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TOPOLOGICAL D I F F E R E N C E POSETS 

V L A D I M Í R P Á L K O 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . Difference posets (D-posets) are partially ordered sets with a par­
tial difference operation. Special cases of D-posets are orthomodu lar posets or 
systems of fuzzy sets. In this paper, we define a topological D-poset as a D-poset 
with a topology guaranteeing the continu ity of the difference operation, and a 
topological lattice D-poset as a lattice D-poset with a topology guaranteeing the 
continu ity of t h e difference operation and lattice operations. If these topologies 
are uniform and the operations are uniformly continuous, we speak of uniform 
D-posets and uniform lattice D-posets. In the paper, several examples of uniform 
D-posets are exhibited. The main result is the theorem asserting t h a t the topo­
logical completion of a uniform Hausdorff lattice D-poset in which all monotone 
nets are Cauchy is also a uniform Hausdorff lattice D-poset, which is a complete 
lattice. This is the generalization of a known result for orthomodu lar lattices 
([14])-

1. Introduction 

In recent decades, many extensions of Kolmogoroff axiomatics were intro­
duced. After Boolean algebras, there followed quantum logics, orthomodular 
lattices and fuzzy sets. Several years ago, orthoalgebras were defined (see [1]), 
and the most recent notion is that of D-posets (see [6], [7]), which include all 
the previously mentioned structures. 

DEFINITION 1.1. A difference poset (briefly D-poset) is a quadruple 
(F),^,©,1), where D is a nonempty set partially ordered by 5 ,̂ 1 is the 
largest element of D, and © is the difference operation which defines for every 
a, b G D, a _ b, an element b © a in such a way that the following conditions 
are true: 

i) bQa = 6, 
ii) be (be a) = a, 

iii) a ^ b ^ c implies ceb ^ ce a, and (c © a) © (c © b) = b © a. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06B30, 54F05. 
K e y w o r d s : difference poset, lattice completion, topological completion. 
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It can easily be seen that in any D-poset, 0 = 1 © 1 is the smallest element 
of D. 

DEFINITION 1.2. An orthomodular poset (OMP) is a triple (P, ^ , -L ) , where 
P is a nonempty set partially ordered by _ , possessing the largest element 1 
and the smallest element 0, and _L: P —+ P is a map with properties: 

i) a ^ b implies b1- ^ a1-, 
}}) (a±)±=a, 
iii) a V a1- — 1, 
iv) a ^ b implies 6 = a V (b A a-1). 

Two elements a, b of P are called orthogonal (written a J_ b) if a ^ b - 1 . For 
a, 6 orthogonal, there exists a Mb in P . An OMP which is a a -lattice is called 
quantum logic. 

It is clear that every OMP becomes a D-poset if we put for every a,b £ P, 
a ^ b , b©a-=bAaJ-. 

In the following, D denotes always a D-poset. Let us write G — {(a, b) £ 
D x D \ a ^ bj . A net a a of elements of D is called increasing (decreasing) 
if a ^ /3 implies a a ^ a o ( a a _ a^) . Increasing and decreasing nets are called 
monotone. 

DEFINITION 1.3. A function /J,: D —> J? is called a signed measure if for every 
a , ! ) G D , ci ^ b, lx(b) -= /i(a) + /i(b 0 a ) . If fi(a) _ 0 for every a £ -D, we say 
that /L is a measure. 

A set ./VI of signed measures on D is called separating if for every a, b £ £), 
a 7-= 6, there exists /i £ .M such that /i(a) 7-= /i(b). 

2. D-poset as a topological space 

It is well known in classical measure theory that, if /i is a finite measure 
on the cr-algebra <S of subsets of some set X , then the function g^(A,B) = 
fi(AAB), A, P £ 5 , ( A A B = (A\P) U (B\A) is the symmetric difference of A 
and P ) is a pseudometric on S (see [4]). Quantum logics as topological spaces 
were investigated, for example, in [8], [9], [10], [11], [12], [13] and [14]. Some 
considerations of these papers are extendable also to D-posets. 

