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(Communicated by Martin Skoviera ) 

ABSTRACT. Locally regular coloured graphs are a generalization to higher di­
mensions of the concept of valency regular maps (or hypermaps) on surfaces. In 
this paper, we study which of the closed Euclidean 3-manifolds admit a locally 
regular graph. We prove tha t there is only one manifold which cannot admit a lo­
cally regular graph and we give examples of such graphs for the other nine closed 
Euclidean manifolds. 

In t roduct ion 

The use of coloured graphs has proved to be an important combinatorial 
method of representation of P. L. manifolds. It was originally introduced by 
M. P e z z a n a and it has been developed by several authors, see [FGG] as a 
survey of the techniques of this method. It is based on the possibility of any 
n-manifold to admit a triangulation which can be represented by a coloured 
graph. Independently, A. V i n c e has introduced in [VI] an equivalent con­
cept called combinatorial map. In this sense, combinatorial maps (or coloured 
graphs which will be the term used in this paper) are a generalization to higher 
dimensions of the concept of a map on a surface. In [V2], A. V i n c e defines 
the generalization of the notion of regularity: a coloured graph T is said to be 
regular if its automorphism group Aut ( r ) acts transitively on the set of ver­
tices of r . A weaker concept of regularity for maps on surfaces is the concept 
of valency regular maps or maps of type (ra, n ) , where each polygonal cell has 
exactly n edges, and there are exactly m faces meeting at each vertex. This 
concept of regularity has been adapted by A. F. C o s t a to coloured graphs 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 57M15, 57M50, 57N10. 
K e y w o r d s : Euclidean 3-manifold, coloured graph, Coxeter group, crystallographic group. 
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in [CI] and called locally regular coloured graphs. Since regularity is a very 
strong requirement for coloured graphs, it is natural to ask which manifolds can 
be represented by locally regular coloured graphs. For instance, in the case of 
Euclidean surfaces, there are only regular maps (regular coloured graphs) on 
the torus, however the Klein bottle admits valency regular maps (locally regu­
lar graphs). A. C o s t a in [CI] has classified and described the locally regular 
graphs for the 3-manifolds with spherical geometry. He also states in [C2] with­
out proof that, for the case of Euclidean 3-manifolds, there is one orient able 
case which cannot be represented by a locally regular graph. In Section 3, we 
present a proof of this assertion and we give in Section 4.1 and 4.2 examples of 
locally regular coloured graphs representing the remaining orientable and non-
orientable Euclidean manifolds respectively. With these examples we also prove 
that these nine Euclidean manifolds can be obtained by identification of the 
faces of a cube. 

1. Coloured graphs and Coxeter representation 

In this section, we present some of the basic definitions and well-known re­
sults. (See [FGG] and the references, [BM], [VI], and [V2]). 

DEFINITION 1.1. An (n-\-T)-coloured graph is a pair (T,7) where T = 
(V(T),E(T)) is a connected graph (V( r ) and E(T) denote the sets of vertices 
and edges of T respectively) with all vertices of degree n + 1, and 7: E(T) —> I 
= { 0 , 1 , . . . , n} is a map from E(T) to the colour set / , called edge-coloration, 
such that 7(e1) 7̂  7(e2) for any two adjacent edges e1 5e2 £ E(T). 

If (T,7) is an (n+1)-coloured graph, and J is any subset of the colour set / , 
T 7 will denote the subgraph ( V ( r ) , 7 _ 1 ( J ) ) with the induced coloration. Each 
connected component of Tj is called a J-residue or a residue of rank ft J . 

For the sake of conciseness, we shall omit the edge-coloration and write T 
instead of (T,7) . 

Associated with each (n+1)-coloured graph T there is an n-dimensional 
pseudocomplex K(T), whose k-simplexes are in 1-1 correspondence with the 
residues of rank n — k. K(T) is constructed in the following way: take an 
n-dimensional simplex an(x) for each x G V(T) and label its vertices with 
the elements of I; this induces a coloring of the (n—l)-faces in an(x) giving to 
each face the colour of the opposite vertex. Then we identify the (n—1) -faces of 
an(x) and an(y) with colour i if and only if x,y G V'(r) are joined in T by an 
edge e and 7( e) = i- K(T) is said to be represented by T. 
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Some combinatorial properties of the graph T are related to topological prop­
erties of the pseudocomplex K(T). For instance, T is a bipartite graph (i.e., there 
is a coloration by black and white of the vertices of T such that any two adjacent 
vertices have different colours) if and only if K(T) is orientable (see [FGG] and 
[VI])-

DEFINITION 1.2. Let ( r , 7 ) and (T',7') be two coloured graphs over I. An 
m-covering (<p,<p)' ( r , 7 ) —» (T',7') is a function <p: V(T) —• V( r ' ) and a 
bijection (p: I —> I such that: 

1. if x,y E V(T) are i-adjacent and (p(i) = j , then <p(x),(p(y) E V(T') are 
j-adjacent in (I", 7 ' ) ; 

2. ip is a bijection when restricted to the rank-m residues. 

