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P-COMPATIBLE IDENTITIES AND THEIR 
APPLICATIONS TO CLASSICAL ALGEBRAS 

JERZY PLONKA 

Abstract. Let r: F-+ M be a type of algebras, i.e. F is a set of fundamental 
operation symbols and M is the set of non-negative integers. Let P be a partition 
of F. We say that an identity (p = y/ of type r is P-compatible (see [7]) if it is of 
the form x = x or of the formf(<p0,..., <prif)_,) = g(y/0,..., y^ } _ , ) , wherefand 
g belong to the same block of P. 

For a variety AT of type r we denote by KP the variety of the same type defined 
by all P-compatible identities of type r satisfied in K. 

In this paper we define a construction, called the P-dispersion of an algebra 
and we prove a general theorem which allows to represent algebras from KP by 
means of P-dispersions of algebras from AT when AT is a variety of groups, rings, 
lattices, Boolean Algebras, linear spaces, etc. The results of this paper were 
announced in [8]. 

0. We shall consider algebras of a given type r (see [3]). For a variety K we 
denote by Id (K) the set of all identities of type r satisfied in all algebras from 
K. If E is a set of identities of type r, we denote by V{E) the variety defined by 
E. In [7] the notion of P-compatible identity was defined, namely: 

Let P be a partition of the set F. The block of P containing fe F will be 
denoted by [f]P. An identity (p = y/ of type r is called P-compatible if it is of the 
form 

x = x (0.1) 
or of the form 

f(<p0, ..., (Pw-x) = g(Vo, • " , V«(s)-i)> (0.2) 

where ge[f]P, %, ..., ^ / ) _ l 5 y/0, ..., Vr(g)-\ are terms of type r. 
So (p = y/ is P-compatible if the most external fundamental operation symbols 
in (p and y/ belong to the same block. 

This notion is a generalization of some others, namely: An identity (p = y/\s 
called externally compatible if it is of the form (0.1) or of the form (0.2), where 
the symbols f and g are identical (see [2]). 

If we denote by P0 the partition of F consisting of singletons only, then 
obviously <p = y/ is externally compatible iff it is P0-compatible. 
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An identity q> = y/'\s called non-trivializing if it is of the form (0.1) or neither 
(p nor y/ is a single variable (see [6]). So (p = y/ is non-trivializing iff it is 
{^-compatible. 

For terms (p and y/ we shall write (p = ^ if ^ is identical with ^ (they have the 
same structure). If <p is a term different from a variable, then the most external 
operation symbol of q> will be denoted by ex (q>). For example 
ex((x .y) + z) = + . 

For a variety K of type r we shall denote by P(K) the set of all P-compatible 
identities from Id OK). We denote KP = V(P(K)). We shall also write Ex(K) 
instead of P0(K) and KEx instead of KPQ. 

In [7] some properties of P-compatible identities were considered, in par­
ticular: 
(i) If E is a set of P-compatible identities of type T, then every identity provable 

from E by means of Birkhoffs deriviation rules is P-compatible. 
It means that every set P(K) is an equational theory (see [1]). 
Saying that <p(x) is a non-trivia! unary term we mean that {x} is the set of all 

variables occurring in <p(x) and (p(x) ^ x. 

1. The P-dispersion of an algebra by 
a P-dispersing system. 

In [5] a construction Sf 51, was defined. Here we give a generalization of this 

notion. 
If 91 = (A; F*) is an algebra a n d f * e P * , then we denote by f*(A) the set of 

all aeA such that 

a=f*(ao> •••> ar{f)-\) for some a0, ..., a^.^eA. 

Let D = (P, 3, {-4,},e/, {oyiJ/eF) be a quadruple satisfying the following 
conditions (1°) - (4°): 
(1°) P i s a partition of P. 
(2°) 3 is an algebra of type r and 3 = (I; P 3 ) . 
(3°) {Ai}ieI is a family of non-empty pairwise disjoint sets. 

