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REGULARITY OF SEMIGROUP-VALUED
SET FUNCTIONS

ZDENA RIECANOVA

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

We present a general version of regularity theorems giving thus a common
generalization of several apparently noncompatible cases (see examples (1)—(5) of
section 1).

1. Notions. Examples. Results.

The paper is devoted to a study of regularity of a semigroup-valued set function
m: S— P, where S is a o-ring and 2 is a semigroup. We moreover assume that 2
is a partially ordered commutative semigroup with a binary operation 3 and
a partial ordering = satisfying the following conditions:

(i) There is 8 € 2 such that 6=a for all a e P.

(i) a®O=a for all ae?P.

(iii) a=b implies a®c=b®c for all a, b, ce P.

(iv) 2 is conditionally complete (i.e., every bounded subset has the supremum
and the infimum in %P).

(v) a,—a, b,— b implies a,®b,—>a®b forall a,, b,, a, bAP (n=1, 2, ...).
(We write a,— a if there are c,, d,€? such that ¢,=a,=d, and c,a,
d,}a.) ;

(vi) @ is separative, that means, if <= {f: ?— (0, ©)|f(0)=0; a=<b implies
f(a)=f(b) for all a, be P; f(a®b)=f(a)+f(b) for all a, beP; a,—a

implies linl f(a,)=f(a) forall a,,ae P (n=1,2,...)},thena, be P, a¥b

implies that there is an fe %P~ such that f(a) # f(b).

As regards the o-ring S, we assume that S is a o-ring of subsets of a nonempty
set X such that there are subsystems C and U of S satisfying axioms (V1)—(V6)
and one of the axioms (V7), (V8):

(V1) geC, 9eU

(V2) If U,eU (n=1,2,...), then |J U, e U.
n—1
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(V3) If C|, CjEC, then C]UC:GC.

(V4) If UeU and CeC, then U-CeU and C—-UeC.

(VS) If CeC, then there exists UeU and D € C such that Cc Uc D
(V6) S=S(C) (the o-ring generated by C) and U< S(C).

(V7) If CeC, then there are U,eU (n=1, 2, ...) such that C= ﬁ U..
no1
(V8) If UeU and UcCeC, then there are C,eC (n=1,2,...) such that

u=UJc.
n |

Such a o-ring S is called (C, U)-regular. On the function m: S— P we assume to
fulfil the following requirements:
(vii) m(AuB)=m(A)®m(B) for all A, BeS.
(viii) A =B implies m(A)=m(B) for all A, BeS
(ix) A.l0, A, €S (n=1,2,..) implies m(A,)]0 (the continuity from above at
the empty set).

One checks easily that the latter set function m has also the following properties:
m(A)=0 for all AeS, m(@)=0 and if A,TA (B.|B), then m(A,)Im(A),
(m(B,)|m(B)) for all A,, B,, A, B€S.

Let us now give some examples of (C, U)-regular o-rings.

(A) The o-ring S of Baire sets on a locally compact Hausdorff topological space
is (C, U)-regular for C — the family of all compact G, subsets and U — the family
of all open sets belonging to S.

(B) The o-ring S =S(C) is (C, U)-regular for C — the family of all closed subsets
and U — the family of all open subsets of a metric space X.

(C) The o-ring S=S(C) is (C, U)-regular for C — the family of all closed
bounded subsets of a metric space X and U — the family of all open subsets of X.

Some examples of semigroups ? satisfying axioms (i)—(vi) and set functions m
satisfying axioms (vii)—(ix) are listed as follows:

(1) Let 2 be the interval {0, «) with the usual ordering and let the operation @
be the usual addition. Then any o-additive measure m: S— (0, ©) is an example of
* the set function satisfying axioms (vii)—(ix). More generally, such an example is
any set function m: S— (0, ®) which is monotone, subadditive, continuous from
above at the empty set and satisfying the condition m(@)=0.

(2) Let ? = (0, ©) be extended real numbers (i.e., a =, and a @ » = = for all
a € {0, ©)). Then the example of the set function m: S— (0, =) satisfying axioms
(vii)—(ix) is any set function which is countably additive and continuous from

above at the empty set unconditionally (i.e., E, | @ implies that lim m(E,) =0 for all

E,eS, n=1,2,...).
(3) Let P be the interval (0, ») with the usual ordering and with the operation
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@ defined by the formula a@b =max {a, b} for all a, be (0, ®). Let m:
S— (0, ©) be a set function such that

(a) m is finitely maxitive, that is, if E,, E,, ..., E, are mutually disjoint sets in S,
then M (U E,)=max {m(E\), m(E,), ..., m(E,)}.
[
(b) m is continuous from above at the empty set, that is, if E,|@ then

lim m(E,)=0, for all E,eS (n=1,2,...).

n-

Such a set function m satisfies the axioms (vii)—(ix).

