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Math. Slovaca 36,1986, No. 4,407—416 

ON GENERALIZED SEMICONTINUITY-PRESERVING 
MULTIFUNCTION 

ONDREJ NATHER 

The basic problem of mathematical programming is to find the supremum v of 
the so-called objective function /: Y—> R over some set F of constraints. One of 
the most important questions is the question of stability of this optimal value v. 
This question can be formulated as follows. 

Let F: X—> Y be a multifunction, /: X x Y—> R be a function and let v: X—> R 
be defined as 

v(x) = sup{f(x, y): yeF(x)}. (*) 

Then we can ask under what conditions given on F the continuity, resp. semicon-
tinuity, of / is preserved in a certain way by v. 

This question was mostly solved for continual perturbations of v (see [1], [3], [4], 
[5], [7]). But we can also obtain similar results for quasicontinuity (see [6]), almost 
continuity, e.t.c. In order to unify these results we use the concept of the so-called 
.^-continuity, which includes these types of generalized continuity. This concept 
was introduced in [2] for functions and is applicable also for multifunctions. 

In the whole paper we suppose the objective function / and the function v to be 
finite. Note that all definitions can be modified and all theorems are valid also in 
the case when the values +<» or — «> are admitted. 

If not specified, X, Y denote general topological spaces and R denotes the set of 
reals with the usual topology. 

1. Local sieves and 5 -̂semicontinuity 

In [2] the following concepts are introduced. 
Definition 1. A family Sfm of subsets of X is called a local sieve at a point x0eX 

if: 
1. x0 e A for any A e Sf^, 
2. A c B and A e ^ implies BeSfm, 
3. ^ c Sf^, where ^ denotes the system of all neighbourhoods of a point x0. 
Definition 2. A local sieve 5^, is called strongly local if AnUeSf^ for any 

AeSf^ and any UeW*. 
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In everything that follows we shall consider only strongly local sieves. Examples 
of the sieves, which are not strongly local can be found in [2], where also the 
following concept is introduced. 

Definition 3. If Sf^ is a local sieve at a point x0 e X, we say the function f from X 
to Y is Sf-continuous at x0 if f~l(V) e Sf^ for any neighbourhood V of the point 
f(x0). 

If we consider real valued functions, we can introduce the concept of Sf 
-semicontinuity which we shall call 5^-order semicontinuity to distinguish it from 
the 5^-semicontinuity of multifunctions. In the following definitions we suppose 
that a local sieve Sf^ at a point JC0 is given. 

Definition 4. A function f: X—> R is said to be Sf-order upper (lower) 
semicontinuous at a point x0eX if for any e>0 there exists a set A e Sf^ such 
that f(x)<f(x0) + e (f(x)>f(x0) - e) for any xeA. 

Definition 5. A multifunction F: X—> Yis said to be Sf-upper (lower) semicon­
tinuous at a point x0eX if for any open set V such that V=> F(JC0) (F(x0)n V=£ 0) 
there exists a set A e Sf^ such that F(x) c= V (F(jc)n V-i-= 0) for any xeA. 

We shall denote by 5^-o.u.s.c, 5^-o.l.s.c, 5^-u.s.c, Sf-\.s.c. the 5^-order upper 
semicontinuity, the 5^-order lower semicontinuity, the 5^-upper semicontinuity, the 
5^-lower semicontinuity respectively. 

Suppose that a local sieve Sfx is given for any xeX. Then a set Gc= X i s said to 
be 5^-open if G belongs to Sfx for any xeG. The 5^-closure of a set H can be 
defined as the set of all JC e Xsuch that HnAi= 0 for any A e Sfx. Let the 5^-closure 
be denoted by Sf-c\ H and a set H will be called ^-closed if Sf-c\H=H. It is 
evident that a set G is 5^-open iff a set X\G is 5^-closed. 

If we denote 

F + ( V ) = {JC: F(jc)c=V}, 

F - ( V ) = {JC: F(jc)nW=0}, 

we can characterize the 5^-semicontinuity in this way: 
A multifunction F: X-> Y is ^-u .s .c (^-l.s.c) at a point JC e X iff F+( V) e Sfx 

(F~(V) e Sfx) for any open set V such that F(JC)CZ V (F(jc)n V-£0). A multifunc­
tion F is Sf-u.s.c. (Sf-\.s.c) at JC e X iff JC e F~(H) (x e F+(H)) for any closed set 
H e Y such that JC e Sf-c\ F~(H) (x e Sf-c\ F+(H)). 

By means of special selection of a local sieve we can obtain some known types of 
generalized continuity resp. semicontinuity. 

