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P-COMPATIBLE IDENTITIES AND THEIR
APPLICATIONS TO CLASSICAL ALGEBRAS

JERZY PLONKA

Abstract. Let 7: F— N be a type of algebras, i.e. Fis a set of fundamental
operation symbols and N is the set of non-negative integers. Let P be a partition
of F. We say that an identity ¢ = y of type 7is P-compatible (see [7]) if it is of
the form x = x or of the form f (@, ..., @5y 1) = 8(Wo, ---» Ve —1)> Where fand
g belong to the same block of P.

For a variety K of type 7 we denote by K the variety of the same type defined
by all P-compatible identities of type 7 satisfied in K.

In this paper we define a construction, called the P-dispersion of an algebra
and we prove a general theorem which allows to represent algebras from K, by
means of P-dispersions of algebras from K when K is a variety of groups, rings,
lattices, Boolean Algebras, linear spaces, etc. The results of this paper were
announced in [8].

0. We shall consider algebras of a given type 7 (see [3]). For a variety K we
denote by Id (K) the set of all identities of type 7 satisfied in all algebras from
K. If E is a set of identities of type 7, we denote by V(E) the variety defined by
E. In [7] the notion of P-compatible identity was defined, namely:

Let P be a partition of the set F. The block of P containing fe F will be
denoted by [f],. An identity ¢ = y of type ris called P-compatible if it is of the
form

X=X 0.1)
or of the form

f(@y, -y (Dr(/)—l) =gWo, -+ 'Vz((g)-])s 0.2)

where ge[f1p, @os .. @iy 1> Yoy ---» Wiggy—1 ar€ terms of type .
So ¢ = yis P-compatible if the most external fundamental operation symbols

in ¢ and y belong to the same block.

This notion is a generalization of some others, namely: An identity ¢ = yis
called externally compatible if it is of the form (0.1) or of the form (0.2), where
the symbols f and g are identical (see [2]).

If we denote by F, the partition of F consisting of singletons only, then
obviously ¢ = y is externally compatible iff it is B-compatible.
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An identity ¢ = yis called non-trivializing if it is of the form (0.1) or neither
@ nor y is a single variable (see [6]). S0 @ = y is non-trivializing iff it is
{F}-compatible.

For terms @ and y we shall write ¢ = y if ¢ is identical with y (they have the
same structure). If ¢ is a term different from a variable, then the most external
operation symbol of ¢ will be denoted by ex(¢). For example
ex((x.y)+2) =

For a variety K of type t we shall denote by P(K) the set of all P-compatible
identities from Id (K). We denote K, = V(P (K)). We shall also write Ex (K)
instead of R(K) and Kj, instead of K.

In [7] some properties of P-compatible identities were considered, in par-
ticular:

(i) If E is a set of P-compatible identities of type t, then every identity provable
from E by means of Birkhoff’s deriviation rules is P-compatible.

It means that every set P(K) is an equational theory (see [1]).

Saying that ¢(x) is a non-trivial unary term we mean that {x} is the set of all
variables occurring in @(x) and @(x) # x.

1. The P-dispersion of an algebra by
a P-dispersing system.

In [5] a construction .QIV A, was defined. Here we give a generalization of this
0

notion.

If A = (4; F¥)is an algebra and e F¥, then we denote by f™(A) the set of
all ae A4 such that

a=f"ay, ..., ay,_,) forsome ay, ..., ay,_ €A
Let D = (P, 3, {A}icr» {01,}rer) be a quadruple satisfying the following
conditions (1°) — (4°):
(1°) P is a partition of F.
(2°) 3 is an algebra of type 7 and I = (I; F°).
(3°) {4;}ic;1s a family of non-empty pairwise disjoint sets.

(4°) {01, }seris a family of mappings oy, I— (U 4, such that for every ie I we
have o/, ()€ 4; and o), = 0y, if ge[f] iel

‘The quadruple D will be called a P-dispersing system.
We define a new algebra 3, of type 7 putting I, = (4; F°?), where 4 = ) 4,

iel
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and for each feF, ¢4, (k=0, ..., 7(f) — 1) we define

fJD(ao, s Ay 1) = omp(fs(i(), vees brpy 2 1))

