
Mathematica Slovaca

Juraj Bosák; Jaroslav Nešetřil
Complete and pseudocomplete colourings of a graph

Mathematica Slovaca, Vol. 26 (1976), No. 3, 171--184

Persistent URL: http://dml.cz/dmlcz/130422

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/130422
http://project.dml.cz


Math. Slovaca 26,1976, No. 3,171—184 

COMPLETE AND PSEUDOCOMPLETE COLOURINGS 
OF A GRAPH 

JURAJ BOSAK—JAROSLAV NESETRIL 

1. Introduction 

A vertex colouring of a graph is called complete if it is regular and pseudocomp-
lete (i. c. for any two different colours / a n d g the graph has two adjacent vertices 
with colours / and g). The maximal number of colours of a complete colouring of a 
graph G, called the achromatic number of G, has been studied in [5, 8, 9, 10, 11, 
12|. The present paper is mainly devoted to the study of an analogous notion for 
edge colourings — the achromatic index (called also the line-achromatic number 
[51) of a graph. There are considered colourings of infinite graphs and an 
interesting feature appears: the results for edge colourings are in general simpler 
than those for vertex colourings. 

2. Complete colourings 

Let a graph G (loops and multiple edges are admissible) and a set Fof colours be 
given. By a vertex [an edge] colouring of G by F we mean a mapping cp of the 
vertex set V(G) [edge set E(G)] of G into F. If x is a vertex [an edge] of G, then 
cp(x) is called the colour of x under the colouring cp. Let s denote the number (the 
cardinality of the set) of the elements of F that are colours of a vertex [an edge] of 
G under cp. Then cp is called a vertex [an edge] s-colouring of G. 

A vertex [an edge] colouring cp of G is said to be 
(a) regular if any two adjacent vertices [edges] of G have different colours (two 

vertices [edges] are called adjacent if they are different and incident with at least 
one common edge [vertex]); 

(b) pseudocomplete if for any two different colours / and g from the image of cp 
there exist in G two adjacent vertices [edges] with colours / and g; 

(c) complete if it is regular and pseudocomplete. 
A regular (but not pseudocomplete), a pseudocomplete (but not regular) and a 

complete edge colouring of a graph by (1 , 2, 3, 4} are shown in Fig. 1. The first two 
of them are 4-colourings, the third is a 3-colouring. 
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Fig. 1. A regular, a pseudocomplete ancVa complete edge colouring of a graph. 

Fig. 2 shows three complete edge colourings of the octagon (a 2-colouring, a 
3-colouring and a 4-colouring). 

Note that these notions are closely related to special homomorphisms (cf., e. g., 
[10, Chapter 12]). 

L et G b a yaph . By the derivative (called also "line graph", "interchange 
graph", "der ved graph" etc.) of G we mean the graph G' without loops or 
multiple edges whose vertex set is the edge set of G (i. e. V(G') = E(G))\ two 
vertices x and y of G' are adjacent if and only if they are adjacent as edges of G. 

Let a Lraph G and a cardinal number s be given. Our main aim is to find 
conditions for the existence of a complete vertex [edge] s-colouring of G. 

The fo lowing lemma relates vertex and edge colourings. 

Lemma 1. Every regular [pseudocomplete, complete] edge s-colouring of a 
graph G is a reguhr [pseudocomplete, complete] vertex s-colouring of the 
denvdtive G' of G 

Proof. The lemma immediately follows from the definitions of the derivative, 
vertex and edge colourings. 

Thus the above examples provide examples of vertex colourings, too. 
One of the aims of this paper is to show that Lemma 1 is not of much use. Thus 

we give first results for vertex colourings and then results for edge colourings which 
will be sometimes different. 