Observe that an m-covering is automatically an (m—1) -covering. An ((/-cover­
ing is called an isomorphism, and if (T,7) = ( r ' , 7 7 ) , it is an automorphism. 
A covering naturally induces a branched covering / : K(T) —» K(Tf) of the 
underlying pseudocomplexes, and if K(T) and K(Tf) are manifolds, then, for 
each m > 2, an m-covering induces an unbranched covering (see [VI]). 

The following definitions are the generalization of the concepts of regular and 
valency regular maps on a surface and are given in [VI] and [CI] respectively. 

DEFINITION 1.3. A coloured graph r is regular if the automorphism group 
Aut( r ) of T acts transitively on V ( r ) . 

r is said to be a locally regular coloured graph if for each {i, j} C I all the 
{i, j}-residues have the same number of vertices. 

If T is regular, then it is also locally regular, but the converse is not true . 
The following result, given in [CI; Theorem 3.4], relates crystallographic groups 
with locally regular coloured graphs: 

THEOREM 1.4. Let T be a locally regular coloured graph such that K(T) is 
a closed n-manifold. Then there is a regular graph T such that K(T) is iso­
morphic to a tessellation of X by geometric n-simplexes, where X is the hy­
perbolic, spherical or Euclidean n-dimensional space, and there is a subgroup 
G < Au t ( f ) , G = TT1(K(T)) . acting freely on X such that T/G is isomorphic 
to r . 

In [VI], V i n c e obtained a group theoretic representation of a coloured graph 
called the Coxeter representation (a generalization of the relation between maps 
and transitive permutation representations of the extended triangle groups, see 
[JS]). 

Let T be a coloured graph over J, and let denote by 2m. • the 1cm of the 
number of vertices of all {i,j}-residues. The Coxeter Diagram D(T) of T is 
obtained by representing each i G / as a node labelled i, and connecting nodes 
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i and j by a line labelled ra-•. By convention, if m. • = 2, the line is omitted, 
and if m-- = 3, the line label is omitted. 

If W is a group generated by involutions {ri\ i £ I}, and G is a subgroup of 
W, r (W, G) will denote the /-coloured graph defined as follows: the vertices of 
T(W,G) are the right cosets of W/G, and two vertices v and v' are i-adjacent 
if and only if v' = vr{. Now let T be a coloured graph over I with Coxeter 
diagram D(T). For each i e I define a permutation pi on V( r ) by p^t; = v' if 
v is i-adjacent to v'. Let P be the permutation group on V(T) generated by the 
{p{}, and let Pv be the stabilizer of a vertex v of I \ Now let S = (ri | i G / , 
r ? = (rirj)mij = l ) be the Coxeter group with diagram -D(r). Then we can 
define a homomorphism (f): S —> P such that r{ \-> p{. If we denote by G the 
preimage of the stabilizer of a vertex, i.e., G = (f)~1(Pv), then T = T(S, G), and 
it is called the Coxeter representation of T. 

Notice that if T is locally regular, all {i,j}-residues in T have the same num­
ber of vertices 2ra i j ;, and furthermore, if T represents a manifold, then G is a 
fixed-point-free subgroup of S . Thus the locally regular 4-coloured graphs rep­
resenting Euclidean manifolds have Coxeter representation T = T(S, G), where 
S is a rank 4 Euclidean Coxeter group (that is, S has a geometric realization 
as a subgroup of isometries of E 3 ) , and G < S is a crystallographic group with­
out fixed points, so the graph T has the same Coxeter diagram as S . Therefore, 
r ( S , {1}) is the Cayley graph of S , and it is isomorphic to the universal coloured 
graph r of r of Theorem 1.4, therefore S = Aut(T), where K(T) is isomorphic 
to a tessellation of E3 by Euclidean 3-simplexes and T(S,G) =i T(S , {1})/G. 

2. Rank 4 Euclidean Coxeter groups 

The possibilities for K>(S), where S belongs to the rank 4 Euclidean Coxeter 
groups, are limited to the three following cases in Figure 1, where each node 
k G {0,1, 2, 3} of I}(S^) represents a generator rk G S i , i = 1, 2, 3 . 

