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REGULARITY OF SEMIGROUP-VALUED 
SET FUNCTIONS 

ZDENA RIECANOVA 

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday 

We present a general version of regularity theorems giving thus a common 
generalization of several apparently noncompatible cases (see examples (1)—(5) of 
section 1). 

1. Notions. Examples. Results. 

The paper is devoted to a study of regularity of a semigroup-valued set function 
m: S--> 0 \ where S is a a-ring and 9 is a semigroup. We moreover assume that & 
is a partially ordered commutative semigroup with a binary operation © and 
a partial ordering ^ satisfying the following conditions: 

(i) There is 6e9> such that 0 S a for all ae<3>. 
(ii) a®e = a for all ae<3>. 

(iii) a^b implies a®c^b®c for all a, b, ceSP. 
(iv) <3* is conditionally complete (i.e., every bounded subset has the supremum 

and the infimum in <3>). 
(v) a„—>a, b„^>b implies an®bn^>a®b for all an, bn, a, b®9 (n = 1, 2, . . .) . 

(We write an-+a if there are c„, dne<3* such that cn^an^dn and cn\a, 
d,t[a.) 

(vi) 9 is separative, that means, if 9< = {f: 0>->(O, oo)|/(0) = O; a^b implies 
f(a)^f(b) for all a, beSP; f(a®b)^f(a) +f(b) for all a, be@; an^>a 

implies lim f(an) = f(a) for all an, aeSP (n = 1, 2, . . . )} , then a, b e£P, a^= b 

implies that there is an feSP*" such that f(a)±f(b). 
As regards the a-ring S, we assume that S is a a-ring of subsets of a nonempty 

set X such that there are subsystems C and U of S satisfying axioms (VI)—(V6) 
and one of the axioms (V7), (V8): 
(VI) 0 e C , 0 e U 

(V2) If UneU (n = l,2, . . .) , then (jUnei). 
n-l 
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(V3) If C , G e C , then C , u C 2 e C . 
(V4) If UeU and CeC, then U-CeU and C - < 7 e C 
(V5) If CeC, then there exists UeU and D e C such that C c i J c z D 
(V6) S = S(C) (the a-ring generated by C) and Uc=S(C). 

(V7) If C e C , then there are Un e U (n = 1, 2, ...) such that C = f ] (J„. 
/( i 

(V8) If UeU and C / c C e C , then there are C„eC (w = l , 2 , ...) such that 

u=uc. 
Such a a-ring S is called (C, U)-reguIar. On the function m: S—• J* we assume to 

fulfil the following requirements: 

(vii) m(AuB)^m(A)®m(B) for all A, B e S. 
(viii) AczB implies m(A)^m(B) for all A, B e S 

(ix) A„J0, A„ e S (n = 1, 2, ...) implies m(An)[0 (the continuity from above at 
the empty set). 

One checks easily that the latter set function m has also the following properties: 
m ( A ) ^ 0 for all A e S , m(0) = O and if An]A (Bn[B), then m(An)\m(A), 
(m(Bn)[m(B)) for all A„, B„, A, B e S . 

Let us now give some examples of (C, U)-regular a-rings. 
(A) The a-ring S of Baire sets on a locally compact Hausdorff topological space 

is (C, U)-reguIar for C — the family of all compact G* subsets and U — the family 
of all open sets belonging to S. 

(B) The a-ring S = S(C) is (C, U)-reguIar for C — the family of all closed subsets 
and U — the family of all open subsets of a metric space X. 

(C) The a-ring S = S(C) is (C, U)-reguIar for C — the family of all closed 
bounded subsets of a metric space X and U — the family of all open subsets of X. 

Some examples of semigroups 3P satisfying axioms (i)—(vi) and set functions m 
satisfying axioms (vii)—(ix) are listed as follows: 

(1) Let SP be the interval (0, oo) with the usual ordering and let the operation © 
be the usual addition. Then any a-additive measure m: S—> (0, oo) is an example of 
the set function satisfying axioms (vii)—(ix). More generally, such an example is 
any set function m: S—> (0, oo) which is monotone, subadditive, continuous from 
above at the empty set and satisfying the condition m(0) = O. 

(2) Let 8P= (0, oo) be extended real numbers (i.e., a^oo, and a©oo = oo for all 
a e (0, oo)). Then the example of the set function m: S—> (0, oo) satisfying axioms 
(vii)—(ix) is any set function which is countably additive and continuous from 

above at the empty set unconditionally (i.e., En{0 implies that lim m(E„) = 0 for all 

E „ e S , n = 1,2, . . .) . 
(3) Let & be the interval (0, ^) with the usual ordering and with the operation 
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© defined by the formula a@b = max {a, b) for all a,be(0, oo). Let m: 
S—> (0, oo) be a set function such that 

(a) m is finitely maxitive, that is, if E,, E2, ..., En are mutually disjoint sets in S, 

then M ( Q E,-) = max {m(Ei), m(E2), ..., m(En)}. 