We shall need several characteristics of a given graph G that are cardinal 
numbers' By v(G) we denote the order (number of vertices) of G, by e(G) the 
size (number (f edges) of G by d(G) the degree of G (i, e., the supremum of the 

2 i^-v^^n 

Fig 2. Complete edge colourings of the octagon 
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set of degrees of vertices of G; the degree of a vertex is the (cardinal) number of 
the edges incident with v; here the loops are not counted twice) and by c(G) the 
dispersion of G (the number of the components of G with at least two edges) 

The subgraph of G formed by the components of G containing at least two edges 
will be denoted by J(G). An edge of G is called essential if it is not isolated, i. e., if 
it is adjacent to at least one edge of G. Evidently, the subgraph of G generated by 
the set of essential edges of G is J(G) and c(G) = c(J(G)). 

Denote by CG [CG] the class of cardinal numbers s such that there exists a 
regular vertex [edge] s-colouring of G. Similarly, denote by PG [PG] the class of 
cardinal numbers s such that there is a pseudocomplete vertex [edge] s-colouring 
of G. Finally, denote by AG [AG] the class of cardinal numbers s such that there 
exists a complete vertex [edge] s-colouring of G. 

Evidently, if there exists a vertex [edge] s-colouring of G, then s^t;(G)[j<:' 
^e(G)].Therefore the classes CG, PG and AG [Cc, PG and AG] are sets 

Obviously, for every graph G we have: 

(1) AG^CG, AGczCG, 
(2) AGciPG, AGczPG, 
(3) Po*0, PG + 0, 

(4) CG±0, CG + 0. 

Later (Proposition 1) we shall show that we always have 

(5) AG±0, AG±0 

as well. From Lemma 1 it follows that 

(o) rG> = rG, CG> — C G , AG> = A G 

for every graph G. 

Let c be a vertex [an edge] colouring of G by F and let e be an equivalence on F. 
For a e F denote by [a]e the equivalence class containing a. Define a vertex [an 
edge] colouring cle of G thus: for any vertex [edge] x of G put (cle)(x) = [<:(-*)]«.. 
We shall call cle the quotient colouring. Quotient colourings may be used for 
generating complete colourings from regular ones. 

Lemma 2. Let c be a regular vertex [edgeJ colouring of a graph G. Then there 
exists a quotient vertex [edge] colouring cle of G which is complete. 

Proof. According to Lemma 1 it is sufficient to prove the assertion for vertex 
colourings. Let F be the set of colours. Define a reflexive symmetric relation r on F 

by 
(a, b) e r if and only if c(x) = a, c(y) = b for no adjacent vertices x, y of G. 
Let e be a maximal equivalence on F which satisfies e c r (such an equivalence 

exists by Zorn's lemma). By the definition of r, cle is a regular colouring. Further, 
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cle is a pseudocomplete colouring, because if [a](.i= [b]t. and (cIe)(x) e [a]t„ 
(cle)(y) e [b]c for no two adjacent vertices x, y, then 

e' = eu([a](,x[b](,)v([blx[a](.) 

is also an equivalence on F contained in r, which is a contradiction with the 
maximality of e. 

Lemma 3. Let H be a subgraph of G. Let c be a regular vertex [edgeI r-colouring 
of G and let its restriction c\V(H) [c\E{H)] be a complete vertex [edge/ s-colouring of 
H. Then for every complete quotient t-colouring cle of G we have: s^t^r. 

Proof is immediate. 
Now we define six important characteristics of a given graph G: 
The chromatic number x(G) [chromatic index %'(G)] of G is the least number s 

of colours such that there exists a regular vertex [edge] s-colouring of G. (Instead 
of "chromatic index" also the terms "chromatic class", "edge chromatic number" 
and "line chromatic number" are used.) 

The pseudoachromatic number ip(G) [pseudoachromatic index ip'(G)] of G is 
the supremum of the set of cardinal numbers s for which there exists a 
pseudocomplete vertex [edge] s-colouring of G. 

The achromatic number a(G) [achromatic index a'(G)] is the supremum of the 
set of cardinal numbers s for which there exists a complete vertex [edge] 
s -colouring of G. 