If a D-poset D with a topology T form a topological space ( P , T ) , and 
T x T is the usual product topology on D x D, let T0 be the relative topology 
on G induced by T x T . If T is an uniform topology induced by an uniformity 
U, U xU is the product of uniformities, and W0 is the relative uniformity on G 
induced by W x W , then, of course, U0 induces TQ. 
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DEFINITION 2 . 1 . (D, T) is called a topological D-poset if 0 : (G, TQ) —> (D, T) 
is continuous. If T is induced by the uniformity U, then (D,U) is called a 
uniform D-poset if ©: (G,UQ) —+ (D,U) is uniformly continuous. 

If T is uniform, we do not distinguish in the notation between (D,T) and 

{D,U). 
It is obvious that the discrete topology on any D forms a Hausdorff uniform 

D-poset. 
The following lemma is routine. 

LEMMA 2.2. Let B be aprebase ofU. Then (D,U) is a uniform D-poset if and 
only if for every U G B there exists V G U such that (x1^x2) G V, (y1,y2) G V, 
x1=ylf x2 ^ y2 implies (yx © x1? y2 0 x2) G U. 

We exhibit several uniform D-posets. All of them are Hausdorff. 

EXAMPLE 1 . If S is the cr-algebra of subsets of X, /I a finite measure on S, 
let us define en equivalence relation on S via: A ~ B if fi(AAB) — 0 . Let 
us denote by <S the system of all equivalence classes [A], A G S, and by ^ , 
the partial ordering on S, where [A] ^ [B] if Ax C JBJ for some A1 G [A], 
I?! G [B]. If we define the orthocomplementation i o n 5 : [A]-1 = [X \ A], then 
S becomes a Boolean algebra and, hence, a D-poset. If we define the metric g 
on S by £ ([.A], [B]) = fi(AAB), and T is the topology induced by g , then 
(S,T ) is a uniform D-poset. 

EXAMPLE 2. Let C(H) be the set of all closed subspaces of the separable 
Hilbert space H (complex or real) with dim H = 3. If C(H) is partially 
ordered by inclusion, and, for M G C(H), M1- is the usual orthogonal com­
plement of M, then C(H) is a complete orthomodular lattice. Then the sets 
U^e = {(M,N) (EC(H)xC(H); \\PMy - PN<p\\ < e}, if G H, e > 0, (PM 

denotes the orthogonal projector corresponding to M ) form a prebase of a uni­
formity U. Let us denote by Ts t rong the topology induced by U. We can also 
obtain Tstrong as the relative topology induced by the strong topology on the 
space of all bounded linear operators operating from H to H (identifying closed 
subspaces with orthogonal projectors projecting on them). (C(H), r s t r o n ) is a 
uniform D-poset. Every increasing (decreasing) net Ma converges in this space 
to M = \JM„ (AMJ. 

EXAMPLE 3. If we define a metric d on C(H) by d(M,N) = \\PM - PN\\, 
M,N G C(H), where || • || denotes the usual operator norm, and r .f is the 
topology induced by d, then (C(H), r l ln i f) is uniform D-poset. 

D-posets in Examples 4 - 9 are systems of fuzzy sets, i.e., systems of functions 
defined on some set A with values in the interval (0,1). In all these D-posets, 
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= is defined via: / = g if / ( t ) = p(i) for every t e A. Then (5 0 /)(*) = 
g(t) — f(t), t £ A. The largest element is the constant function equal to 1 . 
On these D-posets, we can define two topologies in a natural way. The first one 
is the uniform topology of pointwise convergence, where fa —> / if and only 
if fa(t) —» f(t) for every t £ A. Let us denote it by r . The second is the 
topology induced by the metric d(f,g) — sup{ | / ( t ) — g(t)\ ; t E i } , denoted by 
Tsup- Then in Examples 4 - 9 , we have further Hausdorff uniform D-posets. 