(b) m is continuous from above at the empty set, that is, if En{0 then 

lim m(E„) = 0, for all En e S (n = l , 2 , . . .) . 

Such a set function m satisfies the axioms (vii)—(ix). 
(4) Let &=(0, oo) as in example 2 and define max {a, oo} = oo for all 

a e (0, oo)). Then any function m: S—>(0, oo) which is finitely maxitive and 
continuous from above at the empty set satisfies the axioms (vii)—(ix). The 
continuity from above at the empty set is asummed unconditional (i.e., En{0 

implies lim m(E,,) = 0). 

(5) Let ^ be a conditionally complete upper semi-lattice with the least element 6 
and the semi lattice operation © (i.e. a@b = avb for all a, b e (3>). Let m: S—>SP 
have the following properties: 

(a) AczB implies m(A)^m(B) for all A, BeS 
(b) m(AuB)^m(A)vm(B) for all A, B e S 
(c) An{0 implies m(A„) |0 for all A „ e S , n = l,2, .... 
Then m satisfies the axioms (vii)—(ix). 
Let us now state our first result. 

Theorem 1.1. Let S be a (C, U)-regu/ar o-ring of subsets of a set X. Let m: 
S—• & be a set function satisfying the axioms (vii)—(ix). Then m is (C, U)-regular. 
Thar is, if EeS, then 

m(E) = sup{m(C) |E-DCeC}=inf {m((J)|Ecz 1/eU}. 

Proof. Let f e ^ . Define a set function /om: S—>(0, oo) by the formula 
/om(A) = / (m(A)) for all A e S . Then: 

(1) / o m(0) = O. 
(2) / o m ( A ) ^ / o m ( B ) for all A, B e S such that AczB. 
(3) / o m ( A u B ) ^ / o m ( A ) + /om(B) for all A, B e S . 
(4) A„ |0 implies l i m / o m ( A ) = 0 for all A „ e S (n = l , 2 , . . .). 

Put X, = { E G S | / o m ( E ) < i | for n = l , 2 , ... and W„ = S. Then {Jin}:=0 is 

a sequence of subsystems of S with the properties (i)—(v) of [4], page 117. Recall 
the properties: 

(i) 0G.V;, for n=0, 1, 2, ... 

167 



(ii) To any positive integer n there exists a sequence {k,}T i of positive integers 

such that [ JE , eJV*,,, whenever E, e Nki (i = l , 2 , ...). 
i i 

(iii) If {E,}T i is a sequence of sets of S, E, + x c E , (i = 1, 2, . . .) , P | E, = 0, then to 
i i 

any positive integer n there is a positive integer m such that E„, e. V,,. 
(iv) If Ee.V;,, F c E , F e S , then FeX, (n = 0, 1,2, ...) 
(v) Ce.V„ for every C e C . 

Put 
R, = { E e S | to any positive integer n there is a set U e U such that E c U , 

U-EeX,}. 
R 2 = { E e S | to any positive integer n there is a set C e C such that CczE, 

E-CeK) and a set ^ = i # . n ^ 2 . 
One can prove that P = S (see also [4], Theorems 3, 4). Hence, if E e S, then to 

any positive integer n there are U G U and C e C such that C a EcU and 

/ o m ( U - E ) < —, f0m(E- C)< —. According to the property (3) of /om, it 
n n 

follows that 

/om(E) = sup {/0m(C)|E=>CeC}=inf {/0m(U)|E c U e U} 

for all fe^. 
Let E e S. By the property (iv) of & there exists sup {m(C)| E ZD C eC) = a e^P. 

Evidently, a = m(E). Suppose that a+m(E). Since a = m(E), we have f(a) = 
fom(E) for all feCP . Since m(C) = a for all CcE, C e C , we have f0m(C) = 
f(a). Further, we have f0m(E) = sup {/Qm(C)|E => C e C } =f(a) for all / e ^ . 
Hence f(a) = fom(E) for all / e i ^ , which violates the property (vi) of 2P. 
Therefore a = m(E). 

Similarly, according to the property (iv) of 0 \ there exists inf {m(U)|Ecc 
UeU} = b e 0 \ Assume that b±m(E). Since m ( E ) ^ b , w e have / o m ( E ) ^ / ( b ) 
for all / G ^ . Since b = m(U) for all E c U e U and therefore f(b) = f0m(U), we 
have / 0 m ( E ) = inf {f0m(U)\EcUeU}=f(b) for all / e ^ " . Hence f0m(E) = 
f(b) for all fe$P\ which is a contradiction with the property (vi) of $\ Thus 
b = m(E), which completes the proof. 

