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ABSTRACT. By making use of the familiar Salagean derivatives, the authors
introduce and study a certain subclass mk(a,ﬁ,fy) of normalized analytic func-
tions with negative coeflicients. In addition to finding a necessary and sufficient
(and sharp) condition for a function to belong to the class 7;5‘,,0 (e, B,7), a number
of other potentially useful properties and characteristics of functions in this class
are investigated rather systematically. Finally, several applications involving an
integral operator and some fractional calculus operators are also considered.

1. Introduction and definitions

Denote by A, the class of functions of the form:

f)=z+ Y a;2? (keN:={1,23,..}), (1.1)

j=k+1

which are analytic in the open unit disk

U:={z: zeC and |2| < 1}.
Also let the operator:
D" (neN,:=Nu{0})
be defined, for a function f € A, by
D°f(2) = f(2),
D'f(2) = 2f'(2),
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and
D" f(2) = D(D"' f(2)) (neN).
The operator D™ is known as the Sildgean derivative operator of order n € N,

(cf. [9]; see also [6], where it was used recently in determining several interesting
criteria for univalence of analytic functions).

For a function f(z) given by (1.1), it follows from the above definition that
D f(z)=z+ Y ja;27 (neN,). (1.2)
i=k+1

With the help of the operator D™, we say that a function f € A, is in the
class A, (e, 3,7) if and only if

Fn,/\(z)'—l <,3
VF, ,(2)+1—(1+7)a (1.3)
(zelU; neNy; 0SAS1; 0S5a<1l; 0<fBS1; 0£5v51),

where, for convenience,

(1= \)z(D"f(2))' + Az (D! f(z))v’ NG
L=NDf(2) + XD f(2) 4 a(2)

Fn’,\(z) =

Let 7, denote the subclass of A, consisting of functions of the form:

fey=2z- > a2 (a;20; j=k+1,k+2,k+3,...; keN) (14)
j=k+1
and define the class 7\, (o, 8,7) by
7;:\,k(a7ﬁ;7) =Az,k(a’ﬁa’y)n7},' (15)

We note that, by specializing the parameters k, A, a, 3, v, and n, we can
obtain the following subclasses studied by various authors.

(i) Tox(e,1,1) =Pk, A @) (Altintas [1]),

(i) T2y (01,1) = T(a) and Ty(e,1,1) = T2, (@, 1,1) = C(a)
(Silverman [11]),

(111) %?k(aa L1)= 7:1(’0) and 761,k (,1,1) = 7-10k(a, 1, 1) = Ca(k)

E]

(Chatterjea [4] and Srivastava et al. [15]),
(iv) Tn’\,k(a,l,l) =P(k,\,a,n) (Aoufand Srivastava [3]),
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ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

where P(k, ), a,n) represents the class of functions f € A, which satisfy the
inequality [3; p. 763, Equation (1.5)]:

o ((1 — Nz(D"f(2)) + /\z(D”“f(z))') -

(1= X)D"f(2) + AD™+1f(z)
(zel; neNy; 0SAS1; 0Sa<l).

(1.6)

The present paper aims at providing a systematic investigation of the various
interesting properties and characteristics of the general class 7;’\ «(@, B,7), which

we have introduced here. Our results involving the class 7:1’\,k(a,,8,'y) provide
improvements and generalizations of those given by (for example) the aforecited
earlier authors.

2. Coeflicient inequalities and
other basic properties of the class 7;{\’,9(01,/6,'7)

THEOREM 1. Let the function f be defined by (1.4). Then f € 7;{\’k(a,ﬁ,'y)
if and only if

(e.9)

Yo A=A+ { - DA+ B+ (- ) fa; £ B(1+7)(1~a) . (2.1)

j=k+1
The result s sharp.

Proof. Assume that the inequality (2.1) holds true. Then, for |z| =7 < 1,
we observe that

‘(bn,/\(z) - "’/}n,/\(’z)l - 'B|7¢n,/\(z) + {1 - (1 + ’Y)a}"/)n,/\(z)|

=’— fj M1 = A+ X[ — Dy
j=k+1
—BlaE - = Y A=A+ A1 - a)+ (G - a)r}a; |
j=k+1
B R RV (R )L
j=k+1
—plaem-a) = 3 A=A+ {( - a)+ (- a)r}a)
j=k+1
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D AtA= A+ {6 - D +7) +BIL+)(1 - a)}a; - B +7)(1 - a)
j=k+1

S0,
where we have used the inequality (2.1). Hence, by the Mazimum Modulus The-
orem (cf., e.g., [5]) and (1.3), f € )‘k(a B,7).