EXAMPLE 4. (Z), T ) , where J) is the set of all functions defined on an arbitrary 
set A with values in (0,1). 

EXAMPLE 5. (-0,r ) , where D is the same as in E4. 

EXAMPLE 6. (JD,T .) , where D is the set of all continuous functions defined 
on (0,1) with values in (0,1). 

EXAMPLE 7. (-Q,Tsup), where D is the same as in E6. 

EXAMPLE 8. (JD, T ) , where D is the set of all convergent sequences with values 
in (0,1). 

EXAMPLE 9. ( D , r s u p ) , where D is the same as in E8. 

E X A M P L E 10. Let D be the subset of the normed space £ p ( (0 ,1}) , p ^ 1, such 
that [/] G D if 0 S A( i ) £ 1, t G (0,1), for some / , G [/]. For [/],[5] G D, 
[/] ^ [5] if A (t) Ig 5 l (t), * G (0,1), for some 7 l G [/], gx G [g]. If for [/] ^ fo], 
[.9] © [/] ~ [9 ~ / ] ? then D is a D-poset. If T is the topology induced by the 

metric d([ / ] , [g]) = ( / \f(t) - g(t)\p dtj * , then (J5,T) is a uniform D-poset. 

On any D-poset with a separating set of signed measures, it is possible to 
define some nontrivial Hausdorff uniform topologies. 

If A4 is a separating set of signed measures, let T(M) be the uniform topology 
with a prebase containing sets i7m £ — {(a, 6) G D x D; \m(a) — m(b)\ < e} , 
e > 0, m E -M. Let T(A4) be the topology induced by the metric gM(a,b) = 
sup{|ra(a) — m(b)\ ; m £ yVl} . 

THEOREM 2.3 . If M. is a separating set of signed measures on D, then 
(D,T(M)) and (D,T(M)) are Hausdorff uniform D-posets. 

All uniform D-posets in Examples 1-10 are equal to (D, T(M)) or (D, T(M.)) 
for some yVf. 

P r o o f . If (ava2), (61,62) € Um^, ax ^ bx, a2 ^ b2,then ( b 1 0 a 1 , 6 2 e a 2 ) 
G ^m,e- Hence, by Lemma 2.2, (D,T(M)) is a uniform D-poset. Similarly, if 

QM(ana2) < §> QM&I^) < h a i Sb^a2 ^ b2, then ^ ( ^ 0 ^ , b20a2) < £ . 
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Hence, (D,T(M)) is a uniform D-poset. Since M is separating, r(M) and 
T(M) are Hausdorff. 

Let us prove that all topologies in Examples 1-10 are special cases of r(M) 
or T(M). 

E l . T is equal to T(M), where M is the family of all measures mA on S 

of the form mA([E]) = fi(AnE), [E]eS, AeS. 
E2. A measure fi on C(H) is called Gleason measure if /i is of the form 

V(M) = tr T P M , m G £ ( # ) (trTPM is the trace of T P M ) , where T is a 
nonnegative hermitean trace class operator. Let M be the set of all Gleason 
measures /i such that fi(H) = 1. It was proved in [8] that Tstr = r(M). 

E3. Let M be the same as in E2. It was proved in [2] that | | P M - PN\\ = 
sup{|m(M) -m(N)\; m G M). Hence, run i f = T(M). 

E4, E6, E8. For every t from the domain of functions in Z), let us define the 
measure mf, mt(f) = f(t), / G D . If M is the family of all measures rat, then 
rpc = r(M). 