Briefly: x(G) = minCG, x'(G) = minCG, i//(G) = sup PG, t//'(G) = sup PG, 
a ( C ) = supA G , a ' (G) = sup AG. 

It will be seen that these are the only non-trivial extrema defined by the sets CG, 
PG, A G , CG , PG and A G . 

From (6) it follows that 

(7) x'(G) = x(G'), xp'(G) = y(G'), a'(G) = a(G'). 

Moreover, we evidently have 

(8) X(G)<a(G)^y(G)*iv(G), 
(9) d(G)^x'(G)^a'(G)^y'(G)^e(G). 

If H is a subgraph of G, then 

(10 ) X(H)^X(G), X'(H)^X'(G), 
V ( / / ) « ^ ( G ) , n>'(H)^xp'(G), 

a'(H)^a'(G). 

(The last inequality follows from Lemmas 2 and 3.) 
Simple examples (e. g. the circuit G on 4 vertices and its subgraph H with 3 

edges) show that the inequality 
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(п: «(tf)=Sa(o) 

does not hold in general. However, it follows from Lemmas 2 and 3 that if // is an 
induced subgraph of G, then (11) holds. 

Later (Theorem 2) we shall show that for every graph G there exist max Pa 

[max P'a\ and max Aa [max Aa\. Hence the pseudoachromatic number [index] of 
G can be defined also as the greatest number s of colours in a pseudocomplete 
vertex [edge] j'-colouring of G and the achromatic number [index] of G as the 
greatest number s of colours in a complete vertex [edge] s-colouring of G. 

The chromatic index — which is the edge analogy to the chromatic number — 
has been treated in many papers. A survey of main results can be found in [3, 6, 13, 
16, 17]. The achromatic index (cf. [5]) is the edge analogy to the achromatic 
number studied in [5, 8, 9, 10, 11, 12]. The pseudoachromatic index is the analogy 
to the concept of the pseudoachromatic number introduced and studied in [9]. 

Example. It is easy to show that for the graph Q3 of the cube we have 
T/>'(Q3) = a'(Q3) = 6. A complete edge 6-colouring of Q3 is given in Fig. 3. 

Fig. 3. A complete edge 6-colouring of the cube. Fig. 4. A graph G with a'(G) 4=- ip'(G). 

Obviously, if x(G) [x'(G)] is finite, then every regular vertex 7(G)-colouring 
[regular edge #'(G)-colouring] is complete. Thus, every graph G with a finite 
chromatic number [index] has a complete vertex [edge] colouring. This is true in 
general: 

Proposition 1. Every graph G has a complete vertex x(G)-colouring [complete 
edge x'(G)-colouring]. 

Proof. Let c be a regular vertex ^(G)-colouring [edge *'(G)-colouring]. By 
Lemma 2 there exists a quotient vertex [edge] colouring cle of G that is complete. 
Evidently, cle is a /(G)-colouring [#'(G)-colouring]. 
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Proposition 2. Let H be an induced subgraph of G. Then every complete vertex 
s-cc louring o H can be extended into d complete vertex r-colouring of G such thdt 

(12 r ^ s + /, 

where t = x(G). If t^2, then the estimate (12) is sharp. 
Proof Let c be a regular vertex l-colouring of G by A and let d be a complete 

vertex y-colouring of H by B (assume AnB = 0). Define a regular vertex 
colouring cj thus: y\v H) = d <y|v«7) v(H) = c. By Lemma 2 there exists a quotient 
vertex colouring qle of G which is complete. Evidently, cjle is an extension of d 
and it i an r-colouring such that (12) holds. 

