-(H) (x € ¥-cl F*(H)).

By means of special selection of a local sieve we can obtain some known types of

generalized continuity resp. semicontinuity.
If &, = %., we obtain the continuity with respect to the topology given on X.

If .={A: x€ A, xe A°}, we obtain the quasicontinuity. Here the symbols A°,
A are used for the interior, the closure of the set A respectively.
If $.={A: xe A, xe(A)°}, we obtain the almost continuity.
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If X=R", then the approximate continuity can be defined as the ¥-continuity,
where the local sieve at a point x is formed by all the sets which contain x as
a density point. '

For definitions of the above mentioned concepts see [2], where all these sieves
are proved to be strongly local, too.

2. Preservation of &-semicontinuity

In this Section we want to find a class of multifunctions for which the ¥-order
semicontinuity of an objective function in (*) is preserved. First we shall examine
the ¥-o.u.s.c.. We shall introduce similar notations as in [4], where this question is
solved, but only for the objective function of one variable ye Y.

More precisely it will be as follows. Denote

F.0.U(x)={v: X—>R: v is F-o.us.c. at x},
F.U(x)={F: X>Y: F is F-us.c. at x}.

For any (x, y)e XX Y denote by %(x, y) an arbitrary subset of the set of all
functions f: XX Y— R which are order upper semicontinuous at a point (x, y)
and further denote

F.LO0U(x)={F: X>Y: ve ¥.0.%.(x) for any f belonging
to #(x, y) for any ye F(x)}.

Our aim is to investigate a connection between ¥.%.(x) and #.%.0.%.(x). For
this purpose we need another concept already introduced in [4].

Definition 6. A multifunction F: X— Y is said to be %.%.9.-stable at a point
Xo € X if for any £ >0 and for any f belonging to ¥ (x., yo) for any y, € F(x,) there is
a set A € ¥, such that

F(x)e{y: f(x, y)<v(x)+ e}

for any xe A.
Evidently it is the same as

AcF*({y: f(x, y)<v(x)+Ee}).

The ideas of the proofs of the next theorem and of the propositions following it
are not very different from the ideas used in [4]. Thus we shall introduce them
without proofs, later we shall give the proofs of an analoguous theorem and
propositions for the ¥-order lower semicontinuity.

Theorem 1. The %..%.-stable multifunctions are precisely those that preserve
the F-o.u.s.c. of . It means that

Fis #.%.9.-stable at x, iff F€ F.%.0.9%.(x,).
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Proposition 1. The multifunction F is %.¥.%.-stable at x, iff for each f
belonging to ¥(xo, Yo) for any y, € F(x,) and for any re R

xoelU F({y: f(xo, y)<r—¢})
>0
implies the existence of a set A € ¥,, such that for any x € A there holds

xe F*({y: f(x,y)<r}).

Denote B(f, x, r)={y: f(x, y)=r}.
Proposition 2. A multifunction F is %.%.%.-stable at x, iff for each f belonging
to F(x,, yo) for any y, € F(x,) and for any re R

xo€ F-cl{x: xe F(B(f, x, r))}
implies
xo€ [ F(B(f, xo0, r —€)).

Proposition 3. A multifunction F is #.%.%.-stable at any x € X iff

M F-cl{x: xe F(B(f, x, r—¢))} =6r] {x: xe F(B(f, x, r—9))}
>0 >0
for any re R and for any f belonging to %(x, y) for any y € F(x).

For any (x, y) € X X Y denote by 0.%.(x, y) the set of all functions f: XX Y—
R which are o.us.c. at (x,y). If F(x,y)=0.%.(x, y), then we speak about
multifunctions &.%.-stable at a point x and the following characterization of such
multifunctions is possible.

Theorem 2. If F(x,) is compact, then F is ¥.9.-stable at x, iff Fe ¥.9.(x,). It
means that in the class of compact valued multifunctions the ¥.9%.-stable mul-
tifunctions are precisely the $-u.s.c. multifunctions.

