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ON T H E S T R U C T U R E OF T H E SET OF SOLUTIONS 
OF NONLINEAR BOUNDARY VALUE PROBLEMS 

FOR O D E S ON U N B O U N D E D INTERVALS 

MARIA KEČKEMÉTYOVÁ 

(Communicated by Michal Zajac ) 

ABSTRACT. For boundary value problem x(t) - A(t)x(t) = f(t,x(t)) , Tx = r, 
defined on unbounded intervals we have established sufficient conditions that the 
set of solutions be an Rs-set. 

Introduct ion 

The aim of this paper is to investigate the set of the solutions for the boundary 
value problem 

x(t)-A(t)x(t) = f(t,x(t)) (BVP) 

Tx = r, r£W(is<n), 

with linear boundary conditions on a non-compact interval [a, oo). The exis­
tence of a solution (generally unbounded) for (BVP) has been studied in [9], 
[10]. To prove that the set of all solutions of (BVP) is an R5-set we use a theo­
rem of Z. K u b a c e k [13], [16], which is a generalization of a theorem proved 
by V i d o s s i c h [18]. Some applications of this theory to initial value problems 
on unbounded intervals are presented in [14], [15]. Another approach to investi­
gate the structure of the set of all solutions for a certain integral equation in an 
unbounded domain is used in [6]. In [l]-[4], [9], [10] results about the topologi­
cal structure of the set of solutions to multi-valued asymptotic problems can be 
found. One of the methods used there consists in studying the topological struc­
ture of fixed point sets of limit maps induced by maps of inverse systems. The 
obtained results were applied to differential inclusions on noncompact intervals. 

2000 M a t h e m a t i c s Sub jec t C l a s s i f i c a t i o n : Primary 34B15, 34B40. 
Keywords : boundary value problem on unbounded interval, L^-set. 
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First, we show that the system (BVP) is equivalent to the equation 

Lx = Nx, (OE) 

where L is a linear operator, which need not be Fredholm, JV is, generally, 
nonlinear. Using the theorems o fM. C e c c h i , M. M a r i n i and P. L. Z e z z a 
[5] about equivalence between the set of solutions for (OE) and the set of fixed 
points of operator M = P-\-KpN we may reduce our investigation to the set of 
fixed points of the operator M. The main tool of the proof that the set of fixed 
points of M is an it^-set is a theorem of Z. K u b a c e k . 

1. Preliminaries 

Let a be a real number and let C = C([a, oo),Mn) be the vector space of 
continuous functions from [a, oo) into W1, the topology of which is given by the 
system of seminorms 

pm(x) = sup \\x(t)\\ for each x G C , 
££[a,a+m] 

where || • || is a norm in ]Rn . The space C is a Frechet space and the metric in 
C can be given by 

d(x,y) = £ 2-" *m{X~V\ , x,ye C. 
^ l+Pm(x-y) 

At first, we present some theorems which will be used later. We recall that a 
non-empty subset F of a metric space X is said to be an Rs -set in the space 
X if it is homeomorphic to the intersection of a decreasing sequence of compact 
absolute retracts. By [7; p. 92], a metric space Z is called an absolute retract 
when each continuous map / : W —•> Z has a continuous extension g: Y -» Z 
for each metric space Y and each closed W CY. 

PROPOSITION 1.1. ([13; p. 350]) Let the Frechet space C have the same mean­
ing as above and let </?, cpk, (p^k G C([a, oo), (0, oo)) . k G N. satisfy the conditions 

(i) for each t G [a, oo) the sequence {<r°fc(£)}fe=1 *8 non-increasing and 
lim cpk(t) = 0 . 

(ii) Let ft = {x G C : ||a;(*)|| < <p(t), t > a} . Suppose that Q: fi -> C is 
a compact map and there exists a sequence {Qk}^=1 of compact maps 
Qk: -1 —>• C such that 

\\Qkx(t)-Qx(t)\\<<pk(t), x G ^ , t>a-
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(iii) for each k G N there exists a function (f^k G C([a, oo), [0, oo)) such that 

¥>**(*) + ¥>*(*)<¥>(*)> t > a and \\Qkx^)W ^ * f e W ' xtSl, t>a; 

(iv) the map Sk = I — Qk is infective on f2. 