Now we prove that (12) is sharp in the sense that for every s, t (1^2) there exists 
i praph G with x(G)=-t, an induced subgraph H of G and a complete vertex 
s- olouring d of H wh ch cannot be extended into a complete r-colouring of G 
sich that r<s + t 

Let 5, Tbe sets such tha \S\ s, | T\ = t and choose x £ 5. Put 5* = 5 u { x } . Let 
G e a graph without loops or multiple edges with V(G) = S* x T such that two 
vertices (a,, r,), (o2 r2) are adjacent if and only if r, ^ r2 and either a, =£ o2, or 
a, -o =x. Evidently, x(G) — t Let H be a subgraph of G induced by the set 
V(H) 5 x T. A complete vertex v-colouring d of H is defined by d(o, r) = o. It 
is easy to check that d has the desired properties. 

3. Vertex colourings 

If s and r are cardinal numbers, denote by (s, r) the set of all cardinals t such 
that s^t^r. The cardinality of a set / will be denoted by | / | . 

Here we shall determine CG, PG and AG for any graph G (Theorem 2). We also 
prove that a(G) and ip(G) are in general independent (except a(G)^ip(G); see 
Theorem 3) and we determine ip(G) provided that it is infinite (Theorem 1). 

We need the notion of the independence number f3(G) of a graph G. Let G be a 
graph; denote by 1(G) the set of all independent subsets of V(G). Put /3(G) = 
sup{|/ | | / e / (G)} . We prove first: 

Lemma 4. Let G be a graph. Then 

l3(G') = m a x { | / | | / e / ( G ' ) } . 

Proof. It suffices to consider the case when (5(G') is a limit cardinal. Let 
XaV(G) satisfy \X\</3(G'). Consider the graph G-X=(V(G)-X, 
E(G) - E), where E is the set of all edges of G incident with a vertex of X. Then 
P((G - X)')~ (i(G') as there are at most \X\ independent edges which do not 
belong to G-X. Let sup{#|* <y} =P(G') and let /?t</?A whenever i<X. Now 
we can construct by the induction on i a family {Il\i<y} that satisfies: 
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|/.I = A. 
ItczE(G- \7), 

where V. is the set of all vertices of G incident with an edge of u{Ix\A<i}. But 
then u{I/

l\i<y} = I is an independent set of edges of G of cardinality ($(G'). 

Remark. G' in Lemma 4 cannot be replaced by G. A simple counterexample is 
the complement of the disjoint union of the complete graphs of all orders < a for a 
limit cardinal a. 

Theorem 1. Let G be a graph with an infinite pseudoachromatic number xp(G). 
Thenxl>(G) = t5(G'). 

(In other words: If the pseudoachromatic number is infinite, then it equals the 
maximal number of independent edges — cf. Lemma 4.) 

Proof. I. Suppose that ip(G)<f5(G'). By Lemma 4 there exist P(G') indepen­
dent edges in G. As ip(G) is infinite, (i(G') is infinite as well so that there exists in 
G a (vertex) pseudocomplete /?(G')-colouring. It follows that (i(G')^rp(G), a 
contradiction. 

II. Suppose that ip(G)>P(G'). Distinguish two cases: 
a) t//(G)>K0. Put A =max {/3(G1), K0}. As A<\p(G), there exists an infinite 

cardinal number s such that A<s^xp(G) and G has a pseudocomplete vertex 
5-colouring. Form s disjoint pairs of colours and choose for each of these pairs 
{/, g} an edge joining vertices with colours / and g. We get s independent edges, 
which is impossible, since s>A^(i(G'). 

b) i//(G) = K0. Then P(G') is finite. Evidently there exists a natural number s 
such that 2(/3(G') + l )< s^K 0 and G has a pseudocomplete vertex s-colouring. 
Form P(G') + 1 disjoint pairs of colours and choose for each of them, say, {/, g}y 

an edge joining vertices with colours / and g. We get /3(G') + 1 independent edges, 
which is impossible. 

As I and II have led to contradictions, we have \p(G) = P(G'). 