The algebra 3, will be called the P-dispersion of J by the P-dispersing system
D or briefly the P-dispersion of 3. If P = P, then we shall say ‘““the dispersion”
instead of ““the Py-dispersion”. "
If 3 is an idempotent algebra and P = P, then we obtain the construction
from [5] as a particular case.
(ii) The equivalence relation ~ induced on A by the partition {A;};c; is a con-
gruence on 3, and 3, is isomorphic to 3.
(iii) If = (J, F3) is an algebra isomorphic to 3 and @: J — I is the isomorphism,
then 3, is a P-dispersion of 3.
In fact, 3, = 3, where D" = (P, J, {4y} jess {010,° Plrer)-
From (ii) and (iii) we get
(iv) The algebra 3, is a P-dispersion of the algebra J,,...
If K is a class of algebras of type 7, we shall denote by K, the class of all
P-dispersions of algebras from K.
(v) For each class K of algebras of type T we have K = K,. In fact, each algebra
= (4, F™) is the P-dispersion by a system (P, U, {{a}},c .., {011,}7eF)s Where
each o is the identity map.
(vi) For each class K of algebras of type t the class K, is closed under isomorphic
images.
In fact, if B = (B; F?) is an isomorphic image of 3, and ¢is the correspond-
ing isomorphism, then B = 3., where

= (P, 3, {¢(Ai)}isl9 {¢°0U']F}felf)-

(vil) If o(x,, ..., X,_1) is an n-ary term of type t different from a variable, a,€ A,
k=0,...,n—1), then

3 , .
o (ag, v Ay_y) = O[ex(q:)},,(‘l’ﬂ(lo, ey By 1))

In fact, the statement is true for fundamental operation symbols. Further we
use induction on the complexity of ¢.
(viil) The algebra 3, satisfies all P-compatible identities satisfied in 3.

In fact, let

p=v (1.1

be a P-compatible identity satisfied in 3, where ¢ and y are n-ary terms. If (1.1)
is of the form (0.1), then it is satisfied in 3. Let (1.1) be of the form (0.2) and
letaed, (k=0,..,n— 1). Since (1.1) is satisfied in 3 and [ex (¢)], = [ex (V)]p»
we have by (vii):
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3 . .
o (ay, ...y Qy_y) = O[ex(p)],,((l’s(lo’ vy By ) =

= o[ex(u/)],,('l/s(iOa eees in— 1)) = WSD(apa ceey Ay _ I)'
Let us denote by V” the variety of algebras of type 7 defined by all identities:

S (o, "'7xr(j)—l)=g(y0’ s Vetgy— 1) (1.2)
f,geF and ge[f],.

Let A = (A4; FY) be an arbitrary algebra of type 7 and B = (B; F®)e V",
(ix) Every subdirect product of algebras W and B is a P-dispersion of U.

In fact, let S = (S; F®) be a subdirect product of A and B. For each aec 4
we define S, = {{a,x):{a,x)e S}, I1={S,},.4. For ae A we put

{a, f3(b,...,b)) for some be B, if acf¥(A)
o) = |

{a,c) for some {a,c)eS,, otherwise.
Then & = A, where D = (P, W, I, {0y, } e p)-
However, the algebra 3, is not in general isomorphic to a subdirect product
of 3 and some B e V” (see Example 12).

Theorem 1. A veriety K is defined only by P-compatible identities iff it is closed
under P-dispersions of algebras from K.

Proof. (=) Follows from (viii).

(<) Consider an algebra B, = (B,; F %”),

where B, = {k,, k,} U {w[j],,}feF’ ki, k)} 0 {Wm,,}fer =0, Wi, Wi, _for L1 #
# [g]p and for each x,, ..., x,,_ € Bp we have f(x,, ..., Xy _1) = W, This
algebra is a P-dispersion of a 1-element algebra from K. It was shown in [7] that
B, satisfies all P-compatible identities of type 7 and only them. Thus B, K. But
each identity from Id (K) must be satisfied in B,, so K satisfies only some
P-compatible identities and no others.

Remark 1. Since the identity x = y is not P-compatible we need k, and
k, in B, to avoid degenerate algebras when |F| < 1.