If Sfx = °ltx, we obtain the continuity with respect to the topology given on X. 

If Sfx = {A: JC e A, JC e A°}, we obtain the quasicontinuity. Here the symbols A°, 
A are used for the interior, the closure of the set A respectively. 

If Sfx = {A: xeA, J C G ( A ) ° } , we obtain the almost continuity. 
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If X = Rn, then the approximate continuity can be defined as the S -̂continuity, 
where the local sieve at a point x is formed by all the sets which contain x as 
a density point. 

For definitions of the above mentioned concepts see [2], where all these sieves 
are proved to be strongly local, too. 

2. Preservation of 5 -̂semicontinuity 

In this Section we want to find a class of multifunctions for which the S -̂order 
semicontinuity of an objective function in (*) is preserved. First we shall examine 
the S^-o.u.s.c. We shall introduce similar notations as in [4], where this question is 
solved, but only for the objective function of one variable y e Y. 

More precisely it will be as follows. Denote 

<f.G.qi.(x) = {v: X->R: v is ^-o.u.s.c. a t*} , 

<fM.(x) = {F: X-> Y: F is ^-u.s.c. at x}. 

For any (x, y) e X x Y denote by 3*(x, y) an arbitrary subset of the set of all 
functions /: X x Y--> R which are order upper semicontinuous at a point (x, y) 
and further denote 

&.<f.€M.(x) = {F: X-> Y: v e <f.€M.(x) for any / belonging 
to 3*(x, y) for any yeF(x)}. 

Our aim is to investigate a connection between Sf.°il.(x) and 3^.Sf.6M.(x). For 
this purpose we need another concept already introduced in [4]. 

Definition 6. A multifunction F: X—> Y is said to be SF.ffM.-stable at a point 
x0eX if for any e > 0 and for any f belonging to 2F(x0, y0) for any y0 e F(x0) there is 
a set A e .9L such that ' XQ 

F(x)cz{y: f(x, y)<v(x0) + e} 

for any xeA. 
Evidently it is the same as 

Ac=F+({y: f(x, y)< v(x0) + e}). 

The ideas of the proofs of the next theorem and of the propositions following it 
are not very different from the ideas used in [4]. Thus we shall introduce them 
without proofs, later we shall give the proofs of an analoguous theorem and 
propositions for the 5 -̂order lower semicontinuity. 

Theorem 1. The cF.Sf. °U. -stable multifunctions are precisely those that preserve 
the Sf-o.u.s.c. of 3*. It means that 

Fis &.<f.°U.-stable atx0 iffFe &.&>.€.91.(xo). 
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Proposition 1. The multifunction F is SF.tfM.-stable at x0 iff for each f 
belonging to 2F(x0, y0) for any y0eF(x0) and for any reR 

xoelj F+({y: f(x0,y)<r-e}) 
e>0 

implies the existence of a set A e Sf^ such that for any xeA there holds 

xeF+({y: f(x,y)<r}). 

Denote B(f, x, r) = {y: f(x, y)^r}. 
Proposition 2. A multifunction Fis ^.iPM. -stable at x0 iff for each f belonging 

to :J(jc0, yo) for any y0eF(x0) and for any reR 

jc0 e <f-c\ {x: x e F~(B(f, x, r))} 
implies 

xoepl F~(B(f,x0, r-e)). 
e>0 

Proposition 3. A multifunction Fis 2F.9*.°U.-stable at any xeX iff 

n^-cl{jc: JCGF"(B(/,JC, r-E))} = n { ^ : xeF~(B(f, x, r-d))} 
c>0 6>0 

for any reR and for any f belonging to 9<(x, y) for any y eF(x). 
For any (x,y)eXxYdenote by 6.°U.(x, y) the set of all functions /: Xx Y-> 

R which are o.u.s.c. at (x,y). If 3<(x, y) = G.°U.(x, y), then we speak about 
multifunctions &>. ^.-stable at a point JC and the following characterization of such 
multifunctions is possible. 

Theorem 2. If F(x0) is compact, then F is 9.°U. -stable at x0 iffFe Sf.<t£.(xo). It 
means that in the class of compact valued multifunctions the if. °U.-stable mul­
tifunctions are precisely the tf-u.s.c. multifunctions. 