Theorem 2. For any graph G we have: 

(13) ' CG = (X(G), v(G)). 

m x ' P -{ {0},ifv(G) = 0; 
(lV ° \(\,xl>(G)),ifv(G)±0. 

(15) Aa = (x(G),a(G)). 

Proof. (13) Let S be a set of cardinality \S\=s, s e (x(G), v(G)) and let A 
and B be disjoint subsets of s such that AuB = S, \A\ = x(G). Let / b e a regular 
vertex #(G)-colouring of G with the set A of colours. Obviously there exist 
injections 
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g:A^V(G), 
h:B^V(G)-g(A). 

Then the mapping / given by 

i(v) = { h~'(v)iív є Һ(B), 
f(v)űv e V(G)-Һ(B) 

is a regular vertex s-colouring of G. 
(14) As the case v(G) = 0 is trivial, suppose v(G)^hO. Let \^s<t^^p(G) and 

let there exist a pseudocomplete vertex t-colouring of G. Then identifying an 
appropriate number of colours we get easily a pseudocomplete vertex s-colouring 
of G. It remains to prove ^p(G) e PG. If ^p(G) is finite, this is evident. However, if 
^p(G) is infinite, according to Theorem 1 we have ^p(G) = P(G'), so that there 
exist ^p(G) independent edges in G and it is easy to find a pseudocomplete vertex 
i//(G!)-colouring of G. 

(15) From the definitions of x(G) and a(G) it follows that AG cz (x(G), a(G)) 
and x(G) e AG. Suppose that x(G)<s^a(G). To prove that G has a complete 
vertex s-colouring (and thus to generalize the Homomorphism Interpolation 
Theorem; see [10,12] and in more general form [4]), we distinguish three cases. 

(A) s = a(G). We may assume that a(G) is a limit cardinal. Let sup {aL \ i < y} = 
a(G) and suppose aL<ak for i<k. Now we can construct by the induction a 
family of graphs { G j t < y } such that 

1° GL is a subgraph of G, a(GL)^aL for * < y ; 
2° V(GL)nV(Gx) = 0iov i±k\ 
3° a(G-yj(V(Gk)\Ki)) = a(G) for <<y . 

Let cL: V(GL)—>AL be a complete vertex /?t-colouring, where /3L^aL; assume 
ALnAk=0 for i±k. Then 

d: u(V(GL)\i<Y)->v(AL\i<Y) 

is a regulars-colouring, where /?^sup/? t ^ s u p a t = a(G) so that f5 = a(G). Let c 
be any regular vertex colouring of G that is an extension of d. Then by Lemma 2 
there exists a quotient vertex colouring cle that is complete. But cle has to be an 
a(G)-colouring by Lemma 3. 

(B) x(G)<s<a(G), where s is finite. We use the method of M. B o g u s z a k , S. 
Po l j ak and J. Turn a [4]. Evidently there is a complete vertex s' -colouring r of G 
for some s', where s<s'^a(G). Choose s colours cx, c2, ..., cs from these s' 
colours and for every pair (<:,, c7) of these colours (/=£/) choose in G an edge whose 
endvertices have colours c, and q. Let M be the set of all endvertices of these edges 
and let H be a subgraph of G induced by M. Obviously there is a complete vertex 
s-colouring of H. Let e be the equivalence on V(G) defined thus (u, v e V(G)): 
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(u, v) e e if and only if u = v or 
u, v e V(H), T(U) = T(V). 

Evidently x(G/e)^s. However, the graph G/e can be obtained from G by a finite 
number of identifications of two vertices. Thus we get a finite sequence of graphs 

P= {G = G{), Gu G2, G3, ..., Gle = Gn). 

As with each identification the chromatic number increases by one or remains 
unaltered, in P there is a graph Gk with chromatic number x(Gk) = s. Let Gk arise 
from G by an equivalence e', i. e. Gk = Gle'. Colour G by s colours cx, c2, ...,cs as 
follows. If a vertex v belongs to the class of e' whose vertices correspond to a 
vertex of Gk coloured by c,, we colour t> by c,. Evidently we obtain a complete 
vertex s-colouring of G. 