Then the set F of all fixed points of the map Q is an Rs -set. 

PROPOSITION 1.2. ([8; p. 168]) Suppose that E is a (partially) ordered set. 
We assume that any majorized, increasing sequence {xn}n

<>
=1 of elements of E 

has a supremum in E, and that any minorized, decreasing sequence {yn}n°=1 of 
elements of E has an infimum in E. If, under these conditions, x (resp. y) is the 
supremum (resp. infimum) of {xn}n^=1 (resp. {2/n}^=1)- we shall write xn t x 
(resp. yn iy). We consider a self-map u: E -> E is increasing (i.e. u(x) < u(y) 
whenever x < y), and that is such that u(xn) t u(x) and u(yn) I u(y) whenever 
xn t x and yn ly. Suppose further that there exist xQ and y0 of E such that 

x0<y0i
 xo< u(xo) > u(yo) < yo • 

Define {xn}%=i and {»n>~=i hV 

xn+1 = u(xn), y n + 1 - u(yn). 

Then there exist elements x and y of E such that xn t x, yn iy, x < y, and 
both x and y are fixed points of u. Moreover, if x* (resp. y*) is a fixed point 
of u satisfying x* > xQ (resp. y* < y0), then x* > x (resp. H* <y). 

We consider the system of differential equations 

x(t)-A(t)x(t)=f(t,x(t)), (1.1) 

and the boundary conditions: 

Tx = r: r G l T , (1.2) 

where 1 < v < n , A(t) is an n x n matrix function which is continuous in 
[a, oo), / : [a, oo) x Rn -> W1 is a continuous function, T : domT C C -> W 
is a linear continuous operator; it means that there exist 7 > 0, mQ G N such 
that: 

| | ^ x | | i 5*. 7 ' Pm0(
x) for each x G d o m T , (1-3) 

where || • ||x is a norm in W . 

Remark 1.1. It is known that a linear operator from locally convex space into 
finite dimensional space is continuous if and only if (1.3) holds ([20]). 

Let D be the space of all continuous solutions of the linear system 

y(t) - A(t)y(t) = 0, (1.4) 
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and let us assume that T satisfies the condition 

D c d o m T , T(D)=W. (1.5) 

Let L: domZ, C C —> C x W be the linear operator defined by the relation: 
x(-) t-> (x(-) -A(-)x(-)]Tx), where domF = C1 ([a,oo),Rn) n d o m T and let 
N: domjV C C -^ C x W be the operator given by: x(-) t-> (f(-,x(-))-,r). 

Then the system (1.1)—(1.2) is equivalent to 

Lx = Nx. (1.6) 

Let X(t) = (ujx(t)]...; uJn(t)) be a fundamental matrix for the equation (1.4), 
where u1;...; UJX is a basis for Ker L (I = dimKer L) and CJ1 ; . . . ; UJL; c<;z+1;...; un 

is a basis for D. 
By the results of P. L. Z e z z a [21], and M. C e c c h i , M. M a r i n i , 

P. L. Z e z z a [5], the system (1.1)—(1.2) is also equivalent to the equation 

x=Mx, (1.7) 

where 

M=P + KPN, (1.8) 

P is a continuous projection, P: C -» KerF, Kp is the inverse operator of 
^(domLnc^p)' CI-P = R(T-p)^ KP- R(L) "> domLnC77_P is defined by 
the relation 

Kp: (b(t),r) ^ X{t)JT^ (» • - - " ( f X{t)X~\s)b{s) As\ J 

t 

+ />X(i)X-1(s)6(s) da, 
i (i-9) 

J is the immersion of W into Rn 

J(r) = (0 , . . . , 0, r x , . . . , r J T , r = (r x , . . . , r J T € IT , 

T0 = (To;m,...,Ta;J 

and TQ-1 is the inverse of TQ. 

Remark 1.2. ([5; p. 274]) Operator Kp defined in (1.9) depends on P , because 
the choice of P is related to the fundamental matrix X(t). If v = n, then this 
construction can be simplified, matrix TX(t) is invertible, and hence J = I', 
JTf1 = (TXlt))-1. 