(4°) {or/̂ J/e/ris a family of mappings o^ : /-> ( J ^ such that for every ie/we 
have om^(0 G ,4,- and omp = o^, if / e [/V 6 / 

The quadruple D will be called a P-dispersing system. 

We define a new algebra 3 D of type r putting 3D = (A; F D), where A = \jAt 

iєГ 
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and for eachfeP, akeAik (k = 0, ..., r(f) — 1) we define 

f^(a0, ..., aT{f)_x) = omp(f
3(i0, ..., ir(/)-,)). 

The algebra 3D will be called the P-dispersion of 3 by the P-dispersing system 
D or briefly the P-dispersion of 3 . If P = P0, then we shall say "the dispersion" 
instead of "the P0-dispersion". 

If 3 is an idempotent algebra and P = P0, then we obtain the construction 
from [5] as a particular case. 
(ii) The equivalence relation ~ induced on A by the partition {A^iet is a con­

gruence on 3 D and 3D/„ is isomorphic to 3 . 
(iii) 7/*3 == (J> ^ 3 ) ^ an algebra isomorphic to 3 and (p\ J -* I is the isomorphism, 

then 3 D is a P-dispersion of 3-
In fact, 3 D = 3D , , where D' = (P, 3 , {A^}^ {ompo (p}feF). 

From (ii) and (iii) we get 
(iv) 77le algebra 3 D is a P-dispersion of the algebra 3 D / ^ . 
If K is a class of algebras of type r, we shall denote by KPd the class of all 
P-dispersions of algebras from K. 
(v) For each class K of algebras of type T we have K _= KPd. In fact, each algebra 

21 = (A, Fm) is the P-dispersion by a system (P,2I,{{a}}fl(Ey4, {0^ }/6f), where 
each Oy^ is the identity map. 
(vi) For each class K of algebras of type T the class KPd is closed under isomorphic 

images. 
In fact, if 93 = (B; F*) is an isomorphic image of 3 ^ and (pis the correspond­

ing isomorphism, then 93 = 3 ^ , where 

D' = (P, 3 , {<p(At)}M9 ( 9 ^ ; / 6 f ) . 

(vii) Ifcp(x0, ..., xn_x) is an n-ary term of type T different from a variable, akeAik 

(k = 0, ..., n — 1), then 

(p\a0, ..., a„_,) = o[ex(<p)]p((fP(i0, ..., *;_!)). 

In fact, the statement is true for fundamental operation symbols. Further, we 
use induction on the complexity of (p. 
(viii) The algebra 3 D satisfies all P-compatible identities satisfied in 3 . 

In fact, let 

cp=¥ (l.D 

be a P-compatible identity satisfied in 3 , where (p and y^are n-ary terms. If (1.1) 
is of the form (0.1), then it is satisfied in 3^ . Let (1.1) be of the form (0.2) and 
let akeAk (k = 0,.. . , n - 1). Since (1.1) is satisfied in 3 and [ex(^)]p = [ex(y/)]P, 
we have by (vii): 
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<p*D(a0, ..., an_x) = o{ex{q))]p((p*(i^ ..., in-\D = 

= °[^mP^(h, ..-, ln-\)) = Y^^ •••> «n-l)-

Let us denote by F p the variety of algebras of type r defined by all identities: 

f(x0, . . . ,x r ( 7o- i )=^(yo, — >J\fe)-l), (1.2) 

fgeF and ge[f]P. 

Let 2J = (^; F™) be an arbitrary algebra of type r and © = (B; F*)e Vp. 
(ix) Every subdirect product of algebras 21 and 23 is a P-dispersion of 21. 

In fact, let S = (5; FS) be a subdirect product of 21 and 23. For each aeA 
we define 5fl = {<a,x> : <a,x> - 5 } , 77= {Sa}aeA. For a6^4 we put 

, X f <a,f*(b,...,b)> for some beT?, if a e / V ) 
or n (a ) = < 

' t <a, c> for some <a, c>eSfl, otherwise. 

