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CATEGORIES OF ORTHOMODULAR 
POSETS 

PAVEL PTAK 

We endow the class of orthomodular posets with three types of morphisms and 
obtain thus three categories. We show that in all cases the category of Boolean 
algebras (and Boolean mappings) becomes a reflective and a coreflective sub­
category. We investigate when the reflections are embeddings. We surprisingly 
encounter classes of orthomodular posets important within the framework of 
quantum theories. 

Introduction 

The recent extensive study of orthomodular posets has been to a certain extent 
stimulated by the questions of quantum theories. The point is that the so-called 
logic of a quantum system ( = the structure of the statments on a system) is 
commonly assumed to be an orthomodular poset (see [5], [7], [13], etc.). Many 
interesting mathematical problems then emerge as a "translation" or abstraction of 
real world questions. 

Our present considerations may be motivated as follows. The closer the logic is 
to a Boolean algebra, the closer the corresponding system is to a nonquantum one. 
It seems therefore desirable to know if every logic has the best Boolean approxi­
mation "from inside" and "from outside", and, in the positive case, how the 
approximation looks and if the approximation is functorial. The purpose of this 
paper is to investigate the latter questions. We first equip the class of orthomodular 
posets with three types of morphisms. In all cases the category of Boolean algebras 
becomes a full subcategory of the respective category of orthomodular posets. We 
then prove the results stated in the abstract. 

The basic notions and elementary facts, sometimes only recalled, are taken from 
[5] and [14]. It should be noted that Theorem 1 may be viewed as a generalization 
of the main results of [11] and [14]. 

Notions and results 

Let us first review the basic notions and elementary facts (see [5]). 
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Definition 1. An orthomodular poset (abbr. o. p.) is a partfa//y ordered set (S, ^ ) 
with the least and the greatest elements 0, 1 and with a unary operation ' satisfying 
the following requirements (the symbols v, A mean the induced lattice-theoretic 
operations): 
(i) (a')' = a for any aeS, 

(ii) if a^b then a'^b' and b = av(bAa'). 

We shall write simply S instead of (S, ^ , ') if a misunderstanding can be 
excluded. One should not overlook that we do not require 0 ^ 1 . 

Definition 2. Let S be an o. p. Two elements a, b e S are called orthogonal if 
a^b'. More generally, the elements a, b eS are called compatible (in symbols: 
a<-+b) if there exist three mutually orthogonal elements c, d, e such that a = cv d, 
b = cv e. 

Obviously, if a<->b, then avb, aAb exists in S. Recall that S is a Boolean 
algebra if and only if every two elements of S are compatible (see [5]). 

Definition 3. Suppose that S is an o. p. The set C(S) = {a e S | a <-> b for any 
b eS} is called the centre of S. 

Proposition 1. If S is an o. p., then C(S) is a Boolean algebra. 
Proof. We need to show that C(S) is closed under the formation of the Boolean 

operations. This was sketched in [13] and proved in detail in [2] and [12]. 
Let us consider the following properties of a mapping / : P—> Q between two 

orthomodular posets: 

(i) if a **b, then f(a)^f(b), 
(ii) f(a)'=f(a') for any a e P, 

(Hi) if a e C(P), then f(a)eC(Q), 
(iv) f(avb) = f(a)vf(b) whenever aeC(P), beP,a^b', 
(v) f(avb) = f(a)vf(b) whenever a^b', 

(v)* f(avb) = f(a)vf(b) whenever a<^b, 
(vi) f(avb) = f(a)vf(b) whenever avb exists in P. 

Before stating the basic definitions, let us make a few observations. 

Proposition 2. 

a) Iff: P—> Q is a mapping which fulfils the assumptions (i), (ii), (iii), (iv), and if 
P is a Boolean algebra, then f is a Boolean mapping. 

b) The conditions (v) and (v)* are equivalent. 
c) The identity mapping fulfils all the properties (i)—(vi) and the mapping 

fulfilling (i)—(iv) are closed under the formation of the compositions. 

The proof of Proposition 2 is obvious (for b) see [12]). 
The message of Proposition 2, c) enables us to define the following categories. 
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Definition 4. Let us denote by C\, 02> Q3 the respective categories of or_ 

thomodular posets whose morphisms are the mappings determined as follows: 

feOi of fulfils the conditions (i), (ii), (iii), (iv) 
feO\of fulfils the conditions (i), (ii), (iii), (v) 
feG3of fulfils the conditions (i), (ii), (iii), (vi). 

Obviously, 0t z> 02 3 03 and the category 33 of Boolean algebras (and Boolean 
mappings) is a full subcategory of each Ck, k = 1, 2, 3 (Proposition 2, a)). Let us 
now recall one category-theory notion (see e.g. [8]). 

Definition 5. Let JK2 be a full subcategory of a category %x. The category 3fC2 is 
called reflective (coreflective) in 3ifi if for any object ox e 3d there exists an object 
o2 e 3f{2 and a morphism r: ox-*o2 (c: o2—> 01) with the following property: For any 
f: oi—>p (f: p —>Oi), peJC2 there exists a unique g: o2-+p (g: p-*o2) such that 
f=g.r (fz=c-g). The mapping r: Oi-+o2 (sometimes only o2) is called the 
reflection of Oi (and dually for the core flection). 