Proof. Suppose F to be if.^.-stable at JC0. Let K be a closed set in Y and 
jc0 e <f-c\ F~(K). The function /: X x Y-> R defined by /(JC, y) = /K(y) , where XK 
is the characteristic function of the set K, is o.u.s.c. on X x Y and K = 
B(f, x, 1). Therefore for any xeF~(K) there also holds xeF~(B(f, x, 1)). Thus 
we have x0 e Zf-c\ {x: x e F'(B(f, JC, 1))} and according to Proposition 2 we have 

x0e{\F~({y: f(x0, y)>\-e}) = 
£>0 

= D { * : 3yeF(x), f(x0,y)^l-e). 
e>0 

With respect to our definition of the function / we obtain 

JC0G{JC: 3yeF(jc)nK} = F"(K) 

and therefore F is 5^-u.s.c. at JC0. 
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Let now FetfM.(xo), feGM.(x*,yo) for any y0eF(xo), reR and 

*>eU F*({y: f(x0, y)<r-e}). 
e>0 

Then there exists e 0 >0 such that the set {JC0} X F(JC0), which is compact, is 
a subset of the set W= {(x, y): f(x, y)<r — e0}, which is open. Thus we can use 
the Wallace lemma and find two open sets U, V such that {JC0} c U, F(x0) a V and 
Ux VaW. 

From the 5^-u.s.c. of F it follows that a set A e S^ exists such that F(A) a V. 
Since 5^ is a strongly local sieve the set A0 = AnU belongs to 5^ and for any 
jceA0 we have F(JC)C V. Therefore f(x, y)<r— e0<r for any yeF(jc). Thus 
xeF+({y: f(x, y)<r}) and F is Sf.^.-stable at JC0 because of Proposition 1. 

If we denote SI(JC, y) = {fe 6.°U.(x, y): f is quasiconcave o n X x Y } , then the 
following characterization of 2LX.Sf.^.-stable multifunctions is possible. 

Theorem 3. Let X, Y be locally convex topological vector spaces and let F(JCO) 

be compact and convex. Then a multifunction F is Ix.tfM.-stable at JC0 iff 
jc0 e 5 -̂cl F~(K) implies x0 e F~(K) for any closed, convex set K. 

Proof. For necessity take a closed convex set K such that jc0e S^-clF"(K), 
consider the function f(x, y) = fa(y) and follow the proof of the previous theorem. 
Note that / is quasiconcave if the set {z: f(z)^r} is convex for any reR. 

To prove suffiency suppose that fe %(xo, y) for any y eF(x0), reR and 

Xoe\J F+({y: f(x0,y)<r-e}). 
e>0 

It means there exists e0 > 0 such that F(JC0) c {y: /(JC0, y) < r - e0} or it is the same 
as {JC0} xF(jc0)nB = 0, where B = {(JC, y): f(x, y)^r-e0}. 

With respect to the assumptions given on the multifunction F and the function / 
the set {jc0} X F(JC0) is convex and compact and the set B is convex and closed. Thus 
we can separate these two sets by a closed hyperplane g = {(JC, y): h(x, y) = c} in 
this way 

{x0}xF(xo)c-H; = {(x,y): h(x,y)>c}, 

Bc-H~ = {(x,y): h(x,y)<c}. 

Since the function h is continuous it attains its minimum in the set {JC0} x F(xo), 
e. g. at the point (JC0, y0). Denote /I(JC0, y0) = Co>c. 

Consider now the hyperplane p0 = j(jc, y): h(x, y) = -° [. Denote 

H+={(*,>>): h(x,y)>*±£y 

V0 = { y e Y : (x0,y)eH+
eo). 
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It is obvious that h(x0, y ) > ° for any yeV0 and since h is continuous in linear 

space there exists a neighbourhood U0 of x0 such that 

1 / \ ^ C O T C C0 C CO ~t~ .3 C 

h(x, y)>~2 4 ~ = — 4 ~ " c 

for any (JC, y)e U0X V0. Thus U 0 x VonB = 0. 
On the other hand { JC0} X F(JC0) C= H+ and so F(JC0) c V0. The set V0 is open and 

its complement y \ V0 is convex. Thus the assumption laid upon F provides the 
existence of a set A e S^ such that F(JC) <= V0 for any JC e A. 

Now if we take A0 = AnU0e9>
xo, then {JC} x F(JC)C U 0 x V0 and therefore 

/(*> y ) < r —£o<r for any jce A0 and yeF(jc). Thus JC e F+({y: f(x, y)<r}) and 
from Proposition 1 we have F is 2LX.&.^.-stable at JC0. 

The following simple examples show that the compactness of F(JC0) is not 
a necessary condition for v to be o.u.s.c, but it cannot be omitted. In these 
examples X, y are equal to the set of reals with the usual topology. 