Then S = 2lD, where D = (P, 21, 77, {omp}feF). 
However, the algebra 3 D is not in general isomorphic to a subdirect product 

of 3 and some 23 e Vp (see Example 12). 

Theorem 1. A veriety Kis defined only by P-compatible identities iff it is closed 
under P-dispersions of algebras from K. 

Proof. (=>) Follows from (viii). 
(<=) Consider an algebra 23 P = (BP\ F p), 

where BP = {kl9 k2} u {wmp}feF, {kl9 k2} n {wmp}feF = 0, wmp # w^p for [f[P # 
# [g]P and for each x0, ..., xTif)_leBP we havef(x0, ..., x^-i) = Wr/v This 
algebra is a P-dispersion of a 1-element algebra from K. It was shown in [7] that 
23/> satisfies all P-compatible identities of type rand only them. Thus 23pe K. But 
each identity from Id (AT) must be satisfied in 23P, so K satisfies only some 
P-compatible identities and no others. 

R e m a r k 1. Since the identity x = y is not P-compatible we need kx and 
k2 in BP to avoid degenerate algebras when |F| < 1. 

2. A Representation Theorem of Algebras from KP. 

A block [f]P of a partition P of F will be called nullary if r(g) = 0 for each 
ge[f]P; a block [f]P will be called non-nullary if it is not nullary. 

Let P be a partition of F and let K be a variety of type r satisfying the 
following three conditions: 
(5°) There exists a non-trivial unary term q(x) such that for each fe F the 

identity 
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q(f(x0, ..., jclt/)_1)) = q(f(q(x0), ..., q(xz(f)_l))) (2.1) 

belongs to Id (K). 
(6°) If [f]P is a non-nullary block and g, h e [f]P, then there exists a non-trivial 

unary term q^Cx) such that ex (qg h(x)) e [f]P and the identities 

g(X0,...,Xtte)_1) = ^^(^(Xo, . . . ,^^) _,))), 

/j(x0, ...,xm_i) = qg,h(q(h(x0, ...,xm_{))) 

belong to Id(K). 
(7°) If [f]P is a nullary block of P, then for each ge[f]P the identity 

f=g (2.3) 

belongs to Id (K). 
Let us fix q(x) under conditions (5°) and (6°) and let us fix qgfh(x) under 
condition (6°) for every g, h. 

Let B be an equational base of K. We define a set B* of identities of type r 
by the following three conditions: 
(bx) The identities (2.1), (2.2) and (2.3) belong to B*. 
(b2) If (p = y/ belongs to _5, then the identity 

q((p) = q(W) (2.4) 
belongs to B*. 

(b3) B* contains only identities described in (bx) and (b2). 
Let 91 = (A; F91) be an algebra of type r. 

Theorem 2. jfP is a partition of F and K is a variety of type x satisfying conditions 
(5°), (6°) and (7°), then 9t belongs to KP iff^i is a P-dispersion of an algebra from 
Kby a P-dispersing system D. Moreover, if B is an equational base of K, then B* 
is an equational base of KP. 

Proof. By (viii) we have KPd c KP. Further, B* c P(K) since (2.1), (2.2), 
(2.3) are P-compatible and belong to Id(i^). So KP s V(B*). To complete the 
proof it is enough to show that any algebra 91 = (A; Fn) from V(B*) is a 
P-dispersion of an algebra from K. We define in 91 a relation ~ putting for 
a, be A: 

a ~ boq(a) = q(b). 

By (b,) and (2.1), ~ is a congruence on 91. By (b2) the algebra 9t| — belongs to 
K. 