Remark 1.3. ([5; p. 275]) According to (1.9), M is defined on the set: 

A={geC: fX{t)X-1{s)f(s,g{s)) ds G domTJ . 
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2. Results 

In this section we prove the theorem which guarantees that the set of all 
solutions of (1.1)—(1.2) belonging to CI_P is an Rd-set. Let 

Hm= sup \\X(t)\\. (2.1) 
t£[a,a+m] 

THEOREM 2 .1 . Let the system (1.1)—(1.2) satisfy the following conditions: 

A(t) is an n x n matrix defined and continuous on [a, oo), X(t) is a funda­
mental matrix of (1.4) with the following properties: 

(2.2) For all t > a, \\X(r) — X(t)\\ is a non-increasing function of r £ (a^t), 

(2.3) / : [a, oo) x W1 —> W1 is a continuous function and it satisfies: 

I I X " 1 ^ ) / ^ , ^ ) ! ! < p(t)\\u\\ + q(t) for each w G K n , t>a, 

where p, q are locally integrable functions in [a, oo). 

a+m a+m 

j p(s) ds = Tm < +oo , / q(s) ds = Am < +00 , 

a a 

(2.4) (Vi€ [a, a+m0]) (Vu, v € R") (\\X~\t)[f(t,u)-f(t,v)] \\ < p ( t ) | | « - « | | ) , 
T is a linear continuous operator from dom T — C onto W; it means 
that there exist 7 > 0. ra0 GN 5u.cft tftat: 

ll-f^lli ^ 7 ' P m o W for each ^ G d o m T , 

ancf t/ie rank 0/ tfte matrix TX(t) is v, 

(2.5) c=IIJT0-1 | |7 tfm orm /<i, 
where (3 = 3tfmo (l + tfmormo exp(tfmormo)). 

Then the set of all solutions for (1.1)—(1.2) belonging to Cj_p is an Rs-set. 

R e m a r k 2 . 1 . The constant mQ in the (2.4) is given from the continuity of T , 
which is defined on Frechet space and takes values in R^ . Theorem 2.1 includes 
also the non-expansive case. 

The proof of this theorem consists of several steps. At the first step we present 
the following lemma which assures that the operator 

Q =: KpN (2.6) 

is completely continuous. 
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LEMMA 2.1 . ([11; pp. 49-53]) Under the above hypotheses, if d o m T = C . then 
the operator Q is defined on C and it is completely continuous. 

Further, we construct Tonelli's sequence of operators Qk which converges to 
the operator Q and the sequences {(fk}^=1 and {(f*k}

(j*=1 with the following 
properties: 

\\Qkx(t) - Qx(t)\\ <(pk(t), x e n , t>a; 

\\Qkx(t)\\<p*k(t), xett, t > o ; 

where Q = {x e C : \\x(t)\\ < (f(t), t > a} , (f(t) will be specified at the second 
step. 

LEMMA 2.2. Let {Qk}k=1 be the sequence of operators Qk for all k £ N. 
Qk: dom(Qk) C C -» C defined by the relation 

Qkx{t) = < 

a<t<a+^, ( X(a)c(x), 

X{t-\).c(x) 
t-i 

+ /X(í)X-Ҷs)/(ő,a;(s)) ds, a + ± < t < oo 

(2.7) 

where c(x) = JT'1 (r - T( f X(t)X-1(s)f(s,x(s)) d s ) ) . 

If domT = C, t/ien (Vk G N)(dom <5fc = C) and Qk is completely continuous. 

Proof of Lemma 2.2 can be done by a slight modification of the proof of 
Lemma 2.1. 

LEMMA 2.3. Let {^fk}^=i be the sequence of non-negative functions defined 
by 

( \\X(a)-X(t)\\C(^) 

¥>*(*) = { 

+ ||X(Í)|| }{p(s)tp(s) + q(s)) ás, a<t<a+\, 
a 

\\X(t-\)-X(ť)\\C(<p) 

+ \\X(t)\\ / (p(s)ip(s) + q(s)) ds , a + \ < t < oo , 

where 

C(v) = \\JT-'\\. \r\\i+lHm(rmQ sup ^(í) + A m o ) 
t£[a,a+rao] 

(2.Í 

(2.9) 
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and (p G C([a, oo), [0, oo)) . Then for each k G N the function cpk: 
[a, oo) —r [0,oo) is continuous and the sequence {(pk}^=^ of continuous non-
negative functions is non-increasing and converges to 0 uniformly on each com­
pact subinterval of [a, 00). 