(4) Let #=(0,») as in example 2 and define max {a, ®} =0 for all
a€{0,»)). Then any function m: S— (0, ) which is finitely maxitive and
continuous from above at the empty set satisfies the axioms (vii)—(ix). The
continuity from above at the empty set is asummed unconditional (i.e., E, @

implies lim m(E,)=0).

(5) Let 2 be a conditionally complete upper semi-lattice with the least element 0

and the semi lattice operation @ (i.e. a®b=avb foralla, be P). Let m: S—> P
have the following properties:

(a) A =B implies m(A)=m(B) for all A, BeS

(b) m(AuB)=m(A)vm(B) for all A, BeS

(c) A,|0 implies m(A,)|0 for all A, €S, n=1,2, ....
Then m satisfies the axioms (vii)—(ix).

Let us now state our first result.

Theorem 1.1. Let S be a (C, U)-regular o-ring of subsets of a set X. Let m:
S— P be a set function satisfying the axioms (vii)—(ix). Then m is (C, U)-regular.
That is, if E€S, then

m(E)=sup {m(C)|E> CeC)}=inf {m(U)|EcUeU).

Proof. Let fe ?<. Define a set function fom: S— (0, ®) by the formula
fom(A)=f(m(A)) for all A€S. Then:

1) fom(®)=0.

(2) fom(A)=f.m(B) for all A, Be€S such that A =B.

3) fom(AuB)=fom(A)+ fom(B) for all A, BeS.

(4) A, |9 implies lim fom(A)=0 for all A,eS (n=1,2,...).

1
Put ¥, = {EeSIfom(E)<;} for n=1,2,... and N,=S. Then {W, )7, is
a sequence of subsystems of S with the properties (i)—(v) of [4], page 117. Recall

the properties:
(i) Be.V, forn=0,1, 2, ...
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(i)

To any positive integer n there exists a sequence {k,}”, of positive integers

such that | JE € N,, whenever E. e N, (i=1,2, ..).
[N}

(i) If {E,}" \is a sequence of sets of S, E,,.,<E, (i=1,2,...), ﬂ E =0, then to
[

any positive integer n there is a positive integer m such that E,, €.V,,.
(iv) If Ee.N,. FcE, FeS, then Fe N, (n=0,1,2,..))
(v) Ce N, for every CeC.

Put

R,={E €S| to any positive integer n there is a set UeU such that Ec U,
U-EeN,}.

R.={E eS| to any positive integer n there is a set CeC such that CcE,
E—-CeN,} and a set P=R N R>.

One can prove that P=S (see also [4], Theorems 3, 4). Hence, if E € S, then to
any positive integer n there are UeU and CeC such that CcEc U and

1 . .
fom(U—E)<1;, fom(E—C)<;. According to the property (3) of fom, it
follows that

fom(E)=sup {fom(C)|E> CeC}=inf {fom(U)|Ec U eU)
for all fe P~.

Let E €S. By the property (iv) of ? there exists sup {m(C)|[E>CeC}=uaeP.
Evidently, a=m(E). Suppose that a# m(E). Since a=m(E), we have f(a)=
fom(E) for all fe ? . Since m(C)=a for all CcE, CeC, we have fom(C)=
f(a). Further, we have fom(E)=sup {fom(C)|E>CeC}=f(a) for all fe P .
Hence f(a)=fom(E) for all fe %=, which violates the property (vi) of 2.
Therefore a = m(E).

Similarly, according to the property (iv) of 2, there exists inf {m(U)|E <
UelU)=be?P. Assume that b#¥ m(E). Since m(E)=b, we have fom(E)={f(b)
for all fe ?=. Since b =m(U) for all E < U €U and therefore f(b)=fom(U), we
have fom(E)=inf {fom(U)|EcUeU}=f(b) for all fe P~. Hence fom(E)=

f(b) for all fe P, which is a contradiction with the property (vi) of ?. Thus
b =m(E), which completes the proof.

2. A theorem on g-maxitive measures

Throughout this section, let X denote a locally compact Hausdorff topological
space, S the o-ring generated by the class C of all compact G,’s in X (Baire sets)
and T the o-ring generated by the class D of all compact sets in X (Borel sets). The
class of all open Baire sets is denoted by U and the class of all open Borel sets is
denoted by V.
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A o-maxitive measure is a set function m: S— (0, ®) such that m(#) =0 and
m (D E,,) = sup m(E,) for all aequences {E,};-, in S (see [2]). The o-maxitive
n=1 n

measure need not be (C, U)-regular as the following example shows.
Example 2.1. Let m(E)=sup f(x) for all E €S, where S is the class of Baire

xeE

subsets of (—, ©) and f(x)=1if 0=x=1 and f(x)=2 if x<0 or x>1. Then
1=m({0, 1)) #inf {m(U)|(0,1)cUeU}=2.