4 4 _ 4 
D(£i) : ô  "i) '2 (3 L>(£2): o) ^XT D(E3) 

F IGURE 1. Coxeter diagrams of S i } i = 1 ,2 ,3 . 
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We have the following presentations of the associated Coxeter groups E t : 

s i = < r o . r i ' r 2 . r 3 I r . 2 = ( r o r i ) 4 = ( r o r
2 ) 2 = ( r o r s ) 2 = ( r i r

2 ) 3 = ( r i r s ) 2 

= (r 2 r 3 ) 4 = l>; 

E 2 = < r 0 ' r l ' r
2 . r 3 I ri = ( r 0 r l ) 4 = ( r 0 r

2 ) 2 = ( r 0 r 3 ) 2 = ( r l r
2 ) 3 = ( r i r

3 ) 3 

= ( r 2 r
3 ) 2 = i > ; 

E 3 = (r0'rl.r

2.
r3 I ri = ( r0 rl) 2 = (r0r2>3 = (r0r3>3 = (rlr2>3 = (rlr3>3 

= ( r 2 r 3 ) 2 = l>-

Ą s2 Sз 

FIGURE 2. Fundamental tetrahedra S{ of S i , i = 1,2,3. 

Since E i are crystallographic groups acting on E 3 , there is an exact sequence 
for each i = 1,2,3: 

1 —•> T v ^ Z x Z x Z — • E, — • E,* — • 1, 

where T E is a free abelian normal subgroup of rank 3 of finite index, which is 
maximal abelian in E^ and corresponds to the translation subgroup, and where 
E^* = E^/T-r;. is a finite subgroup of 0 ( 3 ) . Each E^ has an Euclidean simplex 
St for its fundamental domain. If we label the vertices v^k) of S{ with colours 
k G {0,1, 2,3}, then the geometric realization of E^ corresponds to considering 
the generator rk E E^ as the reflection in the face of Si opposite to the vertex 
vi(k) with label k. Figure 2 shows the fundamental tetrahedron Ŝ  of each 
E^, where the dihedral angle between the faces is indicated when it is different 
from 7r/2. 

Observe (Figure 2) that S2 can be obtained as a double cover of S1 reflecting 
along the face containing the vertices of Sx with colours 0, 1 and 2. Also S3 

can be obtained from S2 after a reflection along the face of 5 2 whose vertices 
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are coloured by 0, 1, and 2. Therefore we can define the following inclusions: 

P2 ^ З ^ ^ 2 Pí: E 2 — E x 

r0 •-> r0r_ ro ro ̂ r o 
r_ H-• r_ Г_ H-• Гj 

r
2 ^

 Г
2 

r
2 '->•

 Г
2 

Г
3 ^

-
*
 Г
3 > 

Г
3 ^

 Г
3

Г
2

Г
3 • 

Thus S 3 < E 2 < E x as crystallographic groups with |E X : E 2 | = | E 2 : E 3 | = 2 
(see [Cox2; p. 84]). Moreover, the translation subgroups satisfy: T s = T E 

< T E i with | T S i : T E J = 2 , thus E*, < E* =* E* as finite subgroups of 0(3)* 
and S 3 is a subgroup of E 2 of index two. 

3. Euclidean manifolds admitting 
locally regular coloured graphs 

Let M = E 3 / G be a 3-dimensional closed Euclidean manifold with associated 
crystallographic group G. If there is a locally regular graph T representing M, 
then the Coxeter representation of V is of the form T(E i , G) with i = 1, 2 or 3, 
where G < S^ is a fixed-point-free subgroup. Therefore, finding the manifolds 
admitting a locally regular graph is equivalent to studying which of their space 
groups admits an inclusion as a subgroup of one of the three given Euclidean 
Coxeter groups. There are altogether ten closed Euclidean manifolds, six being 
orientable and four non-orientable ([S; p. 447], [W; pp. 117-121]). Denote the 
orientable ones by Mi = E 3 /G^, i = 1, . . . ,6, and the non-orientable ones by 
N- = ¥? /B-, j = 1 , . . . ,4 . The presentations of the fundamental groups will 
follow those given by W o 1 f in [W], we also present in brackets the corresponding 
notation of the International Tables of Crystallography [IT]. 

Let Isom(E3) denote the group of isometries of E3 . Any isometry a of E3 can 
be expressed as a composition a = (A,ta), where a(x) = A(x) + a, A G 0(3) 
is an orthogonal transformation, and t is the translation of vector a G M.3 , 
having multiplication given by (A, ta)(B, tb) = (AB,tA,b^a) . Thus Isom(E3) 
is the semidirect product 0(3) • M3 with exact sequence: 

0 —> R3 —> Isom(E3) —> 0(3) —> 1. 