(C) x(G)<s<a(G), where s is infinite. As in (B), there is a complete vertex 
s'-colouring of G for some s', where s<s' ^a(G). Let H be a subgraph of G 
induced by the vertices coloured by some of fixed s colours. According to 
Proposition 2 the complete vertex s-colouring of H can be extended into a 
complete vertex r-colouring c of G such that r^s +x(G). By Lemma 2 there is an 
equivalence e such that c/e is a complete vertex colouring of G. By Lemma 3 c/e is 
a /-colouring, where s^t^r^s+ x(G) = s, because s is infinite and x(G)<s. 
Therefore t = s and c/e is a complete vertex s-colouring of G. 

Theorem 3. Let s and t be cardinal numbers such that 2^s*kt. Then there exists 
a graph G with a(G) = s and \p(G) = t. 

Proof. Let G be a complete s-partite graph. If t is infinite, suppose that every 
part of G has t vertices. If t is finite, let two parts of G have t — s + 1 vertices each 
and each of the remaining s — 2 parts of G consist of one vertex. In both ca$es it is 
easy to check that a(G) = s and ty(G) = t. 

Remarks. 1. In Theorem 3 we must suppose s^2, because if a(G)<2, then 
H>(G) = a(G). 

2. A (vertex) colouring of a graph G can be considered as a special case of a 
partition of a set, namely of the vertex set of G. In this way many notions and 
results concerning the graph colourings including the Homomorphism Interpola­
tion Theorem may'be generalized [1, 4, 7, 15]. 

4. Edge colourings 

Theorem 4. For every graph G we have: 

a = (x'(G),e(G)); 
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( {0}ife(G) = 0, 
G \(l,tp'(G))ife(G)±0; 

Ai = (X'(G),a'(G)). 

Proof. These results easily follow from (6), Theorem 2, (7) and the fact that 
v(G') = e(G). 

To make Theorem 4 more applicable, we need some results concerning x'(G), 
ip'(G) and a'(G) — see Propositions 3 and 4 below. 

Proposition 3. Let G be a graph with degree d(G) and chromatic indexx'(G). If 
d(G) is finite, then 

(16) d(G)^X'(G)^d(G)]. 

If d(G) is infinite, then 

(17) X'(G) = d(G). 

Proof. (16) has been proved in [6, Theorem 3]; for finite graphs also in [3, 14, 
16, 17]. (17) has been established in [6, Theorem 1]. Evidently, the fact that in [6] 
loops were excluded, is not essential. 

Lemma 5. Let G be a connected graph with a finite chromatic index x'(G) and 
an infinite size (number of edges). Letx'(G) ^ s ^ K(). Then there exists a complete 
edge s-colouring of G 

Proof. There exists a complete edge jY/(G)-colouring q> of G. Suppose that the 
colours are 1, 2, 3, ..., x'(G)^2. Choose to every pair of colours / and /* two 
adjacent edges e and e* such that cp(e)=f, q?(e*)=f*. As x'(G) is finite, all the 
edges chosen in such a way generate a finite subgraph H of G. According to 
Proposition 3 d(G) is also finite. As G is connected, there exists an infinite path in 
G. But H is a finite graph, therefore in G - H there is also an infinite path (ex, e2, 
e3, . . . ) . Change the colours of the edges eu e2, e3, ... into the colours /, = 1, /2 = 2, 
/ 3 = l , / 4 = 3 , / 5 = 2 , / 6 = 3 , / 7 = l , / 8 = 4 , / 9 - 2 , / 1 ( ) = 4 , / n = 3 , / 1 2 = 4 , / 1 3 = l , / 1 4 = 5, 
... in such a way that the edges eu e2, e3, ... are successively coloured by the colours 
f\, fi, /?, .; however if in colouring an edge e such a colour / should be used that 
the regularity of the colouring is destroyed, then delete / from the sequence and 
colour e by the next colour / ( /> /) that does not spoil the regularity of colouring. 
If s is finite, then the sequence (/,, f2, f3,...) ends with the colours s — 1 and s. After 
exhausting the members of the sequence (possibly with deleting some members) 
the process of changing the colours ends and the colours of the other edges of the 
path (ex, e2, e3, ...) remain unaltered. If s = K„, then the sequence of colours (fL, f2, 
f3, ...) is infinite and (possibly after deleting some members) by it all the edges of 
the path (eu e2, e3, ...) can be coloured. It is evident that a complete edge 
s-colouring of G will arise. 
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Proposition 4. Let G be a graph with the dispersion c(G), degree d(G) and size 
e(G). Then we have: 