P r o o f . The continuity of (pk is obvious. First, let us prove that {^Pk}^=1 is 
non-increasing sequence. Let k be an arbitrary but fixed natural number, then 

M*)-P*+i (*) = 

0, a<t<a+ ^ j , 

X(a) - X(t)\\ - \\X(t - ^ ) - X(t)\\)C(<p) 
t L_ 

fc-f-i 

+ P"(*)II/ (P(SMS) + q(s)) ds , a+k^I<t<a + \ , 
a 

X ( * - I ) - X ( * ) | | - | | X ( i - ^ ) - X ( i ) | | ) C ( ^ ) 
I L_ 

+ \\X(t)\\ J+(p(s)<p(s) + q(s)) ds, a+l<t<(x,. 

From the hypothesis (2.2) there follows: 

\\X(a)-X(t)\\>\\X(t-^ri)-X(t)\\, 

IW-s)-^)||>IW-siT)-^(-)||, 
and so (pk(t) — <pk+1(t) > 0 for each t G [a, oo). Then the sequence {tpk}

<£=1 is 
nonincreasing. D 

Now we prove that {^pk}^=1 converges uniformly to 0 on each compact subin­
terval of [a, oo). X(t) = (cO1;...; ujn) is a fundamental matrix of solutions of the 
linear system (1.4), so ui G C1 ([a, oo); Rn), i = 1, . . . , n, and for each m G N 
there exists Lm > 0 such that: 

\\X(t) - X(s)\\ < L m | | s - £ | | for each s,t G [a,a+m]. 

Then there holds: for a < t < a + \ 
t 

tpk(t) <Lx\a- t\C(<p) + \\X(t)\\ J(p(sMs) + q(s)) ds 

<-ì LjCfø) + Я x • sup (p(s)tp(s) + q(s)) 
íЄ[a,a+l] 

and for a+^<t<a + m 

fk(t) < \ \LmC(ip) + Hm • sup (p(sMs) + q(s)) 
^ L te[a,a+m] 

and hence (pk =4 0 for k -+ oo on each subinterval [a, a+m] C [a, co). 
In the next two lemmas, C((p) is given by (2.9). 
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LEMMA 2.4. Let <p e C(\-a> °°)> [°> °°)) and let Q = {x e C : \\x(t)\\ < <p(t), 
t > a] Further let {^AJS&I be the following sequence of the functions: 

\\X(a)\\C(.<P), a<t<a + {, 

\\X(t-\)\\C(^) (2.10) 

+ ||X(*)|| / (p(sMs) + q(s)) ds, a+l<t<oc. 
<P*k(t) = { 

Then the function <p*k: [a, oo) -» [0, oo) is continuous for an arbitrary fc G N 
and HQfcxMH < <p*k(t) f°r each t G [a, oo). x G -1. 

P r o o f . It is easy to verify that for each fc G N the function <p*k(t) is 
continuous on [a, oo). The inequality ||Qfca;(£)|| < <P*k(t) for all t G [a, oo) and 
x G ( ] follows from the assumptions (2.1), (2.3). • 

At the second step, we determine a function <p satisfying the following con­
dition: 

^*feW + <£*,(*) < <p(t) for each fc G N, t G [a, oo). 

We have: 

<P,*(*)+ ¥>*(*) = 

f (ll-Y(a)ll + | |-Y(a)-X(t) | |)C(^) 

= < 

a <t < a-\- k > (2.11) 
+ \\X(t)\\J(p(s)íp(s) + q(s))ds, 

a 

( l l ^ ( l - l ) | | + | | X ( í - I ) - X ( í ) | | ) C M 

+ ll*(í)|| / (p(sM*) + q(s)) ás, a+ \ < t < oo. 

L E M M A 2.5. ([17; p . 85]) i e i ^ G c([a,oo),[0,oo)), let X(t) be the solutior 
of the equation: 

' (Hi + \\X{a)-X{t)\\)C(v) 

+ llX^)\\J(p(s)X(s) + q(s))ds., a < t < a + 1, 

x(t) = { 
(s^l]WX(s)\\ + \\X(t-l)-X(t)\\)C(íp) 

+ \\X(t)\\ J(p(s)X(s) + q(s)) ds, a+l<t<oo. 