A crystallographic group (also called space group) G is a discrete subgroup of 
Isom(E3) such that G is an extension of its translation subgroup TG = Z x Z x Z 
by a finite subgroup G* of 0 (3 ) , G* = G/TG. Thus we have the exact sequence: 

T G = Z x Z x Z —>G —>G* 
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If G is non-orientable, that is, if G* £ 5 0 ( 3 ) , then G+ = G n S O ( 3 ) -R3 is the 
orientable subgroup of G, so that E 3 /G+ —> E 3 / G is the 2-sheeted orientable 
covering. 

Let M6 = E 3 / G 6 denote the orientable Euclidean manifold, where 
[G6 = P 6 J is generated by: 

G6 = {a = (A,tUi/6),tU2,tU3}, 

where a is a screw motion composed by a rotation A by angle 27r/6 with 
rotation axis parallel to ux, A(ur) = ux, A(w2) = u3, A(u3) = u3 — i*2, and 
a translation £n ,6 of vector u1/6. Thus, a6 = tu G TG . Moreover, ux is 
orthogonal to u2 and i*3, ||u2|| = \\u3\\ and {u2,u3} forms a hexagonal plane 
lattice. The translation subgroup TG& is generated by {tu ,tu ,tu } , and the 
finite group G6 = G6/TG is isomorphic to Z6 ([W; p. 117]). 

Since G6 contains screw motions along lines parallel to ux with rotation angle 
27r/6, the direction of ux is the only one direction in E3 which is left invariant 
by the action of G 6 . Therefore, there is only one foliation of E3 preserved by 
G 6 , and M6 has a unique Seifert bundle structure over the orbifold S236 (the 
sphere with three cone points of orders 2 , 3 , 6 respectively) corresponding to 
foliations of E3 by lines parallel to u1. 

THEOREM 3 .1 . The orientable Euclidean manifold M6 cannot be represented 
by a locally regular coloured graph. 

P r o o f . Suppose there is a locally regular graph V representing M6 = 
E 3 / G 6 . By Theorem 2.4, V has Coxeter representation T = T(E ,G) , where 
G = 71^(M6) = G 6 . We write T = r ( E , G 6 ) , where, by abuse of language, G6 

refers to the inclusion G6 <—> £ as well as the crystallographic group, and S = Y>i 

for i = 1,2 or 3. 
Let S + denote the orientation preserving subgroup of E , and S + = S + / T E . 

Since M6 is orientable, we have G6 < S + , and since TG = G6 fl T E , we can 
define the following monomorphism: 

i : G*6 —• S+* 

9TG6 —> 9T^ , 

where G6 = Z 6 . Then we shall prove the result if we see that T,f does not 
contain elements of order 6 for any i = 1,2,3. However, since S j < T,2 

= S J~ , we only need to show that S J" does not contain elements of order 6. Let 
9ij = rirj ' hJ^ { '̂ 1> ^' ^} J denote the generators of the orientation preserving 
subgroup. £̂ ~ admits the following presentation: 

S l " = ( ^ 0 1 ^ 1 2 ^ 2 3 I 001 = ^12 = 023 = X » (fl 'oi^^)2 = X ' (00101202s)2 = X > 

(012023)2 = 1 ) ' 
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To obtain a presentation of Ŝ ~ , we must add the following relations associated 
t o T E i : 

#01 #12#23 = 1 » #12 #01#23 = * ' #01#23#12 = * » 

giving rise to the presentation: 

E l " * = ( # 0 D # 1 2 I #01 = #12 = ! » (#01#12) 2 = ! > (#01#12) 4 = X ) ' 

Thus S f is isomorphic to the octahedral group O , which does not contain 

elements of order 6. • 

The remaining nine Euclidean manifolds admit a triangulation which can be 

represented by a locally regular graph. We present in the next section examples 

of these graphs with Coxeter diagram Z^E-J. 

