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REMARKS ON DIAGONALIZABLE EMBEDDINGS 
OF GRAPHS 

ROMAN NEDELA—MARTIN SKOVIERA 

In this paper we shall discuss the existence of diagonalizable quadrilateral 
embeddings of graphs. The concept was introduced by Z e l e z n i k [7] for 
bipartite graphs. First of all we note that it is possible to define diagonalizable 
quadrilateral embeddings for non-bipartite graphs also. 

Definition. Let i: G CL> S be a quadrilateral embedding of a graph G i n a 
closed surface S. Assume there exists an embedding j : H CL> S such that 

(1) G is a spanning subgraph of H with (j\G) = i, and 
(2) M = E(H) — E(G) is a 1-factor in H each edge of which joins opposite 

vertices of a quadrilateral in i. 
Then M will be called a diagonal set for i, and the embedding i itself will be 

called diagonalizable. 
For bipartite graphs this definition agrees with the one given in [7]. An 

example of a non-bipartite graph having a diagonalizable embedding is the 
Cartesian product C3 x C4 in the torus as shown in Fig. 1. • 
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It is assumed throughout that the reader is familiar with the basic concepts 
of topological graph theory. In addition, we adopt the convention that if a graph 
to be embedded is disconnected, then we embed each component in a separate 
surface. For terms not defined here see [1, 6]. 

The main result of [7] is the following: 
Let G and H be graphs, G bipartite. If G has a diagonalizable embedding in 

some surface, so has G® H, the tensor product of G and H. Moreover, the 
orientability characteristics of both embeddings can be chosen to be identical. 

This result can be used to compute the minimum genus for a number of 
classes of graphs, see [7]. 

Before proceeding further we first observe that there is another way of 
introducing diagonalizable embeddings, equivalent to that above. 

Let i: G CL> 5 be a quadrilateral embedding. Define the diagonal graph D(G) 
for i as the graph with vertex-set V(G) in which two vertices are adjacent if they 
are opposite in some quadrilateral of the embedding i; the multiple or the 
self-adjacencies in D(G) correspond, to the multiple or the self-adjacencies of 
quadrilaterals. Each quadrilateral / of the embedding i gives rise to two edges 
which will be called diagonals of/ We shall say that the two diagonals are dual 
to each other. It is easily seen that an embedding of G is diagonalizable if and 
only if D(G) has a 1-factor M which contains at most one edge of each pair of 
dual edges. Moreover, M is a diagonal set for i. 

If the graph in question is bipartite, a little more can be said. 

Proposition 1. Let i: G cz~*S be a quadrilateral embedding of a graph G in a 
closed surface S. Then G is bipartite with bipartition V(G) = AKJ B if and only if 
D(G) is the disjoint union of two graphs D and D* such that V(D) = A, 
V(D*) = B and D and D* are dually embedded in S. 

Proof. "<=" The definition of D(G) implies that each edge of G has one 
end in A and the other end in B. Thus G is bipartite. 
"=>" From the assumption it immediately follows that the opposite vertices of 
each quadrilateral belong to the same part of the bipartition. Hence D and D* 
are vertex disjoint. To prove that D and D* have mutually dual embeddings in 
S observe that the embedding of D (and, similarly, that of D*) is cellular. 
Indeed, each edge of D divides the quadrilateral in which it is contained into two 
triangles. Each face / of D in S is obviously the union of the set of all such 
triangles having a vertex of D* in common. Consequently, the interior of / i s a 
2-cell. Moreover, it contains exactly one vertex of D*. Thus there is a bijection 
between the faces of D and the vertices of D* and this bijection obviously 
extends to the duality between the embeddings of D and D*. E 

Note that the construction of the diagonal graph D(G) = D\J D* from a 
quadrilateral embedding of a bipartite graph G can be reversed. Given the 
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embedding of D or D * one can reconstruct G and its quadrilateral embedding. 
However, there is another way of obtaining the embedding of G from that of D. 
Start from the embedding of Z>, construct its medial graph M(D) and take the 
dual of M(D). The result is the required embedding of G. We recall that the 
medial graph [2, 3, 5] of a 2-cell embedded graph H is a 2-cell embedded graph 
M(H) defined as follows. To form the vertex-set of M(H) choose a midpoint in 
each edge of H. Then, for each face f of //, join two midpoints x and y by an 
edge in the interior offif x and y are consecutive on the boundary off Observe 
that the medial graph for H is at the same time the medial graph for H* and 
vice versa. 

From the above mentioned facts it follows that the problem of the existence 
of a diagonal set for a quadrilateral embedding of a bipartite graph G can be 
transformed into the problem of the existence of some special 1-factors in the 
embeddings of D and D*. To be more exact, we have: 

Proposition 2. An embedding i: G CL> S of a bipartite graph G is diagonalizable 
if and only if the diagonal graph D(G) = D u D* has I-factors F in D and F* in 
D* such that F u F* contains at most one edge of each pair of dual edges. Q 

Corollary 3. Ifi: G CL_> S is a diagonalizable embedding of a bipartite graph G, 
then each of the two graphs D and D* constituting D(G) has a 1-factor. H 

Thus, Proposition 2 yields a necessary and sufficient condition for an embed­
ding of a bipartite graph to be diagonalizable. Its main disadvantage is that it 
is not free of topology. This disadvantage is removed in Corollary 3, however, 
the resulting combinatorial necessary condition is not sufficient, not even in the 
case of planar bipartite graphs. 

