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" COMPLETE AND PSEUDOCOMPLETE COLOURINGS
OF A GRAPH

JURAJ BOSAK—JAROSLAV NESETRIL

’

1. Introduction

A vertex colouring of a graph is called complete if it is regular and pseudocomp-
Iete (i. e. for any two different colours f and g the graph has two adjacent vertices
with colours f and ¢). The maximal number of colours of a complete colouring of a
graph G, called the achromatic number of G, has been studied in [5, 8, 9, 10, 11,
12|. The present paper is mainly devoted to the study of an analogous notion for
edge colourings — the achromatic index (called also the line-achromatic number
[S]) of a graph. There are considered colourings of infinite graphs and an
interesting feature appears: the results for edge colourings are in general simpler
than those for vertex colourings.

2. Complete colourings

Let a graph G (loops and multiple edges are admissible) and a set F of colours be
given. By a vertex [an edge] colouring of G by F we mean a mapping @ of the
vertex set V(G) [edge set E(G)] of G into F. If x is a vertex [an edge] of G, then
@(x) is called the colour of x under the colouring @. Let s denote the number (the
cardinality of the set) of the elements of F that are colours of a vertex [an edge] of
G under @. Then @ is called a vertex [an edge] s-colouring of G.

A vertex [an edge] colouring @ of G is said to be

(a) regular if any two adjacent vertices [edges] of G have different colours (two
vertices [edges] are called adjacent if they are different and incident with at least
ane common edge [vertex]);

(b) pseudocomplete if for any two different colours f and g from the image of ¢
there exist in G two adjacent vertices [edges] with colours f and g;

(c) complete if it is regular and pseudocomplete.

A regular (but not pseudocomplete), a pseudocomplete (but not regular) and a
complete edge colouring of a graph by {1, 2, 3, 4} are shown in Fig. 1. The first two
of them are 4-colourings, the third is a 3-colouring.
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Fig. 1. A regular, a pseudocomplete and’a complete edge colouring of a graph.

Fig. 2 shows three complete edge colourings of the octagon (a 2-colouring, a
3-colouring and a 4-colouring).

Note that these notions are closely related to special homomorphisms (cf., . g.,
[10, Chapter 12]).

Let G b a graph. By the derivative (called also “line graph™, “‘interchange
graph”, “der ved graph” etc.) of G we mean the graph G’ without loops or
multiple edges whose vertex set is the edge set of G (i.e. V(G')=E(G)); two
vertices x and y of G’ are adjacent if and only if they are adjacent as edges of G.

Let a graph G and a cardinal number s be given. Our main aim is to find
conditions for the existence of a complete vertex [edge] s-colouring of G.

The fo lowing lemma relates vertex and edge colourings.

Lemma 1. Every reular [pseudocomplete, complete] edge s-colouring of a
graph G 1s a regulir [pseudocomplete, complete| vertex s-colouring of the
derivative G’ of G

Proof. The lemma immediately follows from the definitions of the derivative,
vertex and edge colourings.

Thus the above examples provide examples of vertex colourings, too.

One of the aims of this paper is to show that Lemma 1 is not of much use. Thus
we give first results for vertex colourings and then results for edge colourings which
will be sometimes different.

We shall need several characteristics of a given graph G that are cardinal
numbers - By v(G) we denote the order (number of vertices) of G, by e(G) the
size (number ¢ f edges) of G by d(G) the degree of G (i. e., the supremum of the

Fig 2. Complete edge colourings of the octagon.
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set of degrees of vertices of G ; the degree of a vertex is the (cardinal) number of
the edges incident with v ; here the loops are not counted twice) and by ¢(G) the
dispersion of G (the number of the components of G with at least two edges)

The subgraph of G formed by the components of G containing at least two edges
will be denoted by J(G). An edge of G is called essential if it is not isolated, i. e., if
it is adjacent to at least one edge of G. Evidently, the subgraph of G generated by
the set of essential edges of G is J(G) and ¢(G)=c(J(G)).

Denote by C; [C{] the class of cardinal numbers s such that therc exists a
regular vertex [edge] s-colouring of G. Similarly, denote by P; [P/] the class of
cardinal numbers s such that there is a pseudocomplete vertex [edge] s-colouring
of G. Finally, denote by A; [A¢] the class of cardinal numbers s such that there
exists a complete vertex [edge] s-colouring of G.

Evidently, if there exists a vertex [edge] s-colouring of G, then s<wv(G)[s<
< e(G)).Therefore the classes C;, P; and A, [C/, P4 and A4] are sets

Obviously, for every graph G we have:

(1) As e Cq, Asc G,
(2) Agc Pg, Agc Pg,
(3) Po#9,  P;+0,
(4) Co#0, C5#9.

Later (Proposition 1) we shall show that we always have
) : Ac#d,  AG*D
as well. From Lemma 1 it follows that
(6) Po=P;,  Co=0C5  As=A¢

for every graph G.

Let ¢ be a vertex [an