Ivan Chajda
The Csákány theory of regularity for finite algebras

Mathematica Slovaca, Vol. 45 (1995), No. 1, 39--43

Persistent URL: http://dml.cz/dmlcz/130377

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
THE CSÁKÁNY THEORY OF REGULARITY FOR FINITE ALGEBRAS

IVAN CHAJDA

(Communicated by Tibor Katriňák)

ABSTRACT. If an algebra \(A \) has at most five elements, then \(A \) is congruence regular if and only if there exists a ternary functions compatible with \(\text{Con} A \) such that \(p(x, y, z) = z \) if and only if \(x = y \). If \(A \) has six elements, the assertion does not hold.

A. P i x l e y [5] posed the following problem: If some congruence property is characterized by a Mal'cev condition in varieties of algebras, can this Mal'cev condition (modified in a natural way) be used also for characterizing this congruence property in the case of a single algebra? For arithmeticity, he solved himself this problem affirmatively in [5]. Since every congruence identity can be characterized in varieties by a Mal'cev condition (see [6]), H.-P. G u m m asked for which other congruence identity there exists a Mal'cev theory in the case of a single algebra. The answer is “for none” in a general case, see [4]. However, for small algebras, permutability of congruences can be characterized by a Mal'cev theory, see e.g. [1] for at most four-element algebras, and [2] for at most eight-element algebras (the answer is negative for at least 25-element algebra). This motivated our effort to proceed similar investigations for congruence regularity (which is not a congruence identity). Although some Mal'cev-type characterizations of regular varieties are known, see e.g. [7], we prefer another but more simple term condition given by B. C s á k á n y in [3]. At first we recall:

DEFINITION. An algebra \(A \) is regular if \(\theta = \phi \) for \(\theta, \phi \in \text{Con} A \) whenever they have a congruence class in common. A variety \(\mathcal{V} \) is regular if each \(A \in \mathcal{V} \) has this property.

CSÁKÁNY'S THEOREM. ([3]) For a variety \(\mathcal{V} \), the following conditions are equivalent:

(1) \(\mathcal{V} \) is regular;

AMS Subject Classification (1991): Primary 08A30.
Key words: Regular algebra, Finite algebra, Term condition.
(2) there exist ternary terms \(p_1(x, y, z), \ldots, p_n(x, y, z) \) such that
\[
[p_1(x, y, z) = z \land \cdots \land p_n(x, y, z) = z] \iff x - y.
\]

We are going to investigate if such Csákány-type conditions can characterize regularity of a single algebra.

Let \(A \) be an algebra, \(\theta \in \text{Con} A \) and \(f: A^n \to A \) be an \(n \)-ary function. We say that \(f \) is compatible with \(\theta \) if \(\langle f(a_1, \ldots, a_n), f(b_1, \ldots, b_n) \rangle \in \theta \) whenever \(\langle a_i, b_i \rangle \in \theta \) for \(i = 1, \ldots, n \).

Denote by \(\omega \) the least and by \(\iota \) the greatest congruence of \(A \).

Lemma 1. Let \(A \) be an at least two-element algebra, and \(\theta \in \text{Con} A, \theta \neq \omega \). If \(\theta \) has a one-element congruence class, then there does not exist a ternary function \(p: A^3 \to A \) compatible with \(\theta \) such that
\[
p(x, y, z) = z \iff x - y.
\]

Proof. Suppose \([c]_\theta = \{c\} \) for some \(c \in A \). Let \(p(x, y, z) \) be a ternary function compatible with \(\theta \) such that
\[
p(x, y, z) = z \iff x - y.
\]
Since \(\theta \neq \omega \), there exists a congruence class \(B \) of \(\theta \) containing at least two different elements, say \(a \) and \(b \). Since \(p(a, a, c) = c \), we have
\[
\langle p(a, b, c), c \rangle = \langle p(a, b, c), p(a, a, c) \rangle \in \theta,
\]
\[\text{hence} p(a, b, c) = c, \text{ which is a contradiction.}\]

I 0 R 3 M. Let \(A \) be a finite algebra with \(\text{card} A \leq 5 \). The following conditions are equivalent:

1. \(A \) is regular,
2. there exists a ternary function \(p: A^3 \to A \) compatible with every congruence of \(A \) such that
\[
p(x, y, z) = z \iff x = y.
\]

Proof. For \(A \) with \(\text{card} A \leq 2 \), the assertion is trivial.

(a) Suppose \(\text{card} A = 3 \), i.e. \(A = \{a, b, c\} \). If \(A \) is regular, then evidently \(\text{Con} A = \{\omega, \iota\} \). Define \(p: A^3 \to A \) by the rules
\[
p(x, y, z) = \begin{cases}
z & \text{if } x = y, \\
x & \text{if } x \neq y \text{ and } x \neq z, \\
y & \text{if } x \neq y \text{ otherwise}.
\end{cases}
\]
Trivially, \(p \) is compatible with every congruence of \(\text{Con} \ A \) and satisfies (2).