(2.12) 
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Then 

where 

x(t) 
t , t V 

= a(t) + b(t) / p(r)a(r) exp í / b(s)p(s) ds j dr (2.13) 

a(t) = < 

( (H1 + \\X(a)-X(t)\\)C(<p) 

+ \\X(t)\\fq(s)ds, 
a 

( sup ||X(S)|| + ||X(Í-1)-X(Í)||)C(^) 
v «e[o,í] . ' 

a<t<a + 1, 

+ \\X(t)\\fq(s) ds, a + l<t<oo, 

and6(í) = ||A'(t)||. 

If we denote 
t t 

^(t) = \\X(t)\\ • fq(s) ds + \\X(t)\\ I \\X(r) 

(i 
4 n 

q(т) dт P(r)exp J\\X(S)ЫІ ) ds \ dr, a < t < oo , 

and 

H1 + \\X(a)-X(t)\\ + \\X(t)\\f(\\X(a)\\ 
a 

+ | |X(a)-X(r) | | )p(r)exp(/ | |X( S ) | |p(5)d 5 ) dr, o < t < a + l , 
r 

A(i) = { sup \\X(s)\\ + \\X(t - 1) - X(t)\\ 
5G[a,t] 

+ \\X(t)\\f( sup \\X(s)\\ + \\X(r-l)-X(r)\\)-
a 5G[o,r] . 

• p(r) exp ( / \\X(s) \\p(s) ds) dr, a + 1 < t < oo , 

then we may write the solution \ of the equation (2.12) in the form 

X(t)=i>1(t)+iP2(t)-C(<p). 

Now we want to find ip G C([a, oo), [0, oo)) such that for (P*k(t) + (Pk(t) given 
by (2.11) the inequality 

<?.*(*)+¥>*(*)<¥>(*) 
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holds, that is, cp is a solution of 

<p(t) = il>1(t)+1>2(t)-C(<p). (2.14) 

We are going to seek the solution of (2.14) in L1 ([a, a+ra0],lR) . We use the 
usual partial order in Lx ([a, a+ra0] , R) : IG < v if and only if u(t) < v(t) for all 
t G [a, a+ra 0 ] . The following lemma holds. 

LEMMA 2.6. Let U: domU c ^ ( [ a ^ + r a ^ K ) -> l1([a ,a+m0] , )K) be de-
fined by 

(Uu)(t) = i/>1(t)+il>2(t).C(u), 

where domU = |H G L1([a,a+m0],R) : (Vt G [a, a+ra0])(0 < H(/j) < £ ) } , 
ujzlb £ sufficiently large positive real constant. Let the following hypotheses be 
satisfied: 

C=\\JT~'\\1HmTB<l., 

where (3 = 3Hmo ( l + HmTmo exp(ffm or r o o)) 

Fben £bere exists a fixed point of the operator U. 

(2.5) 

P r o o f . We use Proposition 1.2 to prove this lemma. We must verify the 
following hypotheses: 

(i) U is an increasing operator, 
(ii) there exists x0 such that: x0 < U(x0), 

(iii) there exists £ such that: £ > U(£). 

(i) Let v(t) < w(t), t G [a,a+amo]. Then 

(Uv)(t) = 

' 1 l i + 7 I I m o ( T n 0 sup v(t)+Amo)]} 
v tE[a,a+ra0] J J 

r\\i+7Hm(r sup w(t)+Amo)]} 
x te[a,a+m0]

 / J J 

= ^ ( t ) + ^2(«) - {ll-JTo-1!! 

<4>l(t)+^2(t)-{\\JT~1\\ 

= U(w)(t). 