2. A Representation Theorem of Algebras from K.

A block [f], of a partition P of F will be called nullary if 7(g) = 0 for each
g€[f1p; a block [f], will be called non-nullary if it is not nullary.
Let P be a partition of F and let K be a variety of type 7 satisfying the
following three conditions:
(5°) There exists a non-trivial unary term g(x) such that for each feF the
identity
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4 Xo5 s Xy 1)) = 4(f(@(X0); -5 (X - 1)) 2.1

belongs to Id (K).
(6°) If [f], is a non-nullary block and g, e[ f],, then there exists a non-trivial
unary term g, ,(x) such that ex(q, ,(x))€[f], and the identities

8(xq, .-, Xr(g) — )= qg,h(‘](g(xo, cees Xoge) — ))s

2.2)
h(x0, (R xz(h) — 1) = qg,h(q(h(xo, (RS ] xt(h) - 1)))
belong to Id (KX).
(7°) If [f]p is a nullary block of P, then for each ge[f], the identity
f=g (2.3)

belongs to Id (X).
Let us fix g(x) under conditions (5°) and (6°) and let us fix g, ,(x) under
condition (6°) for every g, A.
Let B be an equational base of K. We define a set B* of identities of type
by the following three conditions:
(b)) The identities (2.1), (2.2) and (2.3) belong to B*.
(b,) If @ = w belongs to B, then the identity

q(9) = q(v) (2.4)
belongs to B*.

(b;) B* contains only identities described in (b,) and (b,).
Let A = (4; F") be an algebra of type .

Theorem 2. If P is a partition of F and K is a variety of type 7 satisfying conditions
(5°), (6°) and (7°), then W belongs to K, iff W is a P-dispersion of an algebra from
K by a P-dispersing system D. Moreover, if B is an equational base of K, then B*
is an equational base of K.

Proof. By (viii) we have K,; < K,. Further, B* = P(K) since (2.1), (2.2),
(2.3) are P-compatible and belong to Id (X). So K, = V(B*). To complete the
proof it is enough to show that any algebra A = (4; F") from V(B*) is a
P-dispersion of an algebra from K. We define in U a relation ~ putting for
a,be A:

a~b<q(a) = q(b).

By (b,) and (2.1), ~ is a congruence on 2. By (b,) the algebra A| ~ belongs to
K.
We shall show that 2 is a P-dispersion of |~ .
Let [a]. = g™~ (@], ..., [ayg _1].) for some ge[f], and ay, ..., a4 € A.
Put

Om,,([a])~) = g"(ay, s By 1)
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If [f]s is nullary, then oy, is well defined by (2.3).

Assume that [f] is non-nullary and for some A€ [f],and b,, ..., bawy_1€Awe
have h(b,, ...,b,4 _,)€[a].. Then by (2.2) we get

gw(QO’ seey az(g)— I) = qg,h(q(g(u(a(h LRRE] at(g)— l))) =
= qg,h(q(h‘u(bo’ cees br(h)—~ D) = h¥*(by, ..., br(h)- 1)

So oy, is well defined again, i.e. it does not depend on the choice of g and
on the choice of arguments.

If [a]. is the value of no g¥~ for ge[f],, then put oy,(al.) = b for fixed
belal..

Consequently U = (A|~),, where D = (P, U|~, {[a] . }sc 4> {071, } re p)-

Corollary 1. If P is a partition of F and K is a variety of type 7 satisfying (5°),
(6°) and (7°), K is finitely based and F is finite, then K, is finitely based.

Corollary 2. Let P be a partition of F and K satisfy (5°), (7°) and
(8°) For every non-nullary block [f], there exists a non-trivial unary term 9i,(%)
such that ex(qy,(x)) € [f]p and for each ge[f]p the identity

8(Xgs eees Xoggy—1) = ‘Im,,(Q(g(xm cees Xetg) ~ 1))

belongs to 1d (K). .
Then K, = Kp,;. Moreover, if K is finitely based and F is finite, then K, is finitely
based.
In fact, the condition (8°) implies (6°).
Remark 2. If there exists a non-trivial unary term r(x) of type 7 such
that the identity r(x) = x belongs to Id (K), then putting g(x) = r(x) we get (5°).

Corollary 3. If ©(F)\{0} # 0, K satisfies (7°) and for each non-nullary block
[f1s, K satisfies
(9°) There exists a non-trivial unary term q,(x) with ex(q,(x)) = he[f], and the

identity q,(x) = x belongs to 1d (K),

then Ky = Kp,. Moreover, if F is finite and K is finitely based, then K, is finitely
based.

In fact by assumption there exists a non-nullary block [f], of F. Let us fix &
in (9°) and put g(x) = ¢,(x). Then corollary 3 follows from remark 2 and
corollary 2.