Examp l e 1. Let F(0) = R, 
F(JC) = { 0 } if JC^=0 

and /: R x J?-> R be an arbitrary function. Then v(0)^f(0, 0) and v(x) = /(JC, 0) 
if JC=£ 0. Now if / is o.u.s.c, then there exists a neighbourhood U of the point 0 such 
that /(0, 0) + e >/ (JC, 0) for any JC e U and therefore v(0) + e > v(x). 

Examp l e 2. Let F(JC) = R for any xeR and let /(JC, y) = jcy. Then v(0) = 0 and 
v(x) = +oo for any JC=£0. We see v is not o.u.s.c. at 0. 

In the case when an objective function of only one variable y e Y is considered 
the compactness of F(JC0) in the two previous theorems can be omitted as it was 
done for the order upper semicontinuity in [4]. 

Now we shall study the 5^-order lower semicontinuity of a function v. Again 
some notations and new notions are needed. Denote 

Sf.€.5£.(x) = {v: X->R: v is ^-o.l.s.c at y}, 

&.2.(x) = {F: X->Y: F is SM.s.c. at JC}. 

For any (JC, y) e X X y denote by ^(JC, y) an arbitrary subset of the set of all 
functions /: X x y—• R which are order lower semicontinuous at a point (JC, y) 
and further denote 

<S.Sr.€.££.(x) = {F: X-^Y: veSf.6.t£.(x) for any / 
belonging to ^(x, y) for any yeF(jc)}. 

As we did in the first part of this section we shall characterize the set 
t&.y.O.^Xx). The first characterization uses the following concept of a stable 
multifunction. 
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Definition 1. A multifunction F: X—> Y is said to be ^.Sf.SE. -stable at a point 
x0eX if for any e>0 and for any f belonging to ^(xo, y0) for any y0 e F(x0), there 
exists a set A e Sfm such that 

F(x)n{y: f(x, y)>v(xo)-e} =£0 

for any xeA. 
Evidently it means that for any x e A there holds 

x e F~({y: f(x, y) > v(x0) - e}). 

Theorem 4. The ^.Sf.SE. -stable multifunctions are precisely those that preserve 
the Sf-o.l.s.c. of the family <§. Thus 

F is <S.Sf.SE.-stable at xo iff FeV.Sf.O.SeXxo). 

Proof. Suppose F to be ^.Sf.SE.-stable at x0. Let / be from the set (̂JCO, y0) for 
any y0 e F(xo) and let e > 0. Then there is a set A e Sf^ such that for any x e A there 
exists yx e F(x) satisfying 

f(x,yx)>v(x0)-e. 

From the definition of v we have v(x)^f(x, yx)>v(x0) — e. 
Now if Fe (S.Sf.e.Se^Xo) and fe (S(x0, y0) for any y0 e F(x0), then v e Sf.C.5e.(x0) 

and so for any e>0 we have a set A e Sf^ such that 

v(x)>v(xo)-e 

for any xeA. 

From the property of the supremum there exists yx e F(x) such that 

f(x, yx)>v(x0)-e. 

Therefore for any xeA we obtain xeF~({y: f(x, y)>v(xo) —e}). 
Proposition 4. A multifunction Fis ^.Sf.SE. -stable at Xo iff for any reR and for 

any / belonging to ^(JC0, y0) for any y0 e F(xo) 

x0e\jF-({y: f(xo, y)>r + e}) 
e>0 

implies the existence of a set A e Sf^ such that 

xeF~({y: f(x,y)>r}) 

for any xeA. 
Proof. Let F be ^.Sf.SE.-stable at Xo and the first part of the implication holds. 

Then £o>0 exists such that JCoeF"({y: /(xo, y )> r + £o}). Thus we have 

v(x0)>r-\-e0. 

413 



From the (S.&>.!£.-stability of F there is a set A e S^ such that 

x e F~({y: f(x, y) > v(x0) - e0}) 

for any xeA. Since v(x0) — e0>r we obtain 

xeF~({y: f(x,y)>r}). 

Now let fe <3(x0, y0) for any y0eF(x0), £0>0 and let the implication be valid. 
Put r0 = v(xo) — e0. Evidently 

x0e\J F~({y: f(x0, y)>r0 +e}) 
e>0 

and therefore a set A 6 Sf^ must exist such that 

xeF~({y: f(x, y)>r0 = v(x0)-e0}) 

for any xe A. 
In the following two propositions we use the notation D(f, x, r) = {y: 

f(x,y)^r}. 

