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ON A THEOREM OF POPA AND NOIRI 
ON M U L T I F U N C T I O N 

JILING C A O * — JULIAN DONTCHEV** 

(Communicated by Eubica Hold) 

ABSTRACT. The aim of this note is to correct a recent result of Noiri and Popa 
from [Popa, V.—Noiri, T.: On upper and lower a-continuous multifunctions, 
Math. Slovaca 43 (1993), 477-491] on mult if unctions. 

In [3], Theorem 4.7 claims that if F, G: X -» Y are upper a-continuous 
and Y is Hausdorff, then A = {x G X : F(x) n G(x) ^ 0} is a-closed in X. 
Unfortunately, this result is true only under some additional assumptions. We 
have a counterexample to Theorem 4.7 from [3]. 

In what follows, all spaces are assumed to be topological. Recall first that a 
subset A of a topological space X is called an a -set or a -open ([2]) if A = U\N, 
where U is open and N is nowhere dense. Complements of a-open sets are called 
a-closed. The family a(X) of all a-open sets in X is a topology for X ([2]). 
A multifunction F: X -> Y is called upper a-continuous ([3; Theorem 3.3] if 
F + ( V ) is a-open in X for any open set V of Y. A subset A of a space X is 
called a-paracompact ([1]) if for every open cover V of A in X , there exists a 
locally finite open cover W of A which refines V. Furthermore, a multifunction 
F: X -> Y is called punctually a-paracompact ([3]) if F(x) is a-paracompact 
for each point x G X. 

E X A M P L E 1. Let R be the real line with the usual topology. Let Q and P be 
the sets of all rational and irrational numbers, respectively. 

Define F , G : R - ^ E a s follows: F(0) = Q and F(x) = x for every x ̂  0; 
G(0) = P and G(x) = x for every x ̂  0. Clearly the range is Hausdorff. It is 
not difficult to verify that F and G are upper a-continuous. However, the set 
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A = {x e X : F(x) n G(x) ^ 0} = R \ {0} is not a-closed, since no singleton 
in the real line is a-open. 

Now, we present the correct version of [3; Theorem 4.7]. 

LEMMA 2. In Hausdorff spaces, disjoint a -paracompact sets can be separated 
by disjoint open sets. 

THEOREM 3. Let F,G: X —> Y be both upper a-continuous and punctually 
a-paracompact. If Y is Hausdorff, then A = [x G X : F(x) n G(x) ^ 0} is 
a-closed in X. 

P r o o f . Let x £ A. Then F(x) n G(x) = 0. Since F and G are punctually 
a-paracompact, then F(x) and G(x) are a-paracompact subsets of Y. Since Y 
is a Hausdorff space, then by Lemma 2, there exist open sets U and V such that 
F(x) C U, G(x) C V and U n V = 0. Since F and G are upper a-continuous, 
F+(U) and G+(V) are a-open sets. Put W = F+(U) n G+(V). Then x G W, 
W e a(X) and W n .4 = 0. Thus A is a-closed in K. • 
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