Proof. Suppose F to be ¥.%.-stable at x,. Let K be a closed set in Y and
X0 € ¥-cl F~(K). The function f: XX Y— R defined by f(x, y) = x«(y), where xx
is the characteristic function of the set K, is o.us.c. on XXY and K=
B(f, x, 1). Therefore for any x € F~(K) there also holds x € F-(B(f, x, 1)). Thus
we have x, € ¥-cl {x: x e F(B(f, x, 1))} and according to Proposition 2 we have

xer) F({y: f(xo, y)=1-¢})=

=) {x: yeF(x), f(xo, y)=1—¢}.

e>0
With respect to our definition of the function f we obtain
xo€{x: ye F(x)nK} =F(K)
and therefore F is J-u.s.c. at x,.
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Let now Fe%.%U.(x)), feO0.%.(x,y,) for any yoeF(x), reR and

xoezL>J0 F*({y: f(x0, y)<r—g}).

Then there exists &>0 such that the set {xo} X F(x,), which is compact, is
a subset of the set W={(x, y): f(x, y)<r— &}, which is open. Thus we can use
the Wallace lemma and find two open sets U, V such that {x,} = U, F(x,) = V and
UxVcW.

From the P-us.c. of F it follows that a set A € &,, exists such that F(A)c V.
Since ¥, is a strongly local sieve the set A,=AnU belongs to &, and for any
x€ A, we have F(x)c V. Therefore f(x, y)<r—¢&<r for any ye F(x). Thus
xe F*({y: f(x, y)<r}) and F is &.%.-stable at x, because of Proposition 1.

If we denote 2,(x, y)={fe 0.%.(x, y): fis quasiconcave on X X Y}, then the
following characterization of 2,.¥.4%.-stable multifunctions is possible.

Theorem 3. Let X, Y be locally convex topological vector spaces and let F(x,)
be compact and convex. Then a multifunction F is 2,.%.9.-stable at x, iff
X0 € ¥-cl F~(K) implies x,€ F~(K) for any closed, convex set K.

Proof. For necessity take a closed convex set K such that x,e ¥-cl F7(K),
consider the function f(x, y) = xx(y) and follow the proof of the previous theorem.
Note that f is quasiconcave if the set {z: f(z)=r} is convex for any r e R.

To prove suffiency suppose that fe 2,(x,, y) for any y € F(x,), r€ R and

xoe¢L>J0 F*({y: f(xo, y)<r—g}).

It means there exists & >0 such that F(xo) = {y: f(xo, y)<r— &} or it is the same
as {xo} X F(xo)nB=0, where B={(x, y): f(x, y)=r—&}.

With respect to the assumptions given on the multifunction F and the function f
the set {xo} X F(xo) is convex and compact and the set B is convex and closed. Thus
we can separate these two sets by a closed hyperplane o ={(x, y): h(x, y)=c} in
this way

{x0} X F(xo) e Hy ={(x, y): h(x, y)>c},
BcH;={(x, y): h(x, y)<c}.

Since the function h is continuous it attains its minimum in the set {xo} X F(x,),
e. g. at the point (xo, ¥o). Denote h(xo, yo) = co>c.

Consider now the hyperplane Qo={(x, y): h(x,y)= CO;- c} . Denote

Ho={( ) hxy)>25,

Vo={yeY: (x, y)eHg}.
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c+c . . . A
It is obvious that h(xo, ¥)> L 5 for any y € V, and since h is continuous in linear

space there exists a neighbourhood U, of x, such that

Co+ c_co—c_co+3c

2 4 4
for any (x, y)e U, X V,. Thus Uy X VonB=4.

On the other hand {x,} X F(x,) = H, and so F(x,) = V;. The set V, is open and
its complement Y\ V, is convex. Thus the assumption laid upon F provides the
existence of a set A € %, such that F(x)c V, for any xe A.

Now if we take Ag=AnU,e %, then {x} X F(x)c U, X V, and therefore
f(x, y)<r—eg<r for any x€ A, and y € F(x). Thus xe F*({y: f(x, y)<r}) and
from Proposition 1 we have F is 2,.%.%.-stable at x,.

The following simple examples show that the compactness of F(x,) is not
a necessary condition for v to be o.u.s.c., but it cannot be omitted. In these
examples X, Y are equal to the set of reals with the usual topology.

Example 1. Let F(0)=R,
F(x)={0} if x#0

and f: R X R— R be an arbitrary function. Then v(0) = (0, 0) and v(x) = f(x, 0)
if x# 0. Now if f is o.u.s.c., then there exists a neighbourhood U of the point 0 such
that f(0, 0) + € >f(x, 0) for any x € U and therefore v(0) + € > v(x).