We shall show that 91 is a P-dispersion of 911 —. 
Let [a]^ =gni~([a0]„,...J[am_xU) for somege[ f]P and a0, ..., aTig)_xeA. 
Put 
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I f [f]p is nullary, then o[f]p is well defined by (2.3). 
Assume that [f]P is non-nullary and for some h e [f]P and b0,..., br{h) _ , e ^ w e 

have h(b09 ...9bm-x)e[a]„. Then by (2.2) we get 

g\a09 ...,ar(g)_!) = qg,h(q(g*(a0, ...,at{g)_x))) = 

= qg,h(q(h%(b^ -..,br(/o-i))) = ti*(b09 ...9bm_{), 

So o^ is well defined again, i.e. it does not depend on the choice of g and 
on the choice of arguments. 

If [a]^ is the value of no g*l~ for ge[f]P9 then put omp(a]^) = b for fixed 
be [a] . . 

Consequently 81 = (9l| ~ )D9 where £> = (P, 911 - , {[aUaG/0 {omp}feF). 

Corollary 1. If P is a partition of F and K is a variety of type r satisfying (5°), 
(6°) and (7°), K is finitely based and F is finite, then KP is finitely based. 

Corollary 2. Let P be a partition of F and K satisfy (5°), (7°) and 
(8°) For every non-nullary block [f]P there exists a non-trivial unary term q[f] (x) 

such that ex (q\f\p(x)) e [f]P and for each ge[f]P the identity 

g(x09 . . . ,x^)_i) = qU]p(q(g(x0, . . . ,x^)_i))) 

belongs to Id(K). 
Then KP = KPd. Moreover, if K isfinitely based and F is finite, then KP is finitely 

based. 
In fact, the condition (8°) implies (6°). 
R e m a r k 2. If there exists a non-trivial unary term r(x) of type r such 

that the identity r(x) = x belongs to Id (K), then putting q(x) = r(x) we get (5°). 

Corollary 3. If r(F)\{0} # 0, K satisfies (7°) and for each non-nullary block 
[f]P9 K satisfies 
(9°) There exists a non-trivial unary term qh(x) with ex (qh(x)) = h e [f]P and the 

identity qh(x) = x belongs to Id (K)9 

then KP = KPd. Moreover, if F is finite and K is finitely based, then KP is finitely 
based. 

In fact by assumption there exists a non-nullary block [f]p of F. Let us fix h 
in (9°) and put q(x) = qh(x). Then corollary 3 follows from remark 2 and 
corollary 2. 

Corollary 4. Let K be a variety of type r satisfying (5°) and 
(10°) For each feFsuch that r(f) > 0 there exists a non-trivial unary term q/x) 

such that ex(qy(x)) = / and the identity 

f(x0, ...9xT(f)_{) = qj(q(f(x09 . . . . x ^ ^ ) ) ) 

belongs to Id (K). 
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Then KEx = KPd. Moreover, if F is finite and K is finitely based, then KE% is finitely 
based. 

In fact, this follows from Corollary 2 since (7°) for P0 is always satisfied. 
E x a m p l e 1. Let K be a variety of groups with fundamental operation 

symbols •, "*, 1. Then for each partition P of the set F = {•, ~\ 1} we have 
KP = KPd and KP is finitely based if K is. 

In fact, put q.(x) = x^x-x"1), q_x{x) = (x"1)™1 = q(x) and use Corollary 3. 
E x a m p l e 2. The statements of Example 1 hold if we consider groups 

with fundamental operation symbols •, ~\ i.e. F = {•, ~1}. 
E x a m p l e 3. Let K be a variety of rings with fundamental operations + , 

—, •, where + and • are binary, — is unary and Ksatisfies an identity xn = x 
for some n > 1; then for each partition P of F = { + , —, •} we have KP = KPd 

and KP is finitely based if K is. 
In fact, put q(x) = q+(x) = x + (x + (— x)), q_(x) = — (— x), q.(x) = xn and 

use Corollary 3. 
E x a m p l e 4. Let K be a variety of type r such that for eaeh feF we have 

r(f) > 0 and the identity f(x, . . . ,x) = x belongs to ld(K). Then for each 
partition P of F we get KP = KPd and KP is finitely based if K is finitely based and 
F is finite. 