Theorem 1. The category S3 of Boolean algebras is both reflective and coreflec­
tive in Gi. 

Proof. Obviously, S3 is coreflective. The coreflector of S e f t is the inclusion 
c: C(S)^>S. 

The proof of reflectivity will require a lemma. Let us first agree that the symbol 
{0, 1} will mean the two-point Boolean algebra. 

Lemma 1. Let S be an o. p. and let a,beS, a^b. Then there exists such 
a morphism heGu h: S->{0, 1} that h(a) = 0, h(b) = \. 

Proof. A C-ideal I is a subset of S such that the following conditions are 
satisfied: 1) if eel and d^c, then del, 2) if celnC(S) and del, then cvdel, 
3) if eel, then c'il. Consider the collection Ca,b of all C-ideals of S which 
contain the element a and do not contain b. The collection Ca,b is clearly non-void 
and — by the Zorn lemma — has maximal elements when ordered by inclusion. 
Take a maximal element of Ca, b and denote it by J. We shall show that 
card ({c, c'}nJ)= 1 for any ceS. 

Suppose that it is not the case. Then there exists an element ceS such that 
{c, c'}nJ = 0. Put ic = { d e S | d ^ c } and set K={xeS\x^mvnvk for some 
elements meJnC(S), neIcnC(S) and keJuL}. We shall prove now that K is 
again a C-ideal. 

If x eK, y ^ x , then obviously y eK. Suppose now that xeK and y eKnC(S). 
We need to show that xvyeK. We have x^mvnvk and y^pvrvs for 
m, p eJnC(S), n, reIcnC(S), and k, seJuIc. We may (and shall) assume that 
p, r, s are mutually orthogonal. (Indeed, since p, r axe central, we can write pvr 
= pv(rAp). Moreover, the orthomodular law yields that pvrvs = pvrvs for 
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an se S, s orthogonal to pvr. Since s±+pvr, we obtain that s<.s which implies 
that seJuIc. It follows that we would replace p, r, s by p, r/\p', s if necessary). 
Further, since y e C(S), we may write y = (p Ay)v(r Ay) v (5 Ay) and therefore 
s Ay e C(S). We see that s Ay e(JuIc)nC(S) and we obtain xvy<. 
mvnvkv(pAy) v (rAy) v ( sAy)eK . 

Finally, suppose that {JC, x'}eK for an element xeS. We may assume that 
x<.mvk, x'^nvs, where m eJnC(S), n e IcnC(S), kelc, seJ and m <. k , 
n <.s '. As the elements m, n are central, we can write JC = (m AJC) V (m'AJC), X' 
= (nAx') v (n'Ax'). Therefore 1 = JCVJC' = (mAx ) v (m 'Ax ) v (tzAx ') v 
(tt'AJt'). Since JC < m v k, we obtain that jcAm'<.k and therefore xAm'<.I. 
Analogically, n' AJC' e J. Since (JC Am') v (n AJC') <. c, we obtain that c' ^ ( m Ax) 
v (r i 'Ax ' )< .mv(n 'Ax ' )e J, which is absurd. 

We have thus shown that K is again a C-ideal and moreover, b & K because b I J 
(otherwise {b, b'}nJ = 0 and we would use the latter method for producing 
a proper extension of J and Ib). But J was supposed to be maximal in Ca h. 
Therefore {x, x'}nJ± 0 for any x e S. 

The rest is obvious. Take the mapping h: S—>{0, 1} by putting h(x) 0 if and 
only if xeJ. The required properties of h verify easily. 

We shall now describe the reflection rx: S—> B\ for a given S e 6X. Take the set I 
of all two-valued (?i-morphisms from S. We know that 1+ 0. Put rx: S—>exp I by 
setting ri(x) = {he l\h(x) = l} and denote by B\ the Boolean algebra (of subsets 
of I) generated by all sets n(x ) , xeS. Then rx: S—>Bi is the reflection of S. To 
show that, observe first that n e 6\. Indeed, if x e C(S), y eS and h(xvy)= 1, then 
h(xvy) = ri(xv(yAx')) = h(x)vh(yAX') and therefore either h(x)=l or 
h(y) = 1. Secondly, suppose that we are given a morphism / : S—>P, / e 0\, P e ffi. 
Define a mapping g: Bi—>P by setting g(ri(x)) = f(x). Since g is thus defined on 
the generators of B\, it has the properties (i), (ii). We need to show that g(0) = 0. 
The latter equality will follow by induction if we show the implication: If 
ri(x)nr\(y) = 0, then / ( x ) A / ( y ) = 0. Suppose that / ( x ) A / ( y ) ^ 0 . Since P is 
a Boolean algebra and 0 ^ 1 in P, then there exists a morphism k: P—> {0, 1} such 
that k(f(x)) = k(f(y)) = l. Hence r i ( x ) n r i ( y ) ^ 0 and the proof of Theorem 1 is 
finished. 