4. Examples of locally regular graphs 
on Euclidean manifolds with -D(r) = -D(S-_) 

If T = r ( S 1 , G ) is a locally regular graph representing a closed Euclidean 
manifold M with diagram D(T) = £)(£-_), then G < S x is the fixed-point-free 
crystallographic subgroup associated to M = E3 jG. Moreover, T represents 
a simplicial decomposition of M by tfV(r) = |SX : G\ tetrahedra S± (the 
Euclidean simplex which tessellates E3 by the action of S x ) . Now, since M 
is a manifold, at each vertex of the triangulation, there is a solid angle of 27T, 
therefore |SX : G| must be a multiple of the 1cm of the orders of the isotropy 
groups of the vertices of Sx. For each vertex v(k) with colour k E {0,1,2,3} of 
S1, its isotropy group is the spherical Coxeter subgroup Hk generated by the 
reflections along the faces of S1 incident with v(k). Thus Hk < S x has finite 
order \Hk\, and its Coxeter diagram D(Hk) is obtained from ^ ( S ^ deleting 
the node with label k and the edges incident with it (see Figure 3). 

D(H0)=D(H3)= . —-?----. D(H1)=D(H2)= . 

F I G U R E 3. Spherical Coxeter diagrams of Hk, k G { 0 , 1 , 2 , 3 } . 

The action of Hk tessellates the sphere (corresponding to the link of vk) 
with \Hk\ spherical triangles. Since \H0\ = \H3\ = 48 and \HX\ = \H2\ = 16 
(see [Coxl; pp. 618, 619] or [Cox2; p. 297]), the 1cm of the orders of the isotropy 
groups of the vertices of S1 is 48. Thus we have | S 1 : G\ = fc.48, k > 1, 
so t t ^ ( r ) = fc-48, k > 1. If t t^(r) = 48, these 48 vertices correspond to 48 
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tetrahedra S^ which can be grouped together as the barycentric subdivision of 
a cube (see Figure 4). 

o ^ ^ rS^ ^oГ 

(в) 

2 v w w 

(ь) 

FIGURE 4. (a) Barycentric subdivision of the cube; 
(b) {0,1, 2}-residue. 

Next we present examples of locally regular coloured graphs F representing 
the nine Euclidean manifolds with ftV(r) = 48. This proves that the fundamental 
groups admit an inclusion as subgroups of S x with minimum index, and the 
manifolds are therefore obtained by identification of the faces of a cube. We 
shall describe these graphs T by adding to the {0,1, 2}-coloured subgraph given 
in Figure 4 (b) (which represents the baricentric subdivision of the CLibe) the 
3-coloured edges of T (which indicate the face identifications of the cube). These 
edges, with colour 3, are the edges of T that join the vertices labelled ix with 
ix', where 1 < i < 8 and x G {a, b, c} . The figures present a caption with the 
manifold M = E 3 / G represented by T and the notation of the fundamental 
group G corresponding to the International Tables of Crystallography [IT]. 

Remark. Although all the examples are given with Coxeter diagram L^Sj), it 
is also possible to represent these nine manifolds by locally regular graphs with 
diagram F)(E2), and eight of them (except the orientable manifold M4) with 
diagram F)(E3). 
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4.1. Orientable manifolds Mi = E3/G-, i = 1,..., 5: 

^VHVWV^I 
il U бlч/чДз a SІч^Дб C 1І 

6 5 

Mx = JE3/GЪ [Gi = Pl] 

/ У\ 2"^ \ 

ë a ' гk^Дľ c ' ^LДs b^ 

M2 = JEÓ/G2, [G2~P 2 l ] 

*4 3 
svovravîi 
"" 'ü 

^ i 

6 5 
7 K' 4 

Ь 3, 
1 2' 

Л/3 = IE3/G3, [G3 = РЗ 

'vttvžtíva 
d 3 / \ 2 1 ' " ° " ' 

* V 

Л/4 = IE3 G4. [G4 = Р 4 І 

6 5 \ 

^ 1 2, 

V=L^- - ^ V 
6 5 

Mъ = IE3/G5, [G5 = P2&2Ù 
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4.2. Non-orientable manifolds Nj=E3/Bj, j' = 1 , . . . , 4: 

ч»з 

Iľ c eПЛ? a > J П S C' í 
N 8̂ !_,' \ 6 5' \J SJ 

6 5 
УN! =-: I E 3 / B Ь [B! = Pb] 

\3 

^»';aivtí4«3?l 
\ 7 S' ^ 7 8' 

6 5 
N2 = IE3/B2, [B2 = B6] 

,6 C ' l L x J , 7 a ' ALSÁQ ° l i 

*--- ^=W 
6 5 

_V3 = IE3 /B3, [B3 = Pca2x] 

ïAfìr~ЧÍв ГèrYs4 32f 
6 c ilwUг a бlwчtб c i | 

7 8^' \ 3 4' ^J 8 / , 

6 5 
ЛГ4 = IE 3/B4, [B4 = Pna2!] 
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