(i) If G has no essential edges, then 

a ( G ) - < / , ( G ) - ( 1 / M G ) ^ 0 

(ii) / / G has a non-zero finite number of essential edges, then J(G) is a finite 
graph and 

a'(G) = a'(J(G)), M>'(G) = xp'(J(G)). 

(iii) If G has an infinite number of essential edges, then 

a'(G) = ip'(G) = max{c(G),d(G),Kt)}. 

Proof, (i) and (ii) are trivial. Therefore we prove only (iii). 
If either c(G) or d(G) is infinite, then 

max {c(G), d(G), K()} = c(G)d(G). 

As there are at most c(G)d(G) pairs of adjacent vertices it suffices to show that 
there exists a complete c(G)d(G)-colouring of G. However, this fact for c(G)^ 
d(G) follows from Proposition 3 and for c(G)>d(G) it is evident. 

If both c(G) and d(G) are finite, we may apply Proposition 3 and Lemma 5 and 
we obtain that there exists a complete edge K()-colouring of G. As e(G) = N(), we 
have 

a'(G) = tp'(G) = K{). 

Theorem 5. Let G be a graph with an infinite degree d(G). A complete edge 
s-colouring of G exists if and only if 

, d(G)^s^max{c(G), d(G)}, 

where c(G) is the dispersion of G. 

Proof, if d(G) is infinite, then G has an infinite number of essential edges and 
the result follows from Theorem 4, Proposition 3 and Proposition 4. 

Corollary. A complete edge s-colouring of a connected graph with an infinite 
degree d(G) exists if and only if s = d(G). 

Proof. Put c(G) = \ in Theorem 5. 

5. Results concerning finite graphs 

Theorem 4 reduces the problem of existence of a complete, a pseudocomplete, 
and a regular edge s-colouring of a graph G to determining the characteristics 
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€(G)* X'(G)> V'(G) and a'(G). Proposition 4 for every graph G either determines 
^p'(G) and a'(G) or reduces the problem of finding them to the case of finite 
graphs. Therefore in the sequel we shall study the achromatic index and the 
pseudoachromatic index of a finite graph. The chromatic index of a finite graph has 
been studied in [2, 3, 16, 17] and many other works; the case of infinite graphs has 
been treated in [6]. 

Basic properties of a(G), a'(G), ^p(G) and ip'(G) for finite graphs G 
(especially, for paths Pm and circuits Cm on m vertices) were presented by the first 
author at the summer school on Combinatorial Structures and Graph Theory in 
Zlata Idka (Czechoslovakia) in May 1971 and at the Seminar on Discrete 
Mathematics in Odessa (USSR) in September 1972. Meanwhile a considerable 
part of these results has been independently discovered by F. Bo r i e s and J. L. 
Jo l ive t [5] and by D. Ge l l e r and H. Kronk [8]. Therefore we mention them only 
briefly. 

Theorem 6. Let m be a positive integer. Put 

Л = 

Then we have: 

(18) 

(19) 

(20) 

f 2A ifm<2A2 + A or 
a'(Cm) = a(Cm) = \ifm = 2A2 + A + \>\; 

I 2 A + 1, otherwise. 