Conversely, we assume that the function f is in the class T’\k(a 3,7) - Then
we have

Fn,)‘(z) -1
YF, A (2)+1=(1+7)a

= R A=A+ NG - aye

Q4= = 5§71 =24 X){(1= )+ - ar}a,i?

<p (zelU).
Since |R(z)| £ |2| for all z, we obtain the inequality:

> (1= A+ — 1)a;27 !

R j=k+1 < /8
I+71-a)- Ekiﬂj"(l A+ M) {1 —a)+ (G — a)y}a;zi!
j=
(zel).
(2.2)

Now choose values of z on the real axis so that F, ,(z) is real. Upon clearing
the denominator in (2.2) and letting z — 1— through real values, we find that

oo

> =X+ M)~ Da;

j=k+1

SAA+MNA=a)=F D A=A+ A){(1 - )+ ( —a)r}ey,
j=k+1
which leads us readily to the inequality (2.1).
Finally, by noting that the function f given by
F(2) =2 — - Ut -a) .
=X+ M) {G - DA+ +BL+7)(1—a)} (2.3)
(j2k+1; keN)

is an extremal function for the assertion of Theorem 1, we complete our proof
of Theorem 1. o
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COROLLARY 1. Let the function f defined by (1.4) be in the class 7;{\,k(a’ B,7) -

Then
pL+7)(1—0a)
J1= A+ 2){G = (L +B7) + (L +7) (1~ a)} (24)
(j2k+1; keN).
The equality in (2.4) is attained for the function f(z) given by (2.3).

A

a;

Remark 1. Since
1=A+XjS1—p+pj  (§2k+1; keEN; 0SASpsl),
we have the inclusion property:
T 8,7) C T (e, B,7)  (0SAS ).
Furthermore, for 0 £ a; £ a, < 1, it is easily verified that

G-DA+MMN+B0+7)A—0y) . (=11 +B7)+L(1+7)(1~ay)
1-q = 1-a, ’

so that, with the aid of Theorem 1, we obtain the inclusion property:

7;1/\,k(a2)/617)g7;:\,k(a1,/3,7) (0§a1 §a2<1)'

THEOREM 2. For each n € N,

T (e B,7) € TA(E B, )

where
£ = (1+8y)(k+a)+p(1+7)(1-a)
(A4 + )+ +)(1—a)

The result is sharp.

Proof. Suppose that the function f defined by (1.4) belongs to the class
Tf{\+1,k(aaﬂ,7). Then, by Theorem 1,

o0

AN G- (4B HBA+Y) (1) fa; £ B1+7)(1-a). (2.5)
j=k+1

To prove that f € 7;’\)k(§,ﬂ, v), it is sufficient to find the largest £ such that

e}

Yo A=A+ ) {G - DA+ By +BA+Y) (-8 }a; £ BA+Y)(1-E). (2.6)

j=k+1
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In view of (2.5), (2.6) will hold true if

G-+ +AA+7( -8 L [ -DA+67)+B1+7)1 - a)]
1-¢ = 1-«
(j2k+1; keN),

that is, if
§<(1+&ﬂ0—1+a%+ml+ﬂﬂ—a)
= A+ 67)i+B(1L+7)(1-«)

Since the right-hand side of (2.7) is an increasing function of j, letting j = k+1
in (2.7), we obtain

(j2k+1; keN). (2.7

(1+8)(k+a)+40+7)(1-a)
Q+pNk+1)+A1+71-a)’
which proves the main assertion of Theorem 2.