Example 2. Let F(x)= R for any x € R and let f(x, y) = xy. Then v(0) =0 and
v(x) =+ for any x#0. We see v is not o.u.s.c. at 0.

In the case when an objective function of only one variable y € Y is considered
the compactness of F(x,) in the two previous theorems can be omitted as it was
done for the order upper semicontinuity in [4].

Now we shall study the ¥-order lower semicontinuity of a function v. Again
some notations and new notions are needed. Denote

F.O0.L(x)={v: X—>R: v is F-ols.c. at y},
P.L.(x)={F: X->Y: Fis J-ls.c. at x}.

h(x, y)> >c

For any (x, y)e XX Y denote by %(x, y) an arbitrary subset of the set of all
functions f: X X Y— R which are order lower semicontinuous at a point (x, y)
and further denote

4.9.0.L.(x)={(F: X>Y: ve¥.0.%.(x) forany f
belonging to 9(x, y) for any ye F(x)}.

As we did in the first part of this section we shall characterize the set
4.9.0.2.(x). The first characterization uses the following concept of a stable
multifunction.
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Definition 7. A multifunction F: X— Y is said to be 4.%.%.-stable at a point
xo € X if for any £ >0 and for any f belonging to 4(x,, y,) for any y, € F(x,), there
exists a set A € &,, such that

F(x)n{y: f(x, y)>v(x)—¢€}+0

for any xe A.
Evidently it means that for any x € A there holds

xe F({y: f(x, y)>v(x)—€}).

Theorem 4. The 4.¥.%.-stable multifunctions are precisely those that preserve
the $-o.ls.c. of the family 4. Thus

F is 4.%.%.-stable at x, iff F€e 4.%.0.%.(x).

Proof. Suppose F to be 4.¥.%.-stable at x,. Let f be from the set 4(x,, yo) for
any y, € F(x,) and let €>0. Then there is a set A € &, such that for any x € A there
exists y, € F(x) satisfying

f(x9 yx) > U(XO) —E&.

From the definition of v we have v(x)=f(x, y.)>v(x)—¢€.
Now if Fe 4.9.0.%.(xo) and f € 9(x,, yo) for any y, € F(x,), then v e ¥.0.£.(x,)
and so for any €>0 we have a set A € &, such that

v(x)>v(x)—€

for any xe A.
From the property of the supremum there exists y, € F(x) such that

f(x, y.)>v(x)—e&.
Therefore for any x € A we obtain xe F-({y: f(x, y)>v(x)—¢}).

Proposition 4. A multifunction F is §.¥.%.-stable at x, iff for any r € R and for
any f belonging to 9(x,, yo) for any y, € F(x,)

xoeel;!) F~({y: f(xo, y)>r+¢€})

implies the existence of a set A € ¥, such that

xeF({y: f(x,y)>r})

for any xe A.

Proof. Let F be 4.¥.%.-stable at x, and the first part of the implication holds.
Then & >0 exists such that x,e F-({y: f(%, y)>r+ &)}). Thus we have

v(x0)>r+ &,.
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From the 4.¥.%.-stability of F there is a set A € &,, such that
xeF({y: f(x, y)>v(x)—&})
for any x € A. Since v(xo) — £>r we obtain
xe F({y: f(x, y)>r}).
Now let fe 9(xo, yo) for any y,€ F(xo), £&>0 and let the implication be valid.
Put r,=v(xo) — &. Evidently
Xo eELJ) F({y: f(xo, y)>ro+€)})

and therefore a set A € &,, must exist such that
xe F-({y: f(x, y)>ro=v(x0) — &})

for any x € A.

In the following two propositions we use the notation D(f, x, r)={y:
fx, y)<r}.

Proposition 5. A multifunction F is 4.%.%.-stable at a point x, iff for any r € R
and for any f belonging to %(x,, yo) for any y, € F(xo)

xo€ F-cl{x: xe F*(D(f, x, r))}
implies
xo€ ) F*(D(f, xo, r + €)).

e>0
Proof. However, we must only notice that if we denote the implication in
Proposition 4 as
P>Q,
then in this proposition we have an implication

non Q=>non P.