Ц>'(Cm) = гl>(Cm) = 
_ í 2A ifm<2A2 + A; 

[2A + 1 ifm^2A2 + A. 

'(Pm+,) = гl>(Pm) = a'(Pm+x) = a(Pm) = 

f 2A ifm^2A2 + A, 
~{2A + lifm>2A2 + A. 

Proof. The results (18) and (20) concerning a and a' were (in an other form) 
proved in [5] and [8], It is easy to check that all the proofs can be used for ^p and ^p' 
as well and we get the same results except the case m = 2A2 + A + \, when 
^p'(Cm) = ^p(Cm) = 2A + \. The theorem follows. 

Let G be a finite graph containing exactly z(G) (unordered) pairs of adjacent 
edges. The condition 

'V'(G)\ 
v' 2 ' 

•z(G) 

implies that 
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a'(G)^i/;f(G)^\l(l+\/8l(G)+l)]. 

The estimate (21) is attained, e. g., for any star (tree of diameter 1 or 2). From 
(21) jt is possible to deduce further conditions, for instance, for any finite graph G 
with degree d(G) and order v(G) we have: 

( 2 2 ) a'(G)^ii>'(G)**[i(l+\/4v(G)d(G)(d(G)-l)+l)]. 

However, many basic problems concerning the achromatic [pseudoachromatic] 
index of a graph remain open. We state only two of them. 

Problem 1. Determine the achromatic [pseudoachromatic] index of the finite 
complete graph of a given order (cf. [5]). 

It is easy to find these values for "small" n: 

n 1 2 3 4 5 6 7  
a'(Kn) 0 1 3 3 7 8 11 
^|)'(Kn) 0 1 3 4 7 8 11 

It may be interesting to study graphs G such that a'(G) + ̂ p'(G). From 
Proposition 4 it follows that if such a graph G has no isolated vertices or edges, 
then G must be finite. Simple examples are three 4-vertex graphs: the graph of 
Fig. 1, the circuit C4 and the complete graph K4. The graph of Fig. 4 has achromatic 
index 4 and pseudoachromatic index 5. The circuit C2A*+A + l (A = 1, 2, 3, ...) has 
achromatic index 2A and pseudoachromatic index 2A + 1 (see Theorem 6). 

Problem 2. Find all ordered pairs (s, t) of cardinal numbers such that there exists 
a graph G with a'(G) = s and ty'(G) = t. 

Theorem 3 and Remark 1 show that the corresponding ordered pairs for vertex 
colourings are (0, 0), (1, 1) and all (s, t) with 2^s^t. 
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ПОЛНЫЕ И ПСЕВДОПОЛНЫЕ РАСКРАСКИ ГРАФА 

Юрай Боса к—Ярослав Нешетржил 

Р е з ю м е 

Раскраска вершин [ребер] графа называетвя псевдополной, если для любых двух различных 
цветов в графе найдутся две смежные вершины [ребра] окрашенные в эти цвета. Раскраска 
называется полной, если она псевдополна и правильна. Проблема, при каких условиях граф 
имеет полную (псевдополную) раскраску вершин [ребер] с данным количеством цветов ведет к 
изучению ахроматического числа [класса] графа, то есть, максимального количества цветов 
таких раскрасок. Показано, что эти инварианты графа всегда определены (включая случай 
бесконечных графов) и что справедливы результаты аналогичны известной теореме об 
интерполяции гомоморфизмов. Кроме того, для любых двух кардинальных чисел х и I таких, что 
2^5^** существует граф с ахроматическим числом л и псевдоахроматическим числом (. Если 
псевдоахроматическое число графа бесконечно, то оно равно максимальному числу его 
независимых ребер. Для раскрасок ребер выводятся более простые результаты. Последняя часть 
статьи посвящена случаю конечных графов. 
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