Finally, by taking the function f given by

BO+7)(1 - a) e
(k+ 1)1+ M){ (1 + )k + B +7)(1 - o)}

£s

f(z) =2~

we can see that the result of Theorem 2 is sharp. ]

Remark 2. Since £ > a, it follows from Remark 1 that
7;,\,k(§’/6’7)cl7;;\,k(a7/3,7) (nGNO)

and hence that

7:;\+1,k(a7ﬁ> 7) - nfk(fﬁﬁa’)l) - 7:3:/;(0,,6,')’) (n € NO ),
where £ is defined with Theorem 2.
THEOREM 3. Let 05 a; <1 (j=1,2) and 0< B, £1(j=1,2). Then

Tow(an, B 1) = T (a0 1) - (n€Ny) (2.9)
if and only if
B —ay) _ Ba(l — ay)
1+, 1+8,
In particular, if 0 S a <1 and 0 < B £ 1, then

. s (1=B+2a8 _ ( 1-04+2ap )
7;AmﬂJ%4E¢C_71ﬁ ’1J)_P ki A, 1+8 " (2.11)

(neNy).

(2.10)
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Proof. Let us first assume that the function f defined by (1.4) is in the

class 7;1’\7k(a1,ﬂ1,1) and let the condition (2.10) hold true. Then, by (2.1), we
get

O M= A+ 0){G - DA+ By) +28,(1— o)}
jf;rl 26,(1 — @) K
S S )] (G [TV R O Cak7)) S
j=k+1 26,(1 = o) ’

which shows that f € 7;3:,9(%, B5,1), again with the aid of Theorem 1.

Reversing the above steps, we can similarly prove that, under the condi-
tion (2.10),

fe'm\,k(az’ﬂz’l) = f€7:{\’k(a1,,31,1).

Conversely, the assertion (2.9) can easily be shown to imply the condi-
tion (2.10). The proof of Theorem 3 is thus completed by observing that (2.11)
is a special case of (2.9) when

o, = a, /61=ﬂ, /32=1-

Similarly, we can prove the following theorem.
THEOREM 4. Let 0Sa<1,0<f;S1,and 0= 7; 1 (j=1,2). Then

7;1,,\,k(a7;81771) = 7;:\,k(aaﬁ2,’h) ('Il € NO ) (212)
if and only if

Bi(L+7) _ Br(1+17,) _

l_ﬂl 1 _;82
In particular, if 0< 3 £1 and 0 Sy £ 1, then
B +7)
'Tr:\,k(a’ﬁ"Y) = 7:3:,6 (a, m, 1 (ne NO ). (213)

3. Inclusion properties associated
with modified Hadamard products

Let f(z) be defined by (1.4) and let

gz)=z— D bz?  (b;20; j=k+1,k+2,k+3,...; keN). (3.1)
i=k+1
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Then the modified Hadamard product (or convolution) of f(2) and g(2) is
defined here by

(f*9)(z):=2— Z a;b.2
i (3.2)
(a; 20; b;20; j=k+1L,k+2k+3,...; keN).

We now prove the following theorem.

THEOREM 5. Let the function [ defined by (1.4) and the function g defined
by (3.1) belong to the class T,{\,k(??»ﬁﬁ)- Then the modified Hadamard product

f * g defined by (3.2) belongs to the class 7;;\’k(n,ﬂ,'y), where

(k+ 1M1+ M) {(1+ BNk +B(L+7)(1 — @)}
- =B+ 7)1 = a)’{(A+ BNk + B +7)}
(k+1)"(1+ AR {(1+ Bk + B(L+7)(1 - @)} = {BAL+7)(1 - )}

5

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silver-
man [10], we need to find the largest 5 such that
o0
D =AM {G-D(A+7)+HB(A+7)(1-n) Jab; £ B(1+y)(1-n). (3:3)
i=k+1

Since
oo

DA = A+ M){G - DA+ + LA+ -a)}e; £ A1+ - a)
j=k+1

and
o0

Yo A=A {6 -1+ By + A+ (- )b S AL+ - ),

7=k+1

by the Cauchy-Schwarz inequality, we have

= 51— A+ A6 = DA+ 8) + B0+ (1 - @)
jzzkg—l B(1+7)(1 - a) ajbj <1. (3.4)

Thus it is sufficient to show that
G-1DA+B)+B1+y)(A—-n)

a.b.
1—77 A
§(j_1)(1+ﬂ’7)+ﬂ(1+7)(1_a) a.b. (jgk'{”l; k e N),
1—a 73
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that is, that

Vb,

Since (3.

1-n{G-1)A+pN+BL+7)(1-a)}
(1- a){(j =11 +87)+B1+7)(1-n)}
4)

implies that

|I/\

(j 2k+1; keN).