2. A theorem on o-maxitive measures 

Throughout this section, let X denote a locally compact Hausdorff topological 
space, S the a-ring generated by the class C of all compact G^'s in X (Baire sets) 
and T the a-ring generated by the class D of all compact sets in X (Borel sets). The 
class of all open Baire sets is denoted by U and the class of all open Borel sets is 
denoted by V. 
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A a-maxitive measure is a set function m: S—>(0, oo) such that m(0) = O and 

m ( Q En\ = supm(En) for all aequences {En}n = i in S (see [2]). The a-maxitive 
\n=\ I n 

measure need not be (C, U)-regular as the following example shows. 
E x a m p l e 2.L Let m(E) = sup f(x) for all E e S , where S is the class of Baire 

subsets of (-GO, oo) and / ( J C ) = 1 if O ^ j c g l and /(JC) = 2 if J C < 0 or J C > 1 . Then 
l = m((0, l))-£inf {m((J) |(0, l ) c z ( J e U } = 2 . 

If the a-maxitive measure m: 5̂—> (0, oo) is continuous from above at the empty 
set then, by Theorem 1.1., m is (C, U)-regular (see also Example (3), section 1). 

If a a-maxitive measure m: S—>(0, oo) is (C, U)-regular, then m need not be 
continuous from above at the empty set (for example, let m(E) = 0 or 1 according 
to E = 0 or not). 

If m is the a-maxitive measure on Borel sets, then the following theorem holds: 

Theorem 2.2. Let m: T—> (0, oo) be a (D, V)-regular o-maxitive measure. Then 
the following propositions hold: 

(a) If D e D, then for any £ > 0 there exists a point xeX such that m(D)< 
m({*}) + £. 

(ft) If m({jc}) = 0 for all x e X , then m(E) = 0 for all E e T . 
(y) If m is continuous from above at the empty set, then there exists an at most 

countable set A e T such that m(E —A) = 0 for all E e T . 
Proof, (a) Let e > 0 be given. For any xeX there exists Vx e V such that xeVx 

and m({jc}) + £>m(Vx). Let DeD. Since D c= (J V* a n d D compact, we can 
xeD 

choose xi, JC2, ..., Jc„eD such that D c | J V X i . Hence m(D).timax {m(VXi), 
i = \ 

m(VX2), ..., m(VXn)} = m(VXk) for some k(l^k^n). Thus m(D)<m({jc,}) + e. 
(P) Let m({x}) = 0 for all xeX. Then according to (a ) of Theorem 2.2, 

m(D) = 0 for all D eD and thus m(E) = 0 for all E e T . 

(y) Let An = | JC eX|m({jc})> — [. Suppose that An is an infinite set. Let xk e An 

(k = 1, 2, . . .) , and Ek = {xk, JC* + 1, ...} for k = 1, 2, .... Since Ek|0, we conclude that 

lim m(Ek) = 0 and thus lim m({xk}) = 0 is a contradiction with the definition of An. 

Hence A = [J An is at most countable. 
n = \ 

Let E e T . Choose any £ > 0 , If JC^ A, then m({jc}) = 0. By the regularity of m 
there exists D e D such that DczE —A and m(E — A) — e<m(D). By (a) of 
Theorem 2.2., there exists JC e D such that m(D)<m({jc}) + e. Thus m(E — A)<e 
for any £ > 0 and hence m(E —A) = 0. 

Corollary 2.3. In a locally compact Hausdorff topological space X every 
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(T-maxitive measure m on Borel sets which is finite, continuous from above at the 

empty set and (D, V)-reguIar must be one of the following types: 

(1) There exist a, e (0, <*>) and x, e X (i= 1, 2, . . . , n) such that 

m(E) = max a,Xi ^*,^ 

for all Borel sets E. 

(2) There exist «, e((), oo) ( / = 1 , 2 , ...) such that lim a, = 0 and x, e X 

( / = 1, 2, . . . ) , such that 

m(E)= sup a,Xf x , 
i 1 . 2 

for all Borel sets E. 

N o t e 2.4. Let X = ( —oo, co). Let m: 2X—> (0, oo) be a-maxitive and continuous 

from above at the empty set. If m({x}) = 0 for all jt e ( —oo, oo), then m(E) = 0 for 

all E c z ( - o o , oo). (Since S = T, m/T is (C, U)-reguIar and hence (D, V)-reguIar. By 

Theorem 2.2., m(E) = 0 for all E e T a n d therefore m(E) = 0 for all E c ( - o o , oo)). 

This is an analogue of a Banach—Kuratowski theorem (see [5]). 
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О РЕГУЛЯРНОСТИ ФУНКЦИИ МНОЖЕСТВА СО ЗНАЗЕНИЯМИ 

В ЧАСТИЧНО УПОРЯДОЧЕННОЙ ПОЛУГРУППЕ 

2л1епа КлесапоVа 

Р е з ю м е 

В статье доказывается теорема о (С, ^ - регулярности для функций множества, принимаю­

щих значения в частично упорядоченной полугруппе. Если областью определения этих функции 

является система подмножеств в абстрактном пространстве, то системы множеств С и 1 1 должны 

обладать свойствами (VI)—(VI). Примеры некоторых пространств и в них систем С и ^ 

приводятся в параграфе 3. В параграфе 4 показывается необходимое и достаточное условие для 

регулярности непрерывной макситивной меры в локально компактном хаусдорфовом простран­

стве. 
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