E5, E7, E9, E10. Every topological D-poset (D,T) in these examples is a 
topological subspace of some linear norm space X. In E5, X is the space of all 
bounded real functions defined on A, in E7, X is the space of all real continuous 
functions defined on (0,1), in E9, X is the space of all real convergent sequences. 
The norm of X in these examples is the usual supremum norm. In E10, X is the 
space £ p ( (0 ,1)) with the usual norm. Let X' be the dual space to X , i.e., the 
space of all bounded functionals defined on X , and X" = (X1)' be the second 
dual space. If J : X —> X" is the canonical mapping, i.e., for x G X , Jx = x", 
where x"(x') = x ' (x) , cc' G X', then ||x|| = | |Jx| | (see [15]). Hence, we have 

||x|| = | |Jx| | =sup{|x , /( .T /) | ; x eX', H ^ l l ^ l } 

= sup{ |x , (x) | ; x' G X ' , | |X' | | ^ 1 } . 

Then for every net aa G D, a € D, 

\\aa-a\\=8up{\x'(aa-a)\; xf G X ' , | |z' | | ^ l } 

= s u p { | x , ( a j - x ' ( a ) | ; x7 G X7, ||x'|| ^ l } , 

and, hence, aa —•> a in (D,T) if and only if a a —> a in (D,T(M)), where AT 
contains restrictions of all bounded linear functionals x ; , ||x'|| ^ 1, from X to 
D . Hence, T = T(M). D 

3. Uniform lattice D-posets 

If (D, T) is a topological D-poset and D is a lattice, then the continuity of 
the lattice operations V and A is not guaranteed, in general. (£(FT),rs t r ) 
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and (C(H), Tunif) are uniform D-posets, but V and A are not continuous. For a 
nonzero vector <p G H, let [<p] be the one dimensional subspace generated by </?, 
If ¥>„ -¥> , V n - V > , ll^nll = K l l = IMI = 1 and (¥>n,^n) = 0, n = l , 2 . . . , 
then fo>J -> [tp], [iPn] -> [V>] in (C(H),rstrong) and in ( £ ( # ) , r u n i f ) as well, 
but [<pn] V [i/;n] does not converge to [up] V [</?] = [(p] in any of these topologies. 
However, on orthomodular posets, a topology giving a D-poset guarantees at 
least partial continuity of V (and hence, also of A) . The following lemma is 
true: 

LEMMA 3 . 1 . If D is an OMP, then (D,T) is topological D-poset if and only 
if the following conditions are true: 

i) if aa —> a in (D,T), then a^ —> a1- in (D,T); 
ii) if aa —• a, ba —> b in (D,T), aa JL ba . a _L b, then aaV ba —> a V 6. 

P r o o f . For a ^ b, i e a - ^ i A a 1 = (6 1 V a)-1 , where a JL b1-. So, if i) and 
ii) are true, then © is continuous. Conversely, a1- = 1 © a, and for a,b E D, 
a_Lb , a V b = - l © ( ( l © a ) © b ) ) . Hence, the continuity of © implies i), ii). • 

Orthomodular posets with topologies with properties i) and ii) were studied 
in [8] before D-posets were introduced. 

In the following, we introduce topologies on lattice D-posets, which also guar­
antee the continuity of lattice operations. Such topologies were studied in the 
last decade on orthomodular lattices (see [10], [11], [12], [14]). In the following, 
D is assumed to be a lattice. 

DEFINITION 3.2. We say that (D,T) is a topological lattice D-poset if 

i) the mapping ©: (G,TQ) —> (D,T) is continuous, 
ii) the mappings V, A: (D x D,T x T) —> (D,T) are continuous. 

If T is uniform, we say that (D, T) is an uniform lattice D-poset if the mappings 
©, V and A are uniformly continuous. 

The following lemma is routine. 

LEMMA 3.3 . If T is induced by a uniformity IA, then (D,T) is a uniform 
lattice D-poset if and only if for every U E U there exists V £ IA such that 
( X 1 , X 2 ) , ( T / 1 , J / 2 ) G V implies (xx V y1, x2 Vy2) G U, (xx Aj/1?x2 A y2) G U, and, 
if moreover xx — y1 and x2 — y2, then also (yx © xl,y2Q x2) G U. 

It can be easily seen that D-posets in E l and E 4 - E 9 are uniform lattice 
D-posets. 

