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A NOTE ON RESTRICTED MEASURABILITY 

GALINA HORAKOVA—JAN SlPOS 

McMinn in [2] introduced into the general theory of measure a concept of 
restricted measurability and established the condition under which it is equivalent 
to the measurability in the usual Caratheodory sense. It is our aim to give another 
condition under which the two concepts of measurability are equivalent and to 
show that our condition is somewhat weaker than that of McMinns. 

Throughout this paper we consider X to be a fixed set with respect to which we 
make definitions. 

Definition 1. Let \i be an outer measure on a hereditary o-ring %£. Let Sficzffibe 
a hereditary family. A set E in 'Mis called [i measurable ffl iff, for every set B in 53. 

li(B) = n(BnE) + ii(BnE'), 

where E' = X — E is the complement of E. 
It is clear that if £8 = 2fc? then we obtain the usual measurability introduced by 

Caratheodory. 
We shall denote the a-ring of all n measurable 53 sets by Sf&, and the a-ring of 

all \i measurable sets by Sf. Recall that Sf = Sf*. 
Clearly SfczSfc* holds for every hereditary &cz9€. 

Definition 2. 53 is called \i convenient iff \i is an outer measure defined on 
a hereditary o-ring W, fflczffl is hereditary, and corresponding to each Ae3% of 
a finite outer measure there exists such a sequence {Q}T=i such that 

Џ(A-QG)=O 

and, for each integer i, 

QczQ^eSd, 
Q is \i measurable Sft. 

Theorem 3. (Theorem 3.4. of [2]). If 8ft is \i convenient, then E is \i measurable 
whenever E is \i measurable 38, i.e. Sf<*=Sf. 

For our next consideration we need the following: 
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Definition 4. 
(i) If %€is a hereditary o-ring and \i is an outer measure on ffl, we shall denote by 

H the set of all elements of a finite outer measure in ffl. 
(ii) For any two elements E and F in H we shall write 

Q(E,F) = ti(E^F), 

where E — F = (E— F)v(F — E) is the symmetric difference of the sets E and 
F. 

(iii) ByH> we denote the following H>= {EI EeH, \i(E)>0}. 
It is easy to verify that the function Q is a pseudometric on H . 
The following two assertions are the principal theorems of this paper. 

Theorem 5. If 38nHis dense in H>, i.e. 36nHzDH> (where S3nHdenotes the 
closure of the set 38nH in the pseudometric space (H, Q)), then E is \i measurable 
^ iff E is \i measurable, i.e. Sfm = &>. 

Proof. If EeSfa, we must show that 

(1) ii(A) = ii(AnE) + ti(AnE') 

for every AeW. 
If \i(A) is zero or infinite, then (1) is trivial. If now 0<\i(A)<<», then A eH>. 

From the density of 3fonH in H> it follows that there exists a sequence of sets 

Bn e 5ftnH, n = l,2, ... so that Bn-^A. The set E is n measurable S8 from which 

we have 

(2) ii(Bn) = ii(BnnE) + ii(BnnE') 

for every n. 
We shall show that 

Clearly 

and 

ц(A) = iim„ џ(B„). 

B„ c=(ß„ - A ) u ( A -Bn)uA 

A<=(A -Bn)u(Bn - A ) u B „ , 

and so by the monotonity and subadditivity of /. we have 

H(Bn)^Q(Bn,A) + v(A) 
and 

H(A)^Q(A,Bn) + n(Bn). 

Since Q(A, B„)—*0, we obtain 

ju(A) = lim„ fi(Bn). 
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Similarly 

li(BnnE)^>ii(AnE) and ii(BnnE')-*ii(AnE'). 

Reference to (2) completes the proof. 

Theorem 6. 2/ S8 is JU convenient, then SftnH is dense in H. 
Remark. Clearly then S&nH is dense in H> too. 
Proof. Let A be from H. We take such a sequence {B°}~=i that for each integer 

n 
B°nczBn+h B°ne® 

Bn is ii measurable S8 and 

(3) / i ( A - U ^ ° ) = 0 . 

Let us put Bn=BnnA for n = 1, 2, .... We prove that Bn-->A. We have 

e(A,£„) = ju(A--3n). 

The sets Bn are from 5^, and so (Theorem 3) also from Sf. Since [i is an outer 
measure on Sif, /iA defined on Sf by ^ ( C ) = ^ (A nC) is a measure for every 
AeW. Hence 

limn^A(B„) = /xA(UB2). 

Since Bn =BnnA, it follows that 

(4) limniu(B„) = i u ( U B „ ) . 

Bn is \i measurable, hence 

ti(A) = ti(AnBn) + ii(A-B°) 
and so 

li(A)-ii(Bn) = n(A-Bn). 

From this and from (4) we have 

li(A)-ii(\JBn)=\imnii(A-Bn). 
\n=»- ' 

By subadditivity of [x we have 

o^n(A)-n ( Q B - ) ^ ( A - L I 4 ) ^ ( A - O B S ) ; 
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therefore by (3) we have 
l\mnii(A-Bn) = 0, 

and so Bn-^>A. 

The following example shows that Theorem 5 is stronger than Theorem 3. 
Example 7. Let us put X = { 1 , 2, . . . } , ^ = 2 X , for A c=X/i(A) = 0 if A =0, 

pt(A) = 1 if A is finite and non void and fi(A) = co if A is an infinite set. Then \i is 
an outer measure on d/C. Let 35 = {A c X / A be finite}. Then 3ftnH is dense in PI, 
but £9 is not li convenient and Sf& = {0, X} = Sf. 

We give one more example to show that the condition given in Theorem 5 is not 
necessary for SP—Sf&. 

Example 10. Le tX={a , 6, c}, W=2X, fi(A) = l if A=/0 and fi(0) = O. Let 
® = 2{a'b) u 2{ac}. Then % = 5^={0,X} and 5Jn/ / is not dense in H^ since 
ld(X-B) = l for every B e ffl. 
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З А М Е Ч А Н И Е О СУЖЕННОЙ ИЗМЕРИТЕЛЬНОСТИ 

Галина Г о р а к о в а , Ян Ш и п о ш 

Р е т ю м е 

Пусть ^-внешная мера на наследственном сг-кольце Ж. Пусть ЗЬ^Ж наследственный класс. 
Множество ЕеЖ Называется //-измеримым ^ , если для всякого В е $ имеет место соотношение 

ц(В) = ц(ВпЕ) + 1х(ВпЕ'). 

Пусть псевдометрика ^I^ на множестве всех элементов конечной внешней меры определена по 

формуле 

д„(Е,А) = 11(Е^А). 

В статье доказывается следующая теорема: 
Если внешная мера д конечна и ^ плотно в Ж в псевдометрике (Эм, то Е е $?^-измеримо Л 

тогда и только тогда, когда Е является ц -измеримым в смысле Каратеодори. 
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