B(l+4)(1-a)
A=A+ M{G-1)A+67) + B +7)(1—a)}
(j2k+1; keN),

a.b‘

J

ll/\

we need only to prove that
AA+7)(1-a)
JL =X+ X){(G - 1)1+ 67) + AL +7)(1 - )}
< Q=-n{G-DA+8y)+ B0+ - )}
T(1-a){ -+ +BA+Y)(1- )}

or, equivalently, that

(1 2k+1; keN)

A=A+ A){G = DA+ By) + BA+7)(1 - )}
—BA+7)(1— ) {(G - 1)1 +87) + B0 +7)}

"= A+ 2) {0 = DA+ B7) + B +7)1 - )} = {81 -7 - )}
(i Zk+1; keN).

3
A

(3.5)
Since the right-hand side of (3.5) is an increasing function of j, by letting j =
k +1 in (3.5), we obtain

(k+1)"(1+ XR){(1+ Bk + B+ 7)(1 = @)}’
—B(L+ 7)1 — a)?{(1 + Bk +B(1L+7)}

(k+ 1)n(1+ A {(1 + Bk + B+ 7)1 — )} = (L +7)(1 - )}

IIA

i

which proves the main assertion of Theorem 5.
The sharpness of the result of Theorem 5 follows if we take

f(2) = 9(2)
— ,8(1+’)’)(1—C¥) k+1 (kEN)
Ck+1)m u+Am{u+ﬂwk+ﬂa+7)1—an

(3.6)
O
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THEOREM 6. If each of the functions f and g belongs to the same class

mk(a,,ﬁ,'y), then (f * g)(z) belongs to the class 7;{\,1;(/”1’ 1) or, equivalently,
P(k, A, p,n), where

_ G+ D)MAAR{(1+ Ak + A1+ 1)(1 - a)}” — (k+ D) {B(L+ 1) (1 - )}
(k+ )"+ X){(1+ Bk + B+ 71 - )} = (BL+ (1 - )}
The result is the best possible for the functions f(z) and g(z) defined by (3.6).

Proof. Proceeding as in the proof of Theorem 5, we get
< M= M)+ 96 = 1) + A+ 7)(A = @)} - §{A1 + 7)1~ @)}
A=A+ 2){A+ 806 - D)+ B+ 1A= )}~ {BL+N1 - )}
(j2k+1; keN).

. (3.7)

(3.8)
The right-hand side of (3.8) being an increasing function of j, setting j = k+1
in (3.8), we obtain (3.7).
This completes the proof of Theorem 6. O
THEOREM 7. Let the function f defined by (1.4) and the function g defined
by (3.1) be in the same class 7;f:k(a,,8,7). Then the function h(z) defined by

[c.]

h(z) :=z— Z (a? + b?)zj

j=k+1
belongs to the class 7;L’\’k(a,[3,'y), where

(k+1)"(1+ A {(1+ Bk + 1 +7)(1— )}’
-2B8(1+ 7)1 - a)*{(1 + Bk + B(1+1)}

Tkt D+ AR {1+ Bk + AA+ 1)1 - @)} - 2{B(1 + 7)1 - )}’

The result is sharp for the functions f(z) and g(z) defined by (3.6).
Proof. By virtue of Theorem 1, we obtain

o (M= A M{A+ NG =D+ A+ =)},
Z( AL+7)(1-a) ) 7

j=k+1
S( § SUAPMA G- D+ DA ) ) <1,
=\.5 AL+ =) ’
= (3.9)
Similarly, we have
2 (A=A + {4 8NG =D +BA+NE -},
].Z;I( B+ (- a) )bfél' (310)
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It follows from (3.9) and (3.10) that
1A= A+ {4 BNG - D +BA+NA -} 5,
=, ( B+ -a) ) @+,
Therefore, we need to find the largest ¢ such that
JP A=A+ {A+ 810G - 1)+ L +7)(1-0)}
pA+7)(1~o0)
<1<j"(1 ~ A A{A+ 16 - 1) + B+ —a)})2
—2 A1 +7)(1-a)
(j2k+1; keN),

that is,

A=A+ M) {4876 - 1) +BA+7)(1 - )}
—28(1 + 7)1 — a)?{(1+ B — 1) + B +7)}

FPA=A AN {(1+ G - 1) + 0+ 71— )} = 2{BA+7)(1 - @)}’