It was proved in [14] that the topological completion of a Hausdorff uniform 
orthomodular lattice in which all monotone nets are Cauchy is also an ortho-
modular lattice, which is complete. As we shall see, this result is true also for 
D-posets. 
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Let (D,U) be a uniform lattice D-poset. Two nets aa, b^ of elements of D 
are called equivalent (aa ~ bg) if for every U e U there exist indices a 0 , /30 

such that (aa, bp) eU for a _ a 0 , /? _ (3Q. 

REMARK 3.4. If aa ~ a'a, ba ~ b'a, then a a V ba ~ a'a V b'a and a f t A 6 Q -
a a A b'a' Specially, if aa _ ba, b'a _ a'a, we obtain ba = ba V aQ ~ b'a V a'a = 

LEMMA 3.5. Let (D,U) be a uniform lattice D-poset. If aa, ba, b'a, ca are 
nets in D and aa _ ba, b'a _ ca, ba ~ b'a, then there exist nets b'a ~ ba and 
c' ~ c„ such that a„ _ b'' _ c' . 

a. a. a. — a — a; 

P r o o f . Put b'a = ba V b'a ~ 6'a V 6^ ~ ba. Then we put c'a = ca V 6^ ~ 
c V i ) ' = c . Clearly, a„ < b"n < c' . D 

ot a OL J ' OL OL OL 

We can embed every uniform space (X,U) into a complete uniform space 
(X,U) in a standard way (see [5]). 

THEOREM 3.6. If (D,U) is a Hausdorff uniform lattice D-poset in which all 
monotone nets are Cauchy, then there exist extensions of ^ and Q on D such 
that (D,U) is also a Hausdorff uniform lattice D-poset, and D is a complete 
lattice. 

P r o o f . 
I. In this first part, we define extensions of ^ and 0 . (For the extension of 

the partial ordering we shall use the same symbol ^ . ) For a, b £ D we put a ^ b 
if there exist nets {x(j}(jei('> {^L/it/eli °^ e l e m e n t s of D such that Xjy :_ yjy, 
Xjy —> a, and yjy —» 6. The reflexivity of ^ is clear, the antisymmetricity follows 
from Remark 3.4, and Lemma 3.5 implies the transitivity. Obviously, this partial 
ordering is the extension of that on D. 

Let us define the difference operation 0 on D . For a,b £ D, a ^ b, there 
exist nets Xjy, yjy E D, Xjy ^ yjy, Xjy —> a and yjy —> b. The net yjy Q Xjy is 
Cauchy, let us denote its limit by bQ a. Clearly, © is the extension of ©, and 
the uniform continuity of 0 implies that the definition of © is correct. 

We shall prove that © is a difference operation. Obviously, yjy © Xjy ^ yjy 
implies bQa ^ 6. Since y(jQ(yijQxjy) = xjy and yjjQ(y^Qxjy) —> bQ(bQa), 
we have b © (b © a) = a. Let a ^ b ^ c. By Lemma 3.5, there exist nets 
xu = y(j = zu converging to a, 6, c, respectively. Then Zjy Q yjy _ Zjy Q Xjy 
implies c©6 _ c©a. Moreover, (zjyQXjj)Q(zjyQyjy) = y^Qxjy, and this implies 
(cQa) Q (cQb) = bQa. Hence, © is a difference operation, and (D, _ , ©, 1) is 
a D-poset. 

Let us prove that J) is a lattice. If a,b E D are given, then there exist nets 
Xjy, yjy of elements of D such that Xjy —> a, yjy —* b. Then x^ V y^ is Cauchy, 
and it converges to some c E D , a _ c, b_c.IfdEF) is given, a ^ d, b _ d, 
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then there exist nets afy —• a, dfy —> d, bfy —> b, d'~ —* d, afy — dfy, 6^ ^ d'~ . 

Then d£ = d(,\/d'&-+d, afyWbfy = d^. Then c ^ d and, hence, c = a V b. We 

can prove the existence of a A b similarly. D is a lattice. 