Corollary 4. Let K be a variety of type 7 satisfying (5°) and
(10°) For each f€ F such that ©(f) > O there exists a non-trivial unary term q Ax)
such that ex (qx)) = f and the identity

S(Xgs s Xgpy 1) = glq(f (Xo, s Xy 1))
belongs to 1d (K).
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Then Ky, = Ky 4. Moreover, if F is finite and K is finitely based, then Ky, is finitely
based. :

In fact, this follows from Corollary 2 since (7°) for P, is always satisfied.

Example 1. Let K be a variety of groups with fundamental operation
symbols -, ~' 1. Then for each partition P of the set F={-, ~', 1} we have
K, = Kp, and K, is finitely based if X is.

In fact, put g.(x) = x-(x-x "), g_,(x) = (x ')~ = ¢g(x) and use Corollary 3.

Example 2. The statements of Example 1 hold if we consider groups
with fundamental operation symbols -, ~! i.e. F={-, ~'}.

Example 3. Let K be a variety of rings with fundamental operations +,
—, -, where + and - are binary, — is unary and X satisfies an identity x" = x
for some n > 1; then for each partition P of F = {+, —, -} we have K, = K,
and K, is finitely based if K is.

Infact,putg(x)=q,(x)=x+ (x + (—x)),q_(x) = —(—x), q.(x) = x"and
use Corollary 3.

Example 4. Let K be a variety of type 7 such that for each fe F we have
7(f) > 0 and the identity f(x,...,x) = x belongs to Id(K). Then for each
partition P of F we get K, = K,,and K, is finitely based if K is finitely based and
F is finite.

This follows from Corollary 3.

Example 5. Let K be a variety of lattices with fundamental operations
v and A. Then for each partition P of {v, A} we have K, = K, and K} is
finitely based if K is. :

This follows from Corollary 3.

Example 6. Let K be the variety of Boolean Algebras with fundamental
operations +, -, ’, 0, 1. Then for each partition P of the set {+, -, ’, 0, 1} such
that [0], # {0, 1} we have K, = K, and K is finitely based.

In fact, put g, (x) = x + x, ¢.(x) = x- x, ¢(x) = (x")” = q(x) and use Coroll-
ary 3.

Example 7. It is known that quasi-groups are algebras with three binary
operations \, -, / satisfying the identities x\(x-y)=y, (x-»)/y=x,
x-(x\y) =y, (x/y)-y = x (see [1]). If K is a variety of quasi-groups, then for
each partition P of {\, -, /} we have K,; = K, and K, is finitely based if K is.

Example 8. Let K be a variety of pseudocomplemented distributive lat-
tices (see [1]) with fundamental operation symbols v, A, . Then for each
partition P of {v, A, '} we have K, = Kp, and K, is finitely based.

In fact, if ['], # {'}, then put ¢, (x) = x v x, ¢,.(x) = x A x and use Corol-
lary 3. If ['], = {'}, then put g, (x) = (x")" and use Corollary 2.

Example 9. Let K be a variety of rings with F={+, —, -, 0, 1}. Let P

be a partition of Fsuch that [0], # {0, 1}. Then K, = K, and K, is finitely based
if K is.
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In fact, define ¢, (x) and g_(x) as in Example 3 and g-(x) = x- 1. Then use
Corollary 3.

Example 10. Let K be a variety of linear spaces over a field M. So
F={+, —,0,{f.}.cu}, where f.(x) = ¢-x. Then K, = K, for each partition P
of F.

In fact, put g(x) =fi(x), ¢, () =x+(x+(—x)), g (x)=c- (~1- . x) for

c
ce M\{0}, g, (x) =0-x.

Now the statement holds from Corollary 3 for all partitions P such that {0,
0-x}#[0-x], #{0-x}. If {0, 0-x}=[0-x], or [0-x], ={0-x}, then put
q5,(x) = 0-x and use Corollary 2 together with Remark 2.

Example 11. Let K be a variety of algebras with two unary fundamental
operation symbols f and g defined by the identities

f(x) =f(f(x)) = g(x).

Then Kg, = Kp 4. In fact, K, is defined by the identities: f(f(x)) = f(g(x)) =
=/(x),8(g(x)) = g(f(x)) = g(x). We put g(x) = f(x), g{x) = f(x), g,(x) = g(x)
and we use Corollary 4.

Remark 3. The last example shows that for the term g(x) the identity
q(x) = x need not belong to Id (X).