Fig. 2 

Example . Let Dk (k > 2) be a graph obtained from a cycle of length 2k 
by replacing each edge uv with the graph in Fig. 2. Consider the unique embed­
ding of Dk in the sphere (the example of D2 and its dual is shown in Fig. 3). The 
edges of Dk joining 3-valent vertices will be called rungs. It is not difficult to show 
that each 1-factor of Dk contains exactly k rungs, and each 1-factor of Df 
contains exactly 2k — 1 dual rungs. Let Gk be the bipartite graph with the 
quadrilateral embedding for which D(Gk) = Dk u Dj*. By Proposition 2, if there 
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were a diagonal set M = F u F* for this embedding (F _= Z)*, F* s= A*) then F 
would contain k rungs while F* 2k — 1 dual rungs corresponding to rungs not 
in F. Hence, Dk would have at least 3k - 1 rungs. But there are just 2k rungs 
in Dk9 a contradiction. This shows that the embedding of Gk is not diagonaliz-
able, although the necessary condition of Corollary 3 is satisfied. 

Fig. 3 

The lack of a simple combinatorial condition for diagonalizability suggests 
that it makes sense to look for various classes of graphs admitting diagonaliz-
able embeddings. Below we present two simple results which allow one to 
construct diagonalizable embeddings for new graphs from old ones. 

Let p: S -> S be an unbranched covering projection of a closed surface S onto 
a surface 5, that is, a surjective continuous mapping satisfying the following 
condition: every point xeS has an open neighbourhood U such that p\U is a 
homeomorphism. It is well known (and easy to see) that for any 2-cell embed­
ding i: G CL> S of a graph G in a surface S the insertion j : G = p _1 o /(G) CL* S 
is a 2-cell embedding of G. We say that the embedding j is an unbranched 
covering over i. As usual, such embeddings are constructed combinatorially 
using voltage graphs [1,6]. 

Proposition 4. Let i 
let an embedding j : G c 
able. 

G CL» S be a diagonalizable embedding of a graph G and 
^ S be an unbranched covering over i. Thenj is diagonaliz-

Proof. Since the covering has no branch-points, the embedding j is qua­
drilateral. If M is a diagonal set for the embedding /, then the lifting M of M 
to j is the required diagonal set for j . H 
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To state our final result denote by G(m) the graph obtained from a graph G by 
replacing each vertex x of G with m vertices xx, x2,..., xm and joining two vertices 
uk and Vj in G(m) if u and v are adjacent in G. In other words, G(m) = G[Km], 
the lexicographic product with the graph Km. 

Proposition 5. If a graph G has a diagonalizable embedding in an orient able 
surface, so has the graph G(2n) for each n>\. 

Proof. We first show that G(2) has an orientable quadrilateral embed­
ding. Let e = uv be an arc ( = oriented edge) in G. Then e gives rise to four arcs 
ekh k, /e{l,2}, in G(2). To obtain an appropriate quadrilateral embedding of 
G(2) we start with the diagonalizable embedding i of G given by a rotation P. 
Let d=P~x(e) and f=F>(e). Define a rotation Q for G(2) as follows: 
20i, i) = / i i 2 , 20 i , 2 ) = ei,i, G(c2,i) = 2̂,2 and Q(e22) = d2X. Routine calcula­
tions show that Q determines a quadrilateral embedding j of G(2). We now 
verify that this embedding is diagonalizable as well. L e t / = uvwx be a quadrila­
teral in the embedding i. Then there are four quadrilaterals in j corresponding 
tof: uxv2u2xx, vxw2v2ux, wxx2w2vx and xxu2x2wx. Let M b e a diagonal set for the 
embedding / of G. To define a diagonal set M' for j , assume without loss of 
generality that the diagonal uv off is in M. Then include to into M' the 
diagonals uxu2 and wxw2 of uxv2u2xx and wxx2w2vx, respectively. It is easy to see 
that the set M' thus defined is a diagonal set forf implying that G(2) has an 
orientable diagonalizable embedding. Since (G(2*))(2) = G(2* + 1), the proof is 
easily completed by induction. B 

The construction of the embedding of G(2) is taken from Pis an ski [4]. 
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ЗАМЕТКА О ДИАГОНАЛИЗИРУЕМЫХ ЧЕТЫРЕХУГОЛЬНЫХ ВЛОЖЕНИЯХ 

ГРАФОВ 

Котап №с1е1а—Маггт 8коV^е^а 

Р е з ю м е 

В статье изучается проблема существования диагонализируемых четырехугольных 
вложений графов в поверхности. Даны две конструкции таких вложений. 
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