Let us notice that we cannot use the standard category-theoretic argument for 
showing the reflectivity of Sft in 0\ (the category 6\ is not complete, in fact, it does 
not have the equalizers). 

Theorem 2. The category 33 is both reflective and coreflective in 62 and 63. 
Proof: Obviously, c: C(S)^> S is the coreflection in both cases. Let us take up 

the question of reflectivity. In the case of 62, the reflection r2: S —> B2 is constructed 
as follows. Consider the reflection rx: S—>Bi. Take the ideal I of Bi generated by 
all elements of the type n ( x v y ) A ri(x ') A ri(y'), where xeS, yeS, x<.y\ 
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Denote by q the quotient mapping, q: BI-H>BJI = B2. It is easy to check that 
r2 = q • ri is the required reflection (the case of 03 argues similarly). 

Let us notice that the reflectivity of 38 in 02, 03 follows also from purely 
category-theoretic arguments. Consider the category 02. It suffices to show that 02 

is complete and 38 is closed in 02 under the formation of the products and the 
equalizers. The product in 02 defines "canonically" (see [4], [10]) and it is thus 
preserved for the Boolean algebras. Let us show that 02 possesses the equalizers. 
Suppose that we are given two C2-morphisms /, g: P^>Q. Put E = {xeP\f(x) 
= g(x)}. We need to show that E is an o.p. Suppose that x , y e E , x ^ y . Since 
y = xv(yAX') and the sum on the right-hand side is orthogonal, we see that 
f(x)vf(yAx') = g(x)vg(yAx') and therefore f(yAx') = g(yAx'). It follows 
that yAx'eE and E is thus orthomodular. 

In what follows we investigate when the respective reflections are embeddings. 
Certain classes of orthomodular posets familiar in the quantum mechanical 
investigations emerge surprisingly (see Theorems 5, 6). 

Definition 6. A mapping feOi is called an embedding if f(x)^f(y) implies 
x^y. 

Theorem 3. The mapping n: S->Bi is always an embedding. 
Proof : If x^y, then there exists an <9i-morphism / i :S -»{0 , 1} such that 

h(x) = 0, h(y)=l. Therefore n(x)^n(y). 
As regards the case of r2, recall that S is called representable if S is GWzomorp-

hic to an orthomodular poset of subsets of a set (see [5] — the operation ' means 
then the set-theoretic complement and ^ means the inclusion). Naturally, there 
are many orthomodular posets which are not representable (e.g. the one of 
projectors on R3, see [1], [5]). 

Theorem 4. The mapping r2: S-+B2 is an embedding if and only if S is 
representable. 

Proof : Suppose that r2: S—>B2 is an embedding. We need to show that S is 
representable. Consider the set T=r2(S) as a subset of B2. We claim that T 
constitutes an o.p. with the operations inherited from B2. Indeed, 0eT and T is 
closed under the formation of complements. Moreover, suppose that A, BeT, 
AnB = 0 . Take the elements a, b eS such that r2(a) = A, r2(b) = B. Since A czB', 
we obtain that a^b'. Therefore r2(avb) = AuBeT and T is thus the 
representation of S. 

If S is representable, S = (R,', <=), then each two different X, YeS can 
be distinguished by an (92-morphism to the two-point Boolean algebra {0, 1} 
(a suitable two-valued measure concentrated in a point of R). 

Before stating the last result, let us introduce a class of orthomodular posets 
(see [6]). 
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Definition 7. An o.p. S is called Boolean if xAy = 0 implies that x and y are 
orthogonal. 

Theorem 5. The mapping r 3: S-+B3 is an embedding if and only if S is 
a Boolean orthomodular poset. 

Proof : Necessity. Suppose that r 3: S-+B3 is an embedding. If JtAy = 0, then 
j t ' vy ' = l and therefore r 3 (x ' )ur 3 (y ' ) = r 3 ( l) = l . Since r3 preserves the 
operation ', we have r 3 ( j t) 'ur 3 (y) ' = r3(0)'. Hence r3(x)nr3(y) = 0. This means 
that r3(x) cz r3(yf) and therefore J t ^ y ' . 

Sufficiency. If S is Boolean, then S is representable (see [9]). We need to show 
that the (?2-morphisms from a Boolean o.p. C3incide with the (?3-morphisms. 
Suppose that S is Boolean and suppose that xvy exists in S. According to the 
paper [6], Corrolary 2.5 we can write Jt = (jt Ay) v (xAy'), y = (xAy) v (yAjt') 
and therefore Jt and y are compatible. Due to Proposition 2 b., if Jtvy exists in S, 
then every mapping fe62 fulfils f(xvy) = f(x)vf(y) and the proof is finished. 
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КАТЕГОРИИ ОРТОМОДУЛЯРНЫХ ПОСЕТОВ 

РаVе1 Р1ак 

Р е з ю м е 

В статье исследуются рефлективные и корефлективные подкатегории категории ор-

томодулярных частично упорядоченных множеств. 
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