Remark 4. The classes K, were considered in [2] for classes of algebras
in which all operations were idempotent and for Boolean algebras. In [4] the
class K was considered if K was the class of pseudocomplemented distributive

lattices. In [2] and [4] the representation was given by means of the congruence
~ considered in the proof of theorem 2.

3. Comments.

Let us denote by K| the variety of type 7 defined by all identities f(x,, ...,
Xepy—1) =S (Vo5 --» Yos)—1)- The proposition (ix) can suggest that if an algebra
A belongs to a variety K of type 7, then a dispersion 2, is isomorphic to a
subdirect product of A and B, where B e K,,.

The following example shows that this is not the case.

Example 12. Let K be a variety of algebras with two unary fundamental
operations f and g defined by the identities

S(x) =g(x)=x.
Consider an algebra A = ({q, b, c}; f, g), where

fl@=fb)=b, ga)=g(b)=a,
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f@=g@=c.

Let ~ be an equivalence relation induced by the partition {{a, b}, {c}}. Then ~
is a congruence on A, A| ~ € K and W is a dispersion of A| ~ . By (viii), A € K, .
However, 2 is not decomposable into a subdirect product of 2, and 2,, where
A, e Kand A, e K. In fact A ¢ K, A ¢ K, and the only non-trivial congruence on
A is the congruence ~.

The next example shows that the assumption (6°) in Theorem 2 is essential.

Example 13. Let K be a variety of algebras with two unary fundamental
operations f and g defined by the identities

f =g, fUT) =)

Then the following system of identities forms an equational base of Kg,:

SUUI X)) =f(f(x) = f(g(x)
g(g(g(x) = g(g(x)) = g(f(x).

In fact any term @(x) of this type can be by means of (3.1) reduced to one
of the following forms:

x, f(), fUF®), g(), glgx).

In the algebra of terms of our type let us denote [@(x)] = @(x)/i4(x)- Then the
free algebra &([x]) in K with one free generator [x] has five elements, namely:

x], U@L UL [gX)] (2]

Let us denote by @ the equivalence relation induced on ([x]) by the partition

{IxB AL SO, {Ig(x)], [g(g(x)]}}- Then @ is a congruence on F([x])
and consequently F([x])/o€ Kk, -

Putting a = {[x]}, b = {[/ (0]}, ¢ = {[/(f ()]}, d = {[g(x)], [g(g(x))]} we see that
&([x])/e is isomorphic to the algebra U = ({a, b, c, d}; f,g), where f(a) = b,
f(B) =f(c) =f(d) = c and g(a) = g(b) = g(c) = g(d) = d. So UeK,.
However, 2 is not of the form B/, for some algebra B e K. In fact, if it is, then
by (iv) there exists a congruence ~ on U such that A|~ e Kand A = (A|~),.
The reader can check that there are only two congruences @,, @, on-U such that
the quotient algebras belong to K. These congruences are ©, = 1 (the greatest
congruence) and @, induced by the partition: {{a}, {b, c, d}}. In both cases the
condition (4°) is not satisfied since f(a) and f(b) belong to the same congruence
class. So U is neither a dispersion of A| O, nor A|O,.

Problem. Does there exist a variety K of a finite type such that K is
finitely based but for some partition P of F, K, is not finitely based.

3.1)
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POLAND

P-COBMECTHBIE TOXJECTBA U UX NMPUJIOXEHUA
K KIIACCUYECKHUM AJITEBPAM

Jerzy Plonka
Pe3iomMme

IMycTs F — MHOXECTBO OCHOBHBIX ONEPAIIMOHHBIX CHMBOJIOB MHOroo0Opa3sus K anre6p tuna
U nycTh P-pa3bueHue MHOXecTBa F. ToxaecTBO Ha3bIiBaeTCs P-COBMECTHBIM, €CJIM OHO HMEET BUI
x = x unu xe BUA f(@Qo, -5 Prpy—1) = &(Wos --+» Wegy—1)> TAE f M g IPHHAIENKAT OJHOMY U TOMY
ke CMEeXHOMY kjaccy pa3buenus P.

Iloka3biBaeTcs, YTO NMPH HEKOTOPBIX NMPEANOJIOKEHUAX BCsAkas anrebpa, yIOBJETBOpsOLIAs
BCeM P-COBMECTHBIM TOXJecTBaM MHOXecTBa Id K, siBisieTcs Tak HasbiBaeMoO# P-aucniepcHeit
HekoTopoii anrebps! u3 K.
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