(j2k+1). (3.11)

VAN

g

Since the right-hand side of (3.11) is an increasing function of j, we readily have

(k+1)"(1+ M) {1 + Bk + B +7)(1 - @)}
—28(1 +7)(1 — )2 {(1 + )k + B(L+7)}

(k+1)7(1 + AR){(1 + B7)k + B(1 +7)(1 — )} = 2{ B + 7)(1 — a<)3}12)

and Theorem 7 follows at once. [m]

A

g

4. A family of integral operators

THEOREM 8. Let the function f defined by (1.4) be in the class 7;1}:/:(0’/71 ¥),
and let ¢ be a real number such that ¢ > —1. Then the function F(z) defined

by
F@y=c+1/f4fmdt (¢>-1; fEA) (4.1)

ZC

0
belongs to the class 7:1’\’k(n,ﬂ,’y), where
(1+6N{k+ (c+ Da} +p(1+7)(1 - a)
(L+8Y)(k+c+1)+B1+7)(1—-a)
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The result is sharp for the function f(z) defined by (2.8).
Proof. From the representation (4.1) of F(2), it follows that

oo
- ctl), i
F(z)==z2 2 (c+j)ajz .
j=k+1
We need to find the largest k such that

{1+8G —1)+B(A+7)(1-kK)}c+1)
(1 =k)(c+3)

PG =D+ BOLN=0) (5 pq; gemy

A

or, eqﬁivalently,

< @4 N{e(c+ D+ G -1} +81+1)1-0)

< - j 2 k+1; kKeN).
=T At FAAF NI —a) (72 pes
The right-hand side of (4.2) being an increasing function of j, setting j = k+1

in (4.2), we obtain

< @+N{k+(c+Da} +81+N1 =)
= 14BNkt ) +BL+N(1—a)
which completes the proof of Theorem 8. 0O

Proceeding as in the proof of Theorem 8, we can deduce:

THEOREM 9. If f € 7;1'\,k(a,ﬂ,'y), then the function F(z) defined by (4.1)
belongs to the class 7;;\’,0(11, 1,1) or, equivalently, fP(k,A,u,n), where

_ A+ BN(e+k+1) —cf(l+ 7)1 - a)

T A48 e+k+ D)+ B0+ (1-a)
The result is sharp, the extremal function f(z) being given by (2.8).
THEOREM 10. Let the function F(z) given by

Fz)=2— Y d;2 (d;20; j=k+1,k+2,k+3,...; keN)
j=k+1

be in the class 'Tn’"k(a, B,7), and let ¢ be a real number such that ¢ > —1. Then
the function f(z) defined by (4.1) is univalent in |z| < R, where

R inf (jn—1(1—>\+,\j){(l +67)6 -1) + B +7)(1— )} (c+ 1))1/<j~1>
L jZk+1 5(1+’Y)(1—a)(c+j)

(4.3)
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The result is sharp.
Proof. We find from (4.1) that

1-c cF ! 00
o= LR S ()
j=k+1

In order to obtain the desired result, it suffices to show that
|f'(z) =1 <1  whenever |z| <R,
where R is given by (4.3). Now

(C+J) 1
If'(z) - u< L2004 o~

Thus we have |f/(z) — 1| < 1 if

2: J(c+’)al| Pt < 1. (4.4)

j=k+1

But, by Theorem 1, we know that

o]

A=A+ {1+ 896 — 1) + A +)(1 - )} <
P B+ )= ) GEL

Hence (4.4) will be satisfied if
jletd) i I"A= A+ WA+ NG~ 1) +BA+ (- )}

c+1 BA+7)(1-a)
that is, if

] < (jn—l(l -2+ /\]){(l +687)G -1+ Bs1+7)(1 - a)}(c + 1))1/(j~1)
B +7)1 - a)(c+J)
(j2k+1; keEN).

(4.5)
Therefore, the function f(z) given by (4.1) is univalent in |z| < R, where R is
defined by (4.3). The sharpness of the result follows if we take

fz)=2z- B+ 7)1 = a)(c+j)
O30+ A7 D) + A0+ - e r 1 (46)
(j2Zk+1; keN).