This follows from Corollary 3. 
E x a m p l e 5. Let K be a variety of lattices with fundamental operations 

v and A . Then for each partition P of { v , A } we have KP = KPd and KP is 
finitely based if K is. 

This follows from Corollary 3. 
E x a m p l e 6. Let K be the variety of Boolean Algebras with fundamental 

operations + , • , ' , 0, 1. Then for each partition P of the set { + , - , ' , 0, 1} such 
that [0]P # {0,1} we have KP = KPd and KP is finitely based. 

In fact, put q+(x) = x + x, q(x) = xx, q'(x) = (x ') ' = q(x) and use Coroll­
ary 3. 

E x a m p l e 7. It is known that quasi-groups are algebras with three binary 
operations \, •, / satisfying the identities x \ (x • y) = y, (x • y) / y = x, 
x'(x\y) = y> (*/y)*y = x (see [!])• If K is a variety of quasi-groups, then for 
each partition P of {\, •, /} we have KPd = KP and KP is finitely based if K is. 

E x a m p l e 8. Let K be a variety of pseudocomplemented distributive lat­
tices (see [1]) with fundamental operation symbols v , A , '. Then for each 
partition P of { v , A , '} we have KP = KPd and KP is finitely based. 

In fact, if [']P 7* {'}, then put qv(x) = x v x, qA(x) = x A x and use Corol­
lary 3. If [']p = {'}, then put q[1iB(x) = (x'Y and use Corollary 2. 

E x a m p l e 9. Let K be a variety of rings with F = { + , —, •, 0, 1}. Let P 
be a partition of F such that [0]p # {0, 1}. Then KP *= KPd and KP is finitely based 
if K is. 
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In fact, define q+(x) and q_(x) as in Example 3 and q-(x) = x-1. Then use 
Corollary 3. 

Example 10. Let K be a variety of linear spaces over a field M. So 
F = { + , —, 0, {f}ceM}> wheref(x) = c-x. Then KP = KPd for each partition P 
ofF. 

In fact, put q(x) ==f(x), q+(x) = x + (x + (~x)), q/c(x) = c * ( ™ • x) for 

ceM\{0}, q/o(x) = 0-x. 
Now the statement holds from Corollary 3 for all partitions P such that {0, 

0-x}#[0-x]P7-M0-x}. I f {0, 0-x} = [0-x]P or [0-x]P = {0-x}, then put 
q/(x) = 0-x and use Corollary 2 together with Remark 2. 

Example 11. Let K be a variety of algebras with two unary fundamental 
operation symbols f and g defined by the identities 

f(x)=f(f(x)) = g(x). 

Then KEx = KPd. In fact, KEx is defined by the identities: f(f(x)) =f(g(x)) = 
= f(x\ g(g(x)) = g(f(x)) = g(x). We put q(x) = f{x), q/x) = f(x), qg(x) = g(x) 
and we use Corollary 4. 

R e m a r k 3. The last example shows that for the term q(x) the identity 
q(x) = x need not belong to ld(K). 

R e m a r k 4. The classes K^ were considered in [2] for classes of algebras 
in which all operations were idempotent and for Boolean algebras. In [4] the 
class KP was considered if K was the class of pseudocomplemented distributive 
lattices. In [2] and [4] the representation was given by means of the congruence 
~ considered in the proof of theorem 2. 

3. Comments, 

Let us denote by K0 the variety of type r defined by all identitiesf(x0, ..., 
xr(/)- I) =f(yo> •••» y</)-1)- The proposition (ix) can suggest that if an algebra 
91 belongs to a variety K of type r, then a dispersion 2lD is isomorphic to a 
subdirect product of 91 and 23, where 23 G K0. 