(ii) Let x0 = 0, then 

o < c!(o)(<) = n(t) + Mt) • {ll-IIV1!! • [Iklli +7IImoAmo]} 

(iii) Let £ be a positive real constant. Then 

u(0(t)<A(t) + ^(t)-c(0 
and 

sup U(ţ) < sup Vi(í) + sup ф2(t) • C(0 
[a,a+mo] [a,a+mo] [a,a+mo] 
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where 

sup ^(t) < HmoAmo(l + HmTmo exp( f f m o r r o o ) ) = a 
[a,a+rao] 

sup V2(l) < max{ (H1 + sup \X(a) - X(t)\\) ( l + T1Hl e x p ( i ? i r i ) ) , 
[a,a+m0] "• V [a,o+l] ' 

(Hmo+ sup \\X(t-\)-X(t)\\)-
v [ a+ l , a+m 0 ] J 

• (1 + sup | |x(t)| |rmoexp(H roormo))} <p. 
v [ a+ l , a+m 0 ] ' J 

We are looking for £ with the property 0 < u < £ = > U(?i) < £. Put 
0 = a+[ | |JT 0

_ 11| ( | | r | | 1+7Hm oAm o ) ] - /9, then it suffices to choose any £ satisfying 
the inequality 9 + (£ < £. By Proposition 1.2 the operator 17 has a fixed point 
He L1([a,a+rao],[0,cx))), 0 < u(t) < f, t G [ a , a + a m j . 

Since the functions ^ i 5 V^ a r e non-negative continuous functions, the fixed 
point of U is also a continuous function. If we put 

M t ) , a<t<a + m0^ 

U i W + ^ W C W ' a + ra0<t<oo, 

then (D is a non-negative continuous solution of equation (2.12). 

At the third step we prove that the operator Sk =: I — Qk is injective. • 

LEMMA 2.7. Let the following hypotheses be satisfied: 

( W G [ a , a + r a 0 ] ) ( V H , ^ ^ (2.4) 

Then the operator Sk =: I -Qk
 is injective. 

P r o o f . 

1. Let c(x) = c(y). 
Suppose that x ^ y and x - Qk(x) = y - Qk(y). 

a) Let there exist tx G [«•«+£] such that x(tx) / y(tx) and x - Qfc(«r) = 
y-Qk(y).Thenx(t1)-X(a)c(x)=y(t1)-X(a)c(x) = > x(tx) = y(t-_), which 
is a contradiction. 

b) Let x(t) = y(t) for all t G [a, a + | ] and let 

tx = sup {r > a : (Vt G [a, r)) (x(t) = j/(t))} . 
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Then there exists t0 G (t1,t1 + ̂ ) such that x(t0) ^ y(t0) and 
to~i 

x(t0)-X(t0-\)c(x)- Jx(t0)X-l(s)f(s,x(s)) ds 
a 

to~i 

= y(t0)-X(t0 - \)c(x) - Jx(t0)X-1(s)f(s,y(s)) ds. 
a 

As x(t) = y(t) for all t G [a,£0 —|] •> w e n a v c x(t0)
 = 2/(̂ o)> which is a contra­

diction. 
2. Let c(x) ^ c(y), x ^ y and x - Qk(x) = y - Qk(y) • 

a) Let there exist tx G [&5&+|r] such that x(tx) ^ y(tx) and 

x-Qk(x) = y-Qk(y) = > x(tx) - y(tx) = X(a)(c(x) - c(y)) . 

Using (2.4) we have: 
t 

\c(x)-c(y)\\ JT0
lT JX(t)X-1(s)(f(s,x(s)) - f(s,y(s)) ds 

^WJT-1^ sup (\\X(t)\\ íP(s)\\x(s)-y(s)\\ds 
[a,a+rao] \ J 

and 

\\x(t) - y(t)\\ < Hmo\\c(x) - c(y)\\ + Hmo Jp(s)\\x(s) - y(s)\\ ds , 

t G [a+£,a+ra0] . 
It is easy to verify that if (2.5) holds, then 

| | j r 0 - 1 | | 7 / l - T O o r r o o exp( / f m o r m o )<i . 
Using GronwalPs lemma we have: 

t-

\\x(t) - y(t)\\ <Hmo\\c(x)-c(y)\\exVlHmo j p(s) ds) , 

t G [a+£,a+ra0] , 

sup \\x(ť) -y(t)\\ = m a x sup \\x(ť) - y(ť)\\, sup \\x(t) - y(t)\\ 
[a,a+m0] l [a,a-\-±] [a+±,a+m0] 

\\c(x) - c(y)\\ < \\JT0
í\\1Hmrmoexp(Hmrmo)\\c(x)-c(y)\\ 

< \\c(x) - c(y)\\, 
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and this is a contradiction. 
b) If x(t) = y(t) for all t G [a, a+j-] , the proof is trivial. • 