0

433



H. M. SRIVASTAVA — J. PATEL — P. SAHOO
5. Applications of fractional calculus

Many essentially equivalent definitions of fractional calculus (that is, frac-
tional derivatives and fractional integrals) have been given in the literature (cf.,
e.g., [8] and [13]). We find it to be convenient to recall here the following defini-
tions which were used earlier by O w a [7] (and, more recently,by Srivastava
and Aouf [12]; see also Aouf [2]).

DEFINITION 1. The fractional integral of order p is defined, for a function

f(z), by

f (C )

D;# 0 5.1
where f(z) is an analytic functlon in a simply-connected region of the complex
z-plane containing the origin, and the multiplicity of (z — ¢)#~! is removed, by
requiring log(z — ¢) to be real when z — ¢ > 0.

DEFINITION 2. The fractional derivative of order p is defined, for a function
f(z), by

1 d [ AOL
fo(z)—r(l_p)dz()/(z_oﬂ (0Sp<1),  (52)

where f(z) is constrained, and the multiplicity of (z — {)~# is removed, as in
Definition 1.

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative
of order n + p is defined, for a function f(z), by

D;H'”f(z):di;-{D‘;f(z)} (0Spu<l; neNy). (5.3)

THEOREM 11. Let the function f defined by (1.4) be in the class ’Tn’\,k(a, B,7) -
Then

|DZ# (D' £ ()]

> T ( B+ —a)l(k+2)I'(2 + p) ) (5.4)
TT(2+p) (k+ )" (L + M) {(1 + BNk + AL+ N1 — )} T(k+2 +4)
(lel=r<1; p>0; i€{0,1,...,n})
and
|D;7#(D'£(2))|
< rl+u ( B(1+~)(1 —a)T(k+ 2)T(2 + p) k) (5 5)
T2+ p) (k+ 1)n=¢(1 + Ak){(1+ B7)k + B(1 +7)(1 — o) }T(k + 2 + p) '

(lel=r<1; p>0; i€{0,1,...,n}).
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Each of the assertions (5.4) and (5.5) is sharp.
Proof. We observe that
f(z) € T k(a B,7) = 'Dif(z) € 7;;\_1',/@(“,,6,'7)

and that (cf. Equation (1.2))

Dif(z) =2z — Z jiajzj (ieNy).
j=k+1

In view of Theorem 1, we have

(k+ )" 1+ AR {1+ Bk + B+ - )} > j'a;

j=k+1
< > A=A+ {0+ BYG - 1) +BA+7)(1 - a)}a;
j=k+1
é/@(1+7)(1 - a),
so that
= g Bl+7)(1—a) 5.6
B ey T (e e o S
Consider the function G(z) defined by
G(z) :=T(2 + p)z~*D;* (D' f(2))
L = TE+T@+p) "
- 1521 TGritmw ° %
=z= Y ®(§)jeyd,
j=k+1

where

T+ 12+ p)
TG +1+p)

®(5) := (j2k+1; keN; p>0).

Since ®(j) is a decreasing function of j, we get

T(k + 2)T(2 + 1)
I'(k+2+p)

0< ®() S O(k+1) = (j2k+1; keN; p>0). (5.7)
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Thus, by using (5.6) and (5.7), we see that

G 27— 3(k+1)r*H D jia,

J=k+1
> B+ —a)T(k+2)T'(2 + ) s
= (k+ )" 1+ M) {(1+ A1)k + B(1+7)(1— ) }T(k + 2 + p)
(lJzl=7r<1; p>0; i€{0,1,...,n})
and
G Sr+0k+1r** 37 jta,
j=k+1
Bl+7)(A=a)(k+2)T(2+ p) PhH1

T E D) AL+ Ak + AAT (- a)T(k+2+p)
(J2l=r<1; p>0; i€{0,1,...,n}),
which prove the inequalities (5.4) and (5.5) of Theorem 11.
The equalities in (5.4) and (5.5) are attained for the function f(z) given by

i _ Bl+7)(1—-a) SR+
D) T k+ )@+ Bk + AL+ 7)1 - a)}(1 k) (5.8)
(k eN).
This completes the proof of Theorem 11. a

Setting ¢ = 0 in Theorem 11, we obtain:

COROLLARY 2. Let the function f defined by (1.4) be in the class T} (a, 8,7) -
Then

|D;#f(2)]
5 ( _ AU+ 7)1 — a)l(k +2)T(2 + 1) Tk)
=T(2+u) (k+1)*(14+26) {1+ Bk +B(1+7)(1—a) }T(k+2+p)

(lzsf=r<1; p>0)
(5.9)
and

|DZ#f(2)]
< it ( + Bl +7)(1 - a)l'(k +2)T(2 + p) k)
=T(2+p) (k+1)n(1+ k) {(1+ Bk +BA+7)(1— ) }T(k+2+ p)

(lzl=r<1; p>0).
(5.10)
The estimates in (5.9) and (5.10) are sharp for the function f(z) given by (5.8)
with i = 0.
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THEOREM 12. Let the function f defined by (1.4) be in the class ﬁk(a, B,7)-
Then

D4 (D (2)]
S rite (1 B B(1+7)(1 = a)T'(k +2)T(2 + p) ,,,k)
TTRAM\ R+ D) AR {(L4 1)k +B(1+7)(1—- ) T (k+2+p)

(Jzl=r<1; 0Sp<l; 1€{0,1,...,n—1})
(5.11)

and

|D% (D' f(2)]
A <1 . B(L+ 7)1 — )T (k + 2)T(2+ p) rk>
“T(2+4p) (k+1)" = (14 M) { (14 1)k + B(1+7) (1~ a) }T(k+2+ 1)

(5.12)
Each of the assertions (5.11) and (5.12) is sharp.
Proof. Consider the function H(z) defined by
H(z) :=T(2 — p)z*D* (D" f(2))
— PG+OTR—p) - N il
=z- Z _ jta;z) =z — Z\Il(j)j a; 2,
j=k+1 TG +1-p) j=k+1
where
& POTR2—p) s
j) = s T W) >k+1; keN; 0Spu<1). 5.13)
() TG +1=p) (2 Sp<l) (
It is easily seen from (5.13) that
) T(k+1)T(2 - p) )
0<VP(G)SV(k+1)= 2k+1; keN; 0Spu<l).
() S ¥(k+1) Th+2—p) (j2k+ Sp<l)
(5.14)

Consequently, with the aid of (5.6) and (5.14), we have

|H(2)| 2 7 = U (k + 1)r*H! i i**la;
j=k+1
>, AL +7)(1 — o)l'(k +2)T(2 — p) ,
= (k+1)" (14 Ak) { (14 1)k + B(1+7)(1—a) T (k+2—p)
(Jsfl=r<1; 0Spu<l; 1€{0,1,...,n—1})
(5.15)

k+1
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and

|H(2)] £ 7+ (k + 1)rk*? i j"*a;
j=k+1
BL+7)(1 — o)l'(k +2)T(2 — p) s
(k+ 1) (1+XM6){ (14 B7)k+B(1+ 7)(1— ) }T(k +2 - 0
(J2|=r<1; 0Spu<l; i€{0,1,...,n—1}).

Sr+

(5.16)
The estimates in (5.11) and (5.12) follow from (5.15) and (5.16), respectively.
Each of these estimates is sharp for the function f(z) given by (5.8). a

Letting i = 0 in Theorem 12, we have:

COROLLARY 3. Let the function f defined by (1.4) be in the class T} (c, 3,7) -
Then ’

|D% f(2)]
S Tk (1 Bl +7)(1 = a)T'(k +2)T'(2 — ) k)
=T(2-pu) (k+1)r(1+ k) {(1+B7)k+B(1+7)(1— ) }T(k+2 - p)

(lel=r<1; 0Sp<1)
(5.17)
and

|D% f(2)]
P <1 B(1+7)(1—a)l(k+2)['(2 - p) k)
=T(2-p) (k+ 1) (1+2k){(1+ B7)k+B(1+7)(1— ) }T(k+2— p)

(J]sl=7<1; 0S5 p<l).
(5.18)
The estimates in (5.17) and (5.18) are sharp for the function f(z) given by (5.8)
with ¢ =0.

Remark 3. Many of the results of this section can suitably (and fairly easily) be
extended to hold true for such generalized fractional calculus operators as those
with the Gauss hypergeometric function kernel, which were considered earlier
by Aouf and Srivastava [3; p. 786, Definition 4] (see also Srivastava
and Owa [13]).
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