II. In this step, we shall prove that (D,U) is uniform lattice D-poset. We 
shall use the fact that closures of all U £ U in the product space D x D form 
a base of U. Let U £ ZY be given, U = U for some /7 G W . Since (D,U) was a 
uniform lattice D-poset, by Lemma 3.3, there exists V £ U such that ( x 1 , x 2 ) , 
(2/152/2) ^ ^ i m P l i e s ( x i v2/i>x2 Vj/2)

 anc^ ( x i AT/Ĵ  , x2 Ay2) £ L7, and, if moreover 
x1=y1,x2=y2, then also ( ^ Qx1,y2Qx2) £ U. 

Let Vj eU,V1oV1oV1C V. If (x 1 ?x 2 ) £ V1, (*/-., y2) £ F x , xx ^ ^ , 
x2 — y2, then there exist nets (x^.,x^) £ V1, (y:Ly?) £ V̂  converging to 

(x 1 ?x 2) and (y1,y2) 1n D x D. By the definition of partial ordering in J), there 

exist nets x*-,x^ £ Z) converging to x 1 , x 2 , and nets yl~ ,y2~ £ D converging 

to yl, y2 such that x^ = y1^ and x^^y2^. Then y\ ~ y\\J y\ = z \ , and, 

starting from some index, we have (TA, z^ ) £ V^. Similarly, if z? = y? V 7/̂  , we 

have (yjLz?) £ V-_, starting from a certain index. Then (z-Lz?) £ V, starting 

from a certain index. At the same time, we have (x*~, ay ) £ V and x*~ = z\. , 

Xft^zl. This implies (z^ 0 x^ , z? 0 x^) £ U. Then ( ^ © x ^ © x2) £ 17. 

Similarly, for any (x 1 ?x 2 ) £ V, (yvy2) £ V, we have (xj Vy 1 , x 2 Vy2) and 

(xx A y1, x2 A y2) £ t7. Hence, (F), ^ , ©, 1) is a Hausdorff uniform D-poset. 

III. The proof of the completeness of D does not differ from the case where 
D is an OML ([14]). First, we show that \j an exists in D for every increasing 
sequence an £ D. If an is given, let us prove that it is Cauchy. For W £ U 
there exists a sequence Un€.U with the properties: 

1) UloUloUl cW, 

2) (x 1 ,x 2 ) , (y 1 ,y 2 ) £ cJn+1 implies (x1 V Vl, x2 V y2) £ Un. 

For every n natural, there exists a net aa £ 29 converging to a n . For n 

there exists an such that (a£ , a n ) £ ^ n + i - If w e P u t ^k = V a a n » t ' i e n 

n = l 

(bk,ak) £ C/j, fc = 1, 2 . . . . Since 6fc is Cauchy, we have (an , a m ) £ U1o U1o U1 

C W, starting from some index. Hence, an is Cauchy in D. Then there exists 

a £ J), an —» a in (F), W), and this implies a = \J an. Hence, for every sequence 

an (not only increasing) there exists \J an in J). 
Let us assume that D is not complete. Let a0 be the smallest ordinal number 

such that there exists M C D such that M = {aa}a<ao, and \J M does not 
exist. For every a < a0 put ba = V a/3 (by assumption, ba exists). The net 

(3^a 

ba is increasing. If it were not Cauchy, a non-Cauchy increasing subsequence 
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of ba would exist, which is not possible. Hence, ba is Cauchy, and there exists 
b E D, ba —> 6, and this implies b = \/ba = \/M,a, contradiction. Hence, D is 
a complete lattice. 

Theorem is proved. • 

EXAMPLE 3.7. In the Hausdorff uniform lattice D-poset (D,r ) from Exam­
ple 8 all monotone sequences of elements of D are Cauchy. Then its completion 
(DM) 1s the uniform lattice D-poset of Example 4, where A is the set of all 
natural numbers. 
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