P r o o f of T h e o r e m 2 . 1 . To prove this theorem we must verify the 
assumptions of Proposition 1.1. If we define ipk, cp^k, ip by (2.8), (2.10), (2.15), 
then from Lemmas 2.1, 2.2, 2.3, 2.4 and 2.7 it follows that the hypotheses of 
Proposition 1.1 are satisfied, so the set of solutions for (1.1)-(1.2) in Cj_p is an 
Rs-set. • 

E X A M P L E . Consider the nonlinear boundary value problem 

m-(_°2 l)m=(filx)), - € [ 0 , 0 0 ) , 
Tx = 0 

where x= ( XJ- J , Tx = xx(0) - Xl(l). Then 

x(t)=(.l(t),.M=(Sztti)i 2$) 
is a fundamental matrix for the linear system, where UJ1 is a basis for Ker L. 
Let Px = ^-(x2(0) -2x1(0))u1(t), then 

C/_p=_KerP = {xGC([0,oc),IR2) : x2(0) - 2_1(0) = ()} . 

After some calculations we obtain 

— e~* 7dTT e " ' \ _ _ i / 0 Y - l ( t \ - ( ( e+!) ( e + l ) e \ T T - 1 _ 
-* \l) - \ 2 -t -2t _____ p -ť i p - 2 í I > J 1 0 -

\ ( e + l ) e e ( e + l ) e ^ e / 

1 
(5+1) e - e (^+T)C " T C / \ ( l - e 2 ) 

where T 0 = T(w 2) = 1 - e 2 , and by (1.7), 

KpN(x) 
/ f ( e 2 ( * - a ) - e ť - 3 ) / ( 5 , r r ( 3 ) ) ] ds 
o 

j r ( 2 e 2 ( ť - 5 ) - e t - s ) / ( . s , x ( 5 ) ) l ds 

i 

If we denote xx(t) = e2t — (e+1) e*, #2(£) = e2 , we get 

| | X ( T ) - X( i ) | |2 = ( X . ( T ) - x ^ i ) ) 2 + ( X 2 ( T ) - x2 ( f ) )2 

+ (^ (T) - x^t))2 + (X2(T) - x2(t)f 
=:g(r,t). 
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Then 

g ( T , t) = 2(s1(r) - *-.(*))*! to + 2(x2(r) - x2(t))x2(r) 

+ 2(X1(T) - *-. (*))*->) + 2(i2(r) - X 2 W ) X 2 ( T ) 

= ( e ' - e V [ 4 0 ( e ^ - ^ ( e + l ) ) 2 + | § ( e + l ) 2 + ^ ( 4 0 6 ^ - 6 ( e + l ) ) ] < 0 , 

and hence for all t > 0, | |X(T) - X(t)|| is non-increasing function of r G [0, TJ] . 
Let / € C([0, oo) x l 2 , R ) satisfy the following hypotheses: 

(i) |/(t,u)l < ^1+Jl|e
1^e

1*)e_ t )3 (.P(*)||^|| + g(t)) foralltIGM2 , 0 < t < o o , 

where p, g are locally integrable functions in [0, oo), 
m m 
J p(s) ds = Tm < oo, / q(s) ds = Am < oo for all m G N. 
o o 

(ii) \f(t,u)-f(t,v)\< , } e +
r

1 ) e \ p(t)\\u-v\\ 
V ) \J \ 5 ) J V 5 j l _ x / 1 + [1_(e+1)e-t]2^V jll II 

for all II, v G M2 , 0 < t < 1. 

(iii) ^ e 2 ( 3 e 2 - e + l ) T 1 ( l + e V 2 v / 3 e 2 - e + l e ^ 2 e V 3 e 2 - e + i r i ) < 1. 

(iv) ^ V 3 e 2 - e + l T 1 H m + r m H m < l , m > V 
Then by [11; p. 53] and Theorem 2.1 the set of all solutions for BVP satisfying 
x2(0) — 2.T1(0) = 0 is nonempty and it is an it^-set. 

Remark 2.2. (1.2) may include multi-point boundary valued condition. How­
ever, if we assume lim x(t) = x , then the operator T is not continuous in 

t—>-oo 

Frechet space C. 
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