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ONE-VARIABLE EQUATIONALLY 
COMPACT DISTRIBUTIVE LATTICES 

ISIDORE FLEISCHER 

The lattices of the title have been characterized by D. A. Kelly [K] and 
(independently) by R. Beazer [B] as those which are complete and (bi-) infinitely 
distributive. We have obtained this characterization as a corollary of our charac­
terization of one-variable equationally compact semilattices with pseudocomp-
lementation which satisfy a certain partial distributive law [BF, Corollary 7]. This 
Note is to point out that the characterization can also be deduced via our preceding 
paper [BFK], which route yields somewhat more: a partial positive answer to 
Mycielski's question (see [T] for a discussion of this and related matters) in that the 
equationally compact lattice is exhibited as a retract of a topologically compact 
containing semilattice on which it acts as continuous endormorphisms. 

We start by recalling the "regular left representation" of a semigroup [C-PI 
p. 9]: This assigns to every s in the semigroup S the transformation of left 
translation by s: ks(x) = sx. In terms of it associativity may be expressed as 
Kt =kh, and distributivity (say of v over A) as the requirement that (taking the 
semigroup operation to be v) each K be an endomorphism (of the A-semilattice 
structure). Thus every distributive lattice may be construed as a semilattice (for the 
single operation A) on which there acts a set (here indexed by its elements) of 
endomorphisms: a structure we have dubbed in [BFK] with the acronym SENDO. 

In order to apply our SENDO result we must verify that this way of construing 
a distributive lattice yields the same one-variable equations as does that using the 
two lattice operations as the term generators. Since As(t) = 5Vt, every SENDO 
term may be expressed as a lattice term. Conversely, every lattice term in 
a distributive lattice may be put into conjunctive form; each of the conjucts may be 
reduced, using idempotence, to a disjunction of distinct monomials: thus if the 
term is one-variable, then at most one of these can fail to be an element of S; 
whence each of these disjuncts can be expressed as the result of operating on the 
variable or on an element of S with a composition of A's — and this achieves the 
re-expression as a SENDO term. 

We can now read off from the theorem in [BFK] (taking into account the 
following Notes (2) and (4), and the simplification in (ii) which results from having 
a distributive lattice on which the endomorphisms are just v with fixed elements): 
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Let S be a distributive lattice. Then the following are equivalent: 
(i) S is one-variable equationally compact, 

(ii) S is complete and satisfies both infinite distributive laws, 
(iii) S is a retract (in the algebraic sense) of a compact, Hausdorff, zero-dimens­
ional topological semilattice to which its regular representation extends as an action 
by continuous endomorphisms. 
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ЭКВАЦИОНАЛЬНО КОМПАКТНЫЕ ДИСТРИБУТИВНЫЕ РЕЩЕТКИ 
С ОДНОЙ ПЕРЕМЕННОЙ 

Ыботе Р1е18сЬег 

Резюме 

Приводится новое доказательство теоремы, в которой охарактеризованы эквационально 
компактные дистрибутивные решетки с одной переменной. 
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