If the o-maxitive measure m: ¥— (0, ) is continuous from above at the empty
set then, by Theorem 1.1., m is (C, U)-regular (see also Example (3), section 1).

If a o-maxitive measure m: S— (0, ) is (C, U)-regular, then m need not be
continuous from above at the empty set (for example, let m(E) =0 or 1 according
to E=0 or not).

If m is the o-maxitive measure on Borel sets, then the following theorem holds:

Theorem 2.2. Let m: T— (0, ©) be a (D, V)-regular o-maxitive measure. Then
the following propositions hold:

(o) If DeD, then for any £>0 there exists a point x € X such that m(D)<
m({x})+e.

(B) If m({x})=0 for all xe X, then m(E)=0 for all E€T.

(y) If m is continuous from above at the empty set, then there exists an at most
countable set A €T such that m(E— A)=0 for all E€T.

Proof. (a) Let £ >0 be given. For any x € X there exists V, € V such that x € V.
and m({x})+&e>m(V,). Let DeD. Since Dc |J V, and D compact, we can

xeD

choose x,, x2, ..., x,€ D such that DcL"_J V.. Hence m(D)=max {m(V,),
i=1

m(Vy,), ..., m(V,)} =m(V,,) for some k(1=k=n). Thus m(D)<m({x.})+e.
(B) Let m({x})=0 for all xe X. Then according to (a) of Theorem 2.2,
m(D) =0 for all D eD and thus m(E)=0 for all E€T.

(y) Let A, = {x € le({x})>%}. Suppose that A, is an infinite set. Let x, € A,
(k=1,2,..),and Ex = {xi, X1, ...} for k=1, 2, .... Since E, |#, we conclude that

‘l(im m(E,)=0 and thus ‘!irr; m({x.})=0is a contradiction with the definition of A,.

Hence A = J A, is at most countable.

n=1

Let E€T. Choose any € >0. If x ¢ A, then m({x})=0. By the regularity of m
there exists D €D such that Dc E— A and m(E — A)—¢<m(D). By (a) of
Theorem 2.2., there exists x € D such that m(D)<m({x})+ €. Thus m(E - A)<e
for any £ >0 and hence m(E — A)=0.

Corollary 2.3. In a locally compact Hausdorff topological space X every
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g-maxitive measure m on Borel sets which is finite, continuous from above at the
empty set and (D, V)-regular must be one of the following types:
(1) There exist «, € (0, ©) and x, € X (i=1,2, ..., n) such that

m(E)=max ax .
1=1<n

for all Borel sets E.
(2) There exist ae(0,®) (i=1,2,...) such that lima =0 and xeX
(i=1.2,...). such that

m(E)= sup X i,
o2
for all Borel sets E.

Note 2.4. Let X =(—o, ). Let m: 2¥— (0, ) be g-maxitive and continuous
from above at the empty set. If m({x})=0 for all x € (—, ©), then m(E)=0 for
all Ec(—o, ®). (Since S=T, m/T is (C, U)-regular and hence (D, V)-regular. By
Theorem 2.2., m(E)=0for all E € T and therefore m(E)=0 for all E = (—, »)).
This is an analogue of a Banach—Kuratowski theorem (see [5]).
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O PETYJIIPHOCTU ®YHKLUKU MHOXECTBA CO 3HA3EHUSIMU
B UACTUYHO YTOPAIOYEHHOW TTOJIYTPYIINE

Zdena Riecanova
Pe3some

B cratbe noka3sbiBaercst Teopema o (C, U) — perynsipHOCcTH aasi GYHKUMIA MHOXECTBA, NPUHUMAIO-
LIMX 3HAYEHUS B 4aCTHMYHO ynopsgodeHHoi noayrpynne. Ecau o6nactsio onpenenenus 3Tux GyHkunu
SBJISIETCSA CUCTCMA MOAMHOXECTB B aGCTPAKTHOM MPOCTPAHCTBE, TO cucTeMbl MHOXeCTB C 1 U fos1KHbI
ob6sanath coictBamu (V1)—(V7). TlpuMepbl HEKOTOPBLIX MPOCTPaHCTB U B HHUX chcteM C u U
npuBossATcs B naparpacde 3. B naparpade 4 noka3sbiBaeTcsi HEOOXOIUMOE U IOCTATOYHOE YCNOBUE IS
PEryNAPHOCTH HENPEPBLIBHON MAKCHTUBHOM MEPBI B JIOKANbHO KOMNAKTHOM XaycaopdoBOM NpocTpaH-
CTBe.
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