Proposition 6. A multifunction F is §.¥.%.-stable at any x € X iff for any re R
and for any f belonging to %(x, y) for any x € X and any y € F(x)

N F-cl{x: xe F*(D(f, x, r+€))} =) {x: xe F*(D({, x, r+9))}.

e>0

Proof. Suppose the 4.¥.%.-stability of F and let us prove the equality. Since
one inclusion is evident we need only to prove that

) F-cl{x: xe F*(D(f, x, r+¢€))} =) {x: xe F*(D(f, x, r+8))}.

e>0

Let x, belong to the left set and suppose there is &, >0 such that
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xo& {x: xe F*(D(f, x, r+ 80))}. Thus v(xo) >+ &, and the 4.%.%.-stability of F
provides the existence of a set A € &,, such that

xe F‘({y: f(x, y)>v(x) ‘%> r +%})

for any xe A. Therefore xo ¢ ¥-cl {x: xeF* (D(f, X, r+%))} , which yields

a contradiction.
Now suppose the equality holds. Let f € §(xo, o) for any y, € F(x,), r € R and let
xo€ ¥-cl{x: xe F*(D({, x, r))}. Then

xo€[) F-cl{x: xe F*(D(f, x, r+¢€))}.

e>0

According to our assumption x,€ [ ) {x: xe F*(D(f, x, r+ 8))} holds and there-
6>0

fore xo € F*(D(f, xo, r + 8)) for any 6 >0. The 4.¥.%.-stability of F follows from
Proposition 5.

In the last two theorems we give only an outline of the proofs.

For any (x, y) e XX Y denote by 0.%£.(x, y) the set of all functions f: XX Y—
R which are o.Lls.c. at (x, y). If 4(x, y)=0.%.(x, y), we speak about &..Z.-stable
multifunctions.

Theorem 5. The &.%.-stable multifunctions are precisely the &-1.s.c. ones. Thus
F is &¥.%.-stable at x, iff Fe ¥.%.(x).

Proof. The necessity can be proved by using a characteristic function of
a certain closed set and Proposition 5. However, it will not be done because
a similar procedure was used in the proof of Theorem 2.

Sufficiency. Proposition 4 as a characterization of &.Z.-stability is used.

If we denote 2,(x, y)={fe 0.%.(x, y): f is quasiconvex in X X Y}, then the
following characterization of 2,.%.%.-stable multifunctions is possible. Note that f
is quasiconvex if the set {z: f(z)<r} is convex for any re R. -

Theorem 6. Let X, Y be locally convex topological vector spaces. Then
a multifunction F is 2,.%.%.-stable at a point x, iff xo€ $-cl F*(K) implies
xo € F*(K) for any closed convex set K.

Proof. The proof of the necessity will be again omitted since it is analogous to
the proof of the necessity in Theorem 3.

Sufficiency. We use Proposition 4 as a characterization of the &.Z.-stability.
Thus we shall have £>0 and y, € F(x,) such that

f(xo, Yo)>r+ &

and we can separate a point (xo, Yo) and the set D= {(x, y): f(x, y)<r+¢&} by
a closed hyperplane.
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Using a translation of this hyperplane we obtain a neighbourhood UX V of
(%o, Yo) such that (UX V)nD =# and the complement of V is convex.
Provided that F is 2,.¥.%.-stable at x, we can find a set A € &,, such that

xeF({y: f(x,y)>r+e&>r})

for any xe A.
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O MHOI'O3HAYHBIX OTOBPAXEHHUAX, COXPAHAKINX ISOBIEHHYIO
HETIPEPBIBHOCTD

Ondrej Nather
Pesiome

B crartne BBOgHUTCA 110 06pa3ny [2] noxsiTHe 06061IEHHON MOTYHENPEPHIBHOCTH /ISt MHOTO3HAYHBIX
oToOpaxkeHHH M AN NEHCTBUTENbHBIX yHkumid. M3yyaeTcs kijacc MHOrO3HayHbIX OTOOpaxKeHHH,
COXPaHAIOIMX 0600LUIEHHYIO MOJYHENpPEephIBHOCTh AaHHOTO Kilacca (yHKUMA NMPH Omepanuu

v(x) =sup {f(x, y): yeF(x)}.

3pech nony4eHHsle pe3ynbTaThl SBISAIOTCH 0600LeHneM pe3ynbTaTos U3 [4].
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