Proposition 5. A multifunction Fis <&.&.!£. -stable at a point x0 iff for any reR 
and for any f belonging to ^(xo, y0) for any y0 e F(x0) 

x0 e y-c\ {x: x e F+(D(f, x, r))} 
implies 

x0er\F+(D(f,Xo,r + e)). 
e>0 

Proof. However, we must only notice that if we denote the implication in 
Proposition 4 as 

P=»Q, 

then in this proposition we have an implication 

non Q=>non P. 

Proposition 6. A multifunction F is <S. V.!£. -stable at any xeX iff for any reR 
and for any f belonging to <&(x, y) for any xeX and any y eF(x) 

n^-cl{jc: xeF+(D(f,x,r + e))} = r\{x: xeF+(D(f, x, r+6))}. 
e>0 6>0 

Proof. Suppose the ^.^..^.-stability of F and let us prove the equality. Since 
one inclusion is evident we need only to prove that 

f l ^-cl{x: xeF+(D(f,x, r + e))}czf] {x: xeF+(D(f,x, r + d))}. 
e>0 6>0 

Let x0 belong to the left set and suppose there is 60>0 such that 
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JCO£ {x: xeF+(D(f, x,r+ 80))}. Thus v(x0)>r+80 and the « . ^ . instabi l i ty of F 
provides the existence of a set A e 5 ^ such that 

80^ , <501 єҒ-({y: /( J C,y)> v(Җ ł)-Ş> г +-|}) 

for any J C G A . Therefore jc0^6^-cl| JC: x eF+1Dyf, JC, r + -yj j L which yields 

a contradiction. 
Now suppose the equality holds. Let fe ^(x0, y0) for any y0 e F(x0), reR and let 

jc0 e 5̂ -cl {JC: JC e F+(D(f, x, r))}. Then 

jcoefl ^-cl{x: xeF+(D(f, x, r + e))}. 
e>0 

According to our assumption JC0 e H {JC: JC e F+(D(f, x, r + 8))} holds and there-
6 > 0 

fore jc0 e F+(D(f, x0, r + 8)) for any 8 > 0 . The «.^.i?.-stability of F follows from 
Proposition 5. 

In the last two theorems we give only an outline of the proofs. 
For any (x,y)eXxYdenote by 6.££.(x, y) the set of all functions / : Xx Y-> 

R which are o.l.s.c. at (JC, y). If <S(JC, y) = €.SE.(x, y), we speak about 5^.^.-stable 
multif unctions. 

Theorem 5. The &.££.-stable multifunctions are precisely the Sf-l.s.c. ones. Thus 
F is tf.Se.-stable at x0 iff Fe ^.i?.(jCo). 

Proof. The necessity can be proved by using a characteristic function of 
a certain closed set and Proposition 5. However, it will not be done because 
a similar procedure was used in the proof of Theorem 2. 

Sufficiency. Proposition 4 as a characterization of SP.2E.-stability is used. 
If we denote S2(JC, y) = {fe 6.5£.(x, y): / i s quasiconvex in X x Y}, then the 

following characterization of izV^.-S^.-stable multifunctions is possible. Note that / 
is quasiconvex if the set {z: f(z)^r} is convex for any reR. 

Theorem 6. Let X, Y be locally convex topological vector spaces. Then 
a multifunction F is m2.Sf .££.-stable at a point x0 iff x0 e S -̂cl F+(K) implies 
jc0 e F+(K) for any closed convex set K. 

Proof. The proof of the necessity will be again omitted since it is analogous to 
the proof of the necessity in Theorem 3. 

Sufficiency. We use Proposition 4 as a characterization of the S^.if.-stability. 
Thus we shall have £o>0 and y0eF(x0) such that 

f(xo, y0)>r + e0 

and we can separate a point (JCO, yo) and the set D = {(JC, y): /(JC, y) ^ r + e0} by 
a closed hyperplane. 
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Using a translation of this hyperplane we obtain a neighbourhood Ux V of 
(x0, y0) such that (Ux V)nD = 0 and the complement of V is convex. 

Provided that F is %.5f.S£.-stable at JC0 we can find a set A e 5^, such that 

xeF~({y: /(*, y ) > r + e0>r}) 

for any xeA. 
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О МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЯХ, СОХРАНЯЮЩИХ ОБОБЩЕННУЮ 
НЕПРЕРЫВНОСТЬ 

Опдге] Ш1пег 

Резюме 

В статье вводится по образцу [2] понятие обобщенной полунепрерывности для многозначных 

отображений и для действительных функций. Изучается класс многозначных отображений, 

сохраняющих обобщенную полунепрерывность данного класса функций при операции 

V(x) = $ири(x, у): уеР(х)}. 

Здесь полученные результаты являются обобщением результатов из [4]. 
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