The following example shows that this is not the case. 
Exa mpl e 12. Let K be a variety of algebras with two unary fundamental 

operations f and g defined by the identities 

fix) = g(x) = x. 

Consider an algebra 21 = ({a, b, c};f g), where 

f(a)=f(b) = b, g(d)=g(b) = a, 
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f(c) = g(c) = c. 

Let ~ be an equivalence relation induced by the partition {{a, b}, {c}}. Then ~ 
is a congruence on 91, 911 ~ e K and 91 is a dispersion of 911 ~ . By (viii), 91 e KEx. 
However, 91 is not decomposable into a subdirect product of 911 and 9J2, where 
91 j e K and 9l2 e K0. In fact 91 $ K, 91 ^ Ko and the only non-trivial congruence on 
91 is the congruence ~ . 

The next example shows that the assumption (6°) in Theorem 2 is essential. 
Example 13. Let K be a variety of algebras with two unary fundamental 

operations f and g defined by the identities 

f(x) = g(x), f(f(f(x))) = / ( / ( x ) ) . 

Then the following system of identities forms an equational base of KEx: 

wnm -A/W) -/<**,, 
g(g(g(x))) =g(g(x)) = g(f(x)). 

In fact any term <p(x) of this type can be by means of (3.1) reduced to one 
of the following forms: 

x, f(x), f(f(x% g(x), g(g(x)). 

In the algebra of terms of our type let us denote [(p(x)] = <p(x)/ld(K). Then the 
free algebra 3f(M) i*1 K with one free generator [x] has five elements, namely: 

[x], [/(*)], [f(f(x))l [g(x)}, [g(g(x))]. 

Let us denote by (9 the equivalence relation induced on 3KM) by the partition 
{{Ml, {\f(x)]}> {[f(f(x)]}h {[g(x)l [g(g(x))]}}. Then 0 is a congruence on $([*]) 
and consequently ^([x])/0eKEx. 
Putting a = {[*]}, b = {[f(x)]}, c = {[f(f(x))]l d = M x ) ] , [g(g(x))]} we see that 
5(M)/<9 is isomorphic to the algebra 91 = ({a, b, c, d}; f,g), where f(a) = b, 

f(b) = / ( c ) = / (d ) = c and g(a) = g(b) = g(c) = ^(d) = d. So 91G* E X . 

However, 91 is not of the form ©D for some algebra ^eK.ln fact, if it is, then 
by (iv) there exists a congruence ~ on 91 such that 911 ~ e K and 91 = (911 — )D. 
The reader can check that there are only two congruences <9l9 02 on 91 such that 
the quotient algebras belong to K. These congruences are 6>, = i (the greatest 
congruence) and 02 induced by the partition: {{a}, {b, c, d}}. In both eases the 
condition (4°) is not satisfied sincef(a) andf(b) belong to the same congruence 
class. So 91 is neither a dispersion of 9l|<9j nor 9I|<92. 

P rob l em. Does there exist a variety K of a finite type such that K is 
finitely based but for some partition P of F, KP is not finitely based. 
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Р-СОВМЕСТНЫЕ ТОЖДЕСТВА И ИХ ПРИЛОЖЕНИЯ 
К КЛАССИЧЕСКИМ АЛГЕБРАМ 

^е^2у Р1опка 

Р е з ю м е 

Пусть Р — множество основных операционных символов многообразия К алгебр типа г 
и пусть Р-разбиение множества Р. Тождество называется Р-совместным, если оно имеет вид 
х = х или же вид/(<р0, ..., (рТ{/)_ х) = ^(щ, ..., ^ ) - .)' г Д е / и # принадлежат одному и тому 
же смежному классу разбиения Р. 

Показывается, что при некоторых предположениях всякая алгебра, удовлетворяющая 
всем Р-совместным тождествам множества ЫК, является так называемой Р-дисперсией 
некоторой алгебры из К. 
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