Conversely, let \(A \) fail to be regular. Without loss of generality, suppose the existence of \(\theta \in \text{Con} \ A \) such that \(\theta \) has two classes, namely \(\{c\} \) and \(\{a, b\} \). By Lemma 1, we obtain a contradiction with (2).

(b) Let \(\text{card} \ A = 4, \ A = \{a, b, c, d\} \). If \(A \) is regular, the desired compatible function can be defined by the rule

\[
p(x, y, z) \begin{cases}
 = z & \text{for } x = y, \\
 \in [z]_{\theta(x, y)} - \{z\} & \text{otherwise},
\end{cases}
\]

since \(\text{Con} \ A \subseteq \{\omega, \iota, \theta_1, \theta_2, \theta_3\} \), where

\[
\begin{align*}
\theta_1 & \text{ has classes } \{a, b\}, \{c, d\}, \\
\theta_2 & \text{ has classes } \{a, c\}, \{b, d\}, \\
\theta_3 & \text{ has classes } \{a, d\}, \{b, c\}.
\end{align*}
\]

It is easy to show that \(p \) is compatible with every congruence of \(\text{Con} \ A \).

If \(A \) fails to be regular, then there exists \(\theta \in \text{Con} \ A \) such that \(\theta \neq \omega \), and \(\theta \) has a one-element class. By Lemma 1, we obtain a contradiction.

(c) Let \(\text{card} \ A = 5, \ A = \{a, b, c, d, e\} \). If \(A \) is regular, then the lattice \(\text{Con} \ A \) cannot include any congruence \(\theta, \theta \neq \omega \), having a one-element class, i.e. \(\text{Con} \ A \subseteq \{\omega, \iota, \theta_i\} \), where every \(\theta_i \) has one two-element and one three-element class. There exist 10 of such \(\theta_i \) on the underlying set of \(A \), however, since \(A \) is regular, \(\text{Con} \ A \) contains at most one of them (because for \(i \neq j, \theta_i \cap \theta_j \neq \omega \), and \(\theta_i \cap \theta_j \) contains a one-element class). Suppose that \(\theta_1 \) has classes \(C = \{a, b, c\} \) and \(D = \{d, e\} \). Define \(p_1: A^3 \to A \) by the rules

\[
\begin{align*}
p_1(x, x, z) &= z, \\
p_1(x, y, d) &= e, \\
p_1(x, y, e) &= d \\
p_1(x_1, x_2, x_3) &= p_1(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}) & \text{for } x_1, x_2 \in C, \ x_3 \in D, \\
p_1(x, y, a) &= b, \\
p_1(x, y, b) &= c, \\
p_1(x, y, c) &= a \\
\end{align*}
\]

For \(x, y, z \in C \) we put

\[
\begin{align*}
p_1(x, y, z) &= x & \text{for } z = y, \\
p_1(x, y, z) &= v & \text{for } z \neq y, \\
\end{align*}
\]

where \(v \in C, \ z \neq v \neq y \).
Since D has only two elements, the case $x, y, z \in D$ yields $p(x, y, z) = p(x, x, z)$, which was solved before.

It is a routine calculation to verify that p_1 is compatible with θ_1 (and, trivially, also with ω, ι). Permuting the elements a, b, c, d, e, we obtain the functions p_i for each θ_i ($i = 1, \ldots, 10$).

If A is not regular, then again Con A has to contain a congruence θ, $\theta \neq \omega$, with a one-element class; thus we obtain a contradiction by Lemma 1. \hfill \Box

For algebras with more than 5 elements, the conditions (1), (2) of our Theorem need not be equivalent. The essential part of this statement is contained in the following:

Lemma 2. There exists a six-element non-regular algebra with a ternary function $p: A^3 \to A$ satisfying (2) of Theorem.

Proof. Let $A = \{a, b, c, d, e, f\}$ and p be a ternary operation on A as follows:

$$p(x, x, z) = z \quad \text{for each} \quad x, z \in A,$$

and for each $x, y \in A$, $x \neq y$, we put

$$p(x, y, a) = b, \quad p(x, y, c) = d, \quad p(x, y, e) = f,$$
$$p(x, y, b) = a, \quad p(x, y, d) = c, \quad p(x, y, f) = e.$$

Let θ, ϕ be equivalences on A determined by their partitions:

$$\theta \quad \text{has classes} \quad \{a, b\}, \{c, d\}, \{e, f\},$$
$$\phi \quad \text{has classes} \quad \{a, b\}, \{c, d, e, f\}.$$

Then θ, ϕ are congruences on the algebra (A, p), and $p(x, y, z)$ satisfies (2) of Theorem (trivially, p is compatible with every congruence on (A, p) because it is the operation of this algebra). Moreover, (A, p) is not regular because two different congruences θ, ω have a common class $\{a, b\}$. \hfill \Box

REFERENCES

THE CSÁKÁNY THEORY OF REGULARITY FOR FINITE ALGEBRAS

Received November 9, 1992
Revised January 25, 1993

Department of Algebra and Geometry
Faculty of Science
Palacký University Olomouc
Tomkova 40
CZ – 779 00 Olomouc
Czech Republic