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ABSTRACT. For boundary value problem #(t) — A(t)z(t) = f(t,z(t)), Tz =r,
defined on unbounded intervals we have established sufficient conditions that the
set of solutions be an R -set.

Introduction

The aim of this paper is to investigate the set of the solutions for the boundary
value problem

i(t) — A@t)z(t) = f(¢,z(t)) (BVP)
Tz =r, reR” (v<n),

with linear boundary conditions on a non-compact interval [a,c0). The exis-
tence of a solution (generally unbounded) for (BVP) has been studied in [9],
[10]. To prove that the set of all solutions of (BVP) is an Rj-set we use a theo-
rem of Z. Kubdacek [13], [16], which is a generalization of a theorem proved
by Vidossich [18]. Some applications of this theory to initial value problems
on unbounded intervals are presented in [14], [15]. Another approach to investi-
gate the structure of the set of all solutions for a certain integral equation in an
unbounded domain is used in [6]. In [1]-[4], [9], [10] results about the topologi-
cal structure of the set of solutions to multi-valued asymptotic problems can be
found. One of the methods used there consists in studying the topological struc-
ture of fixed point sets of limit maps induced by maps of inverse systems. The
obtained results were applied to differential inclusions on noncompact intervals.

2000 Mathematics Subject Classification: Primary 34B15, 34B40.
Keywords: boundary value problem on unbounded interval, Rs-set.
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First, we show that the system (BVP) is equivalent to the equation
Lz =Nz, (OE)

where L is a linear operator, which need not be Fredholm, IV is, generally,
nonlinear. Using the theorems of M. Cecchi, M. Marini and P.L. Zezza
[5] about equivalence between the set of solutions for (OE) and the set of fixed
points of operator M = P+ KN we may reduce our investigation to the set of
fixed points of the operator M . The main tool of the proof that the set of fixed
points of M is an Rj-set is a theorem of Z. Kubacek.

1. Preliminaries

Let a be a real number and let C = C([a,0),R™) be the vector space of
continuous functions from [a, o) into R™, the topology of which is given by the
system of seminorms

p,(x) = sup |lz(t)| foreach zeC,

t€la,a+m]
where || - || is a norm in R". The space C is a Fréchet space and the metric in
C can be given by
= P =)
d(z,y) = 2mm , z,y€C.
,;1 1+p,(z—y)

At first, we present some theorems which will be used later. We recall that a
non-empty subset F' of a metric space X is said to be an Rj-set in the space
X if it is homeomorphic to the intersection of a decreasing sequence of compact
absolute retracts. By [7; p. 92], a metric space Z is called an absolute retract
when each continuous map f: W — Z has a continuous extension ¢g: Y — Z
for each metric space Y and each closed W C Y.

PROPOSITION 1.1. ([13; p. 350]) Let the Fréchet space C have the same mean-
ing as above and let ¢, ¢, ., € C([a,0),(0,00)), k € N, satisfy the conditions

(i) for each t € [a,00) the sequence {cpk(t)}Zil is non-increasing and
klim ¢, () =0.
e de el

(ii) Let @ = {z € C: ||z(t)]| < ¢(t), t > a}. Suppose that Q: Q — C is
a compact map and there exists a sequence {Q,}7, of compact maps
Q,: 2 — C such that

Qpe(t) — Qe(B)| < ¢ (t), €9, t>a;
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(iii) for each k € N there exists a function ¢,;, € C([a, 00), [0, oo)) such that
e+ t) <pl), t>a and [|QzO)| S p,t), T€Q, t>a;

(iv) the map S, =1 — Q, is injective on (1.
Then the set F of all fized points of the map Q is an R -set.

PROPOSITION 1.2. ([8; p. 168]) Suppose that E is a (partially) ordered set.

We assume that any majorized, increasing sequence {x, }>2, of elements of E

has a supremum in E, and that any minorized, decreasing sequence {y, }°° | of
elements of E has an infimum in E . If, under these conditions, x (resp. y) is the
supremum (resp. infimum) of {z,}2, (resp. {y,}5>,), we shall write =, *
(resp. y, L y). We consider a self-map u: E = E is increasing (i.e. u(z) < u(y)
whenever x <), and that is such that u(zx,) 1t u(z) and u(y,) | u(y) whenever
z, Tz and y, | y. Suppose further that there exist x, and y, of E such that

$0 S Yo xO S u(xO) ’ u(y()) S Yo -

Define {z,}32, and {,}32, by

xn—f-l = ’U/(.%'n) ) yn—i—l = u(yn) .
Then there exist elements x and y of E such that x, 1z, y, 1y, z <y, and
both = and y are fized points of w. Moreover, if x* (resp. y*) is a fized point
of u satisfying =* > x, (resp. y* <y,), then =* > x (resp. y* <y).

We consider the system of differential equations
#(t) — A()z(t) = f(t,2(1)) , (1.1)
and the boundary conditions:
Tz =r, reR”, (1.2)
where 1 < v < n, A(t) is an n X n matrix function which is continuous in

[a,00), f:[a,00) x R* — R™ is a continuous function, T': domT C C — R

is a linear continuous operator; it means that there exist v > 0, m, € N such
that:

“Tac“1 <Y P, (@) for each = € dom7T, (1.3)

where || - ||; is a norm in R”.

Remark 1.1. It is known that a linear operator from locally convex space into
finite dimensional space is continuous if and only if (1.3) holds ([20]).

Let D be the space of all continuous solutions of the linear system
y(t) — At)y(t) =0, (1.4)
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and let us assume that T satisfies the condition
D CcdomT, T(D)=R". (1.5)
Let L: domL C C — C x R¥ be the linear operator defined by the relation:
z(-) = (2(-) — A(")z(-); Tz), where dom L = C'([a,00), R") N domT and let
N: domN C C — C x R be the operator given by: z(-) — (f(-,z(-)); 7).
Then the system (1.1)-(1.2) is equivalent to

Lz = Nzx. (1.6)
Let X (t) = (w;(t);...;w,(t)) be afundamental matrix for the equation (1.4),
where w,;...;w; is a basis for Ker L (I = dimKer L) and w,;...;w;w ;... 5w,

is a basis for D.
By the results of P. L. Zezza [21], and M. Cecchi, M. Marini,
P. L. Zezza [5], the system (1.1)-(1.2) is also equivalent to the equation

x =Mz, (1.7)
where

M =P+ KpN, (1.8)
P is a continuous projection, P: C — KerL, K is the inverse operator of

LI(domLﬂCI_p)’ C,_p=RUI-P), Kp: R(L) » domLNC,_p is defined by

the relation
t

Kp: (b(t),r) — X (t)JTy " (r - T( / X)X (s)b(s) ds))

a

¢
+/X(t)X_1(s)b(s) ds,
2 (1.9)
J is the immersion of R¥ into R"
J(r)=(0,...,0,7,...,7) ", r=(r,...,m,) €R”,
Ty = (Twyyy,. ., Tw,)
and Ty ' is the inverse of T},.

Remark 1.2. ([5; p. 274]) Operator K, defined in (1.9) depends on P, because
the choice of P is related to the fundamental matrix X (¢). If v = n, then this
construction can be simplified, matrix TX(¢) is invertible, and hence J = I,

Tyt = (TX(@) "
Remark 1.3. ([5; p. 275]) According to (1.9), M is defined on the set:

A= {g eC: iX(t)X‘l(s)f(s,g(s)) ds € domT}.
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2. Results

In this section we prove the theorem which guarantees that the set of all
solutions of (1.1)-(1.2) belonging to C,_p is an R;-set. Let

H, = sup | X(®)]. (2.1)
tela,a+m]

THEOREM 2.1. Let the system (1.1)—(1.2) satisfy the following conditions:
A(t) is an n x n matriz defined and continuous on [a,0), X (t) is a funda-
mental matriz of (1.4) with the following properties:

(2.2) Forallt>a, || X(1)— X(t)|| is a non-increasing function of T € {a,t),
(2.3) f:la,00) x R* = R" is a continuous function and it satisfies:
X1 O f ¢ wll < p)llull +q(t)  for each uweR", t>a,

where p, q are locally integrable functions in [a, 00),

a+m a+m
/p(s)ds:Fm<+oo, /q(s)ds=Am<+oo,

a a

(24) (V¢ € [a,a+my]) (Vu,v € B ([ X0 [ (¢, u) - £ (1, 0)] | < pOllu—]),
T is a linear continuous operator from domT = C onto R”; it means
that there exist v > 0, m, € N such that:

ITz|l, <7 P, (T) for each z € domT,
and the rank of the matriz TX (t) is v,
(2.5) ¢=|JT; IV H p<1,

mormo

where § = 3H,, (14 H,, T, exp(H, T, ).
Then the set of all solutions for (1.1)~(1.2) belonging to C;_p is an Rj-set.

Remark 2.1. The constant m, in the (2.4) is given from the continuity of T,
which is defined on Fréchet space and takes values in R” . Theorem 2.1 includes
also the non-expansive case.

The proof of this theorem consists of several steps. At the first step we present
the following lemma which assures that the operator

Q= KpN (2.6)
is completely continuous.
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LEMMA 2.1. ([11; pp. 49-53]) Under the above hypotheses, if domT = C, then
the operator Q) is defined on C and it is completely continuous.

Further, we construct Tonelli’s sequence of operators (), which converges to
the operator @ and the sequences {p,}72, and {p,,}72, with the following
properties:

[Qpz(t) = Qz(B)| < ¢, (t),  z€Q, t>a;
QeI < @u(t),  z€9Q, t>a;

where Q = {z € C: ||z()|| < ¢(t), t > a}, ¢(t) will be specified at the second
step.

LEMMA 2.2. Let {Q,}32, be the sequence of operators Q, for all k € N,
Q: dom(Q,) C C — C defined by the relation

X(a)e(z), a<t<a+y,

1

Que(t) =4 X(t—3) @) (2.7)
£ XWX () (s,2() ds, a+E<t<oo

a

t
where c(z) = JT; " (r - T( [X®X () f(s,2(s)) ds)) )
If domT = C, then (Vk € N)(dom Q,, = C) and Q,, is completely continuous.

Proof of Lemma 2.2 can be done by a slight modification of the proof of
Lemma 2.1.

LEMMA 2.3. Let {p,}32, be the sequence of non-negative functions defined

by
(1 X(a) = X()]| C(p)
t
HIX@) [ (p(s)p(s) +als)) ds, a<t<a+y,
t) = 2.8
#O=N Ix -1 - x o) 29
+ X @ f](p(S)so(S) +4q(s)) ds, a+;<t<oo,
where

00) = T (Il + s (T2 (04 8,) | 29)

t€[a,a+mo)
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and ¢ € C([a,0),[0,00)). Then for each k € N the function ¢, :
[a,00) — [0,00) is continuous and the sequence {p,}3>, of continuous non-
negative functions is non-increasing and converges to 0 uniformly on each com-
pact subinterval of [a, 00).

Proof. The continuity of ¢, is obvious. First, let us prove that {¢,}32, is
non-increasing sequence. Let k be an arbitrary but fixed natural number, then

0p(t) — 9y (t) =
(0, a<t<a+ 7,

(IX(@) = X @l = [|X (t - 57) - X)) Cle

+||X(t)llf (p(s <p(8)+q(8)) ds, at+y <t<a+i,

(l

X (= 1) = X0~ [X (1 1) - X000

k E+1
B33
+ [ X @) f (p(s)p(s) +a(s)) ds, a+ g <t<co.
\ t——
From the hypothesis (2.2) there follows:
1X(@) = XA = X (t - 71) = X @]

IX(t—%)—X(t)HZ“Xt‘m - 'H’
and so ¢, (t) — ¢, ,(t) > 0 for each t € [a,00). Then the sequence {y, }7, is
nonincreasing. O

Now we prove that {¢, }?°, converges uniformly to 0 on each compact subin-
terval of [a,00). X (t) = (w,;...;w,,) is a fundamental matrix of solutions of the
linear system (1.4), so w, € Cl([a, oo);]R"), i =1,...,n, and for each m € N
there exists L, > 0 such that:

1X(t) — X(s)]| <L, |Is -t for each s,t € [a,a+m].
Then there holds: for a <t < a+ %

() < LyJa— () + | X (0] / (p()(s) + a(s)) ds

[L Clyp) + H, - sup (p(s)p(s) + Q(S))]

te[a a+1]
and for a+%<t<a+m
o) < 5 [£C(0) + Hyy - sup (p(s)p(s) + a(9))]
tE[a,a-—Hn]

and hence ¢, = 0 for k — oo on each subinterval [a,a+m] C [a, c0).
In the next two lemmas, C(p) is given by (2.9).
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LEMMA 2.4. Let ¢ € C([a,oo), [0,00)) and let Q) = {x e C: |lz@)| < (),
> a}. Further let {¢*k},i‘;l be the following sequence of the functions:

1 X (a)l C(e), a<t<a+i,
oty =14 I (t=% “ ¢l (2.10)
+ X (1) Ilf(p(s o(s)+4q(s)) ds, a+3 <t<oo.

Then the function ¢,;: [a,00) = [0,00) is continuous for an arbitrary keN
and ||Q,x(t)|| < ¢,(t) for each t € [a,0), z €.

Proof. It is easy to verify that for each k € N the function ¢, (t) is
continuous on [a, 00). The inequality [|Q,z(t)| < ¢,,(t) for all ¢t € [a,00) and
z € Q follows from the assumptions (2.1), (2.3). a

At the second step, we determine a function ¢ satisfying the following con-
dition:
() + o (t) < (t) foreach k€N, t€[a,00).
We have:

Pui(t) + 9, () =

( (IX@]+[1X(a) - X)) C)
+||X<t>uaf(p<s>go<s>+q<s>) ds, et<atg, o)
) (xe- b )+ 1 x (¢ - %) X)) cl
\ +||X(t||ft( +q(s))ds, a+%§t<00-

LEMMA 2.5. ([17; p, 85]) Let ¢ € C([a, oo),[0,00)), let x(t) be the solution
of the equation:

( (H, + “X(a) ( )”) C(y)

+IX() llf( s) +q(s)) ds, a<t<a+1,
x(t) =
(siuapt G+ 1x(E- - X)) ()
L + || X (%) ||j( (8)x(s) +q(s)) ds, a+1<t<oo.
(2.12)
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Then
x(t) = a(t) + b(t) /p(r)a(r) exp( /b(s)p(s) ds) dr (2.13)
where ’ '
( (Hy + 1 X(a) - X(t)tll) C(p)
+ X @I S a(s) ds, a<t<a+l,
a(t) =

<
(sup X () 11X (E=1) - <t>||) C(y)

s€la,t]

+||Xt)l|fq a+1<t<o0,

and b(t) = | X(®)]-

If we denote

$y (1) =||X(t)||-/q(8) ds + I|X(t)II/I|X(T)|I

T t
: (/q(T) dT)P(T)eXP</]|X(S)Hp(3) ds) dr, a<t<oo,

a

and

([, +X(@) - Xl + 1XOl f(1X @)

t

+11X (@) = X()p(r) exp( [ IX()lp(s) ds) dr, a<t<a+1,

T

by (t) = S sup, X (I + 11X (E-1) = X (@

s€la,t

X (¢ llf( sup [X(3)[1+ X (r=1) = X ()]

s€la,r]

- p(r) exp(an(s>||p<) s)dr, a+1st<oo,

\

then we may write the solution x of the equation (2.12) in the form
x(t) =11 (t) +9,(t) - Clp) .

Now we want to find ¢ € C([a, 00), [0, 00)) such that for ¢, (t)+¢,(t) given
by (2.11) the inequality
P (0) + @5 (t) < (t)
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holds, that is, ¢ is a solution of

@(t) =y (1) + P, (t) - Clo) .- (2.14)
We are going to seek the solution of (2.14) in L, ([a, a+m),R) . We use the

usual partial order in L, ([a, a+mg],R) : u < v if and only if u(t) < v(t) for all
t € [a, a+mg]. The following lemma holds.

LEMMA 2.6. Let U: domU C L, ([a,a+m),R) — L, ([a,a+m],R) be de-
fined by

(Uu)(t) = %, (5) + o(t) - Clw),

where domU = {u € L,([a,a+m,],R) = (Vt € [a,a+mg)) (0 < u(t) < 5)},
with & sufficiently large positive real constant. Let the following hypotheses be
satisfied:

¢ =Ty IvH Ty B < 1,

mgT Mo
where B = 3Hm0(1 +H,T, exp(H,T ) - (2.5)

mo- Mo

Then there exists a fized point of the operator U .

Proof. We use Proposition 1.2 to prove this lemma. We must verify the
following hypotheses:

(i) U is an increasing operator,
(ii) there exists x, such that: z, < U(z,),
(iii) there exists & such that: £ > U(¢).

(i) Let v(t) <w(?), t € [a,a+a,, ]. Then
(Uo)(t) =

=00+ 920 VT (Il 4 7 (T 500 o0 +4,,)]}

<0+ 00 (T - (Il 4 H oy (T 50 w0+ 4,,) ]}
=U(w)(t).
(ii) Let z, =0, then
0 SU0)(E) = vy (t) + by () - {IITT5 - [llrlly + v H o A}
(iii) Let & be a positive real constant. Then

U(E)() < by (1) + () - C(8)
and
sup U(§) < sup ¥, (t) + sup p,(t) - C(€)

[a,a+mo] [a,a+mo] [a,a+mq]
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where

sup ¢, (t) < H,, A, (1+H .. exp(H,T )) a

moT m
[a,a+mo] © 0

sup P, (t) < max{ (H + sup |X( X(t)H) (1 + T H, exp(HlFl)) ,

[a,a+mo] [a,a+1]

(Hg . sup I1X(t=1) = X))

[a+1,a+mo)]

(1w XU, e (H, L) )} <6

mqg— Mo
a+1,a+mg]

We are looking for ¢ with the property 0 < u < ¢ = U(u) < . Put
0 =a+ [HJTO ! ll lerl—l—’yHmoAmo)] -3, then it suffices to choose any ¢ satlsfylng
the inequality 6 + (£ < €. By Proposition 1.2 the operator U has a fixed point
u € Ly ([a,a-+mg), [0,00)), 0 < ult) <&, t € [a,a+ay,].

Since the functions v, , ¥, are non-negative continuous functions, the fixed
point of U is also a continuous function. If we put

Lp(t)I{U(t), a<t<a+mg,

P, (1) +P,(t) Cluw), a+my<t<oo, (2.15)

then ¢ is a non-negative continuous solution of equation (2.12).
At the third step we prove that the operator S, =: I — @, is injective. 0O

LEMMA 2.7. Let the following hypotheses be satisfied:

(V € [a, a+my)) (Vu,v € RY) (X O [ w) = £t 0)] || < p(B)lu—vl]). (24)
Then the operator S, =: I — @, 1s injective.

Proof.
1. Let c(z) = c(y).
Suppose that  # y and = — Q,(v) =y — Q,(v).

a) Let there exist ¢, € [a,a+7%] such that z(t,) # y(t,) and = — Q,(z) =
y—Q,(y). Then z(t,) — X (a)c(x) = y(t,) — X(a)e(z) = x(t,) = y(t,), which

is a contradiction.
b) Let z(t) = y(t) for all ¢t € [a,a+%] and let
t, = sup {'r >a: (Vte(a,1))(2(t) = y(t))} .
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Then there exists t, € (¢;,¢,+3) such that z(ty) # y(t,) and

1
to— L

z(ty) — X (tg — %)c(:r) — /X(tO)X_l(s)f(s,x(s)) ds

As z(t) = y(t) for all t € [a,t,—1], we have z(t,) = y(t,), which is a contra-
diction.
2. Let c(z) #c(y), v #y and z — Qi (z) =y — Q,(y).
a) Let there exist t; € [a,a+%] such that z(t,) # y(t;) and
v = Qu(2) =y - Qu(y) = a(t)) —y(t)) = X(a)(c(z) - c(y)) -
Using (2.4) we have:

le(a) — e(w)l| = | JT; T / XX () (s 2(5)) — (5, 9(s) ds]
< WLy sup (nX ) / z(s) s>||ds)
and
l2(t) = ()| < H,p le(a) — ()| + H,, / Dle(s) — y(s)]] ds.

t € [a+,a+mg] .
It is easy to verify that if (2.5) holds, then
|JTy l||'y o m exp(HmOFmo)
Using Gronwall’s lemma we have:
t—1

le(t) -yl < H,,[le(z) — e()]] exp (Hmo / p(s) ds> ,

a

te [a+%,a+m0] ,

sup [lz(t) — y( |I=maX{[Sup lz(t) —y@Il,  sup Hx(t)-y(t)ll},

[a,a+mo) a,a+%] [a+%,a+mo]

le(z) — @)l < 1Ty IWHE, T, exp(H,, T, )lle(@) — c(@)]]
< [le(z) = eIl
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and this is a contradiction.
b) If z(t) = y(t) for all ¢t € [a,a+7], the proof is trivial. O

Proof of Theorem 2.1. To prove this theorem we must verify the
assumptions of Proposition 1.1. If we define ¢, , ¢,,, ¢ by (2.8), (2.10), (2.15),
then from Lemmas 2.1, 2.2, 2.3, 2.4 and 2.7 it follows that the hypotheses of
Proposition 1.1 are satisfied, so the set of solutions for (1.1)-(1.2) in C,_, is an
Rj-set. O

ExAMPLE. Consider the nonlinear boundary value problem

it) - (_g é):c(t) = (f(&:)) . ten,0),
Tx =0

where z = (£1>, Tz =z,(0) —z,(1). Then
2

e2t _ t 2
X0 = (1 00,00) = (o T0 1) i)

is a fundamental matrix for the linear system, where w, is a basis for Ker L.
Let Px = (e}r—l)(%(O) —2z,(0))w, (t), then

Ci_p=KerP = {:r € C([0,00),R?) : z,(0) — 22,(0) = O}.

After some calculations we obtain

e e 0
X—l t) = ( 6+_ B 3 e b B ) , JT—l — ( ! > )
() (e?l-l)et_e 2t (e+11)et+e 2t 0 (T—]eT)

where T, = T(w,) = 1 — 2, and by (1.7),
[(e2(*"3) - et“")f(s,x(s))] ds

[(2 e2(t=9) —et=s) f (s, x(s))] ds

\

- 62—1_1e2’ / [(e2(1_3) —el_s)f(s,x(s))] ds /;) .
0
If we denote z,(t) = e*! —(e+1)et, z,(t) = €', we get
1X(7) = X7 = (2,(7) = 2,(8)" + (2,(7) — 2,(8))

+ (@ (1) = &5(8)° + (8y(7) — 3, (1))
=: g(7,t).
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Then
99 (1,t) = 2(ay(r) — 2, (1)) |
or Tyv) = 2\T\T 1 &, () +2($2(7—) _xz(t))$2(7)
+ 2(1.'1 (7') - il(t)):i'l (T) + 2(5&2(7') - j‘.Q(t))jQ(T)
= (e" —e')e” [40(e” — 5 (e +1))%+ Ble+1)*+e' (40e” —6(e +1))] <0,

and hence for all ¢ > 0, ||X(7) — X(¢)|| is non-increasing function of 7 € [0,¢].
Let f € C([0,00) x R?,R) satisfy the following hypotheses:
1
1) [ftu)] < \/H(le:il = (p(®)||ull + q(t)) for all u € R?, 0 < ¢t < oo,
where p, q are locally mtegrable functions in [0, c0),

fp )ds=T,, < o0, fq ds=A,, <oo forall meN.

(i) 1£(t0) = f(t,0)] < el p (1) Ju — o]

(e+1)e—t]
forall u,v € R?2, 0 <t <1.

(i) 27 e*(3e® —e+1)D, (1+ev2VER—eFlevevae—eiil) <
(iv) 23 —e+1l\H, +T, H, <1, m>1.

Then by [11; p. 53] and Theorem 2.1 the set of all solutions for BVP satisfying
z,(0) — 22,(0) = 0 is nonempty and it is an Rj-set.

Remark 2.2. (1.2) may include multi-point boundary valued condition. How-
ever, if we assume tlim z(t) = =, then the operator T is not continuous in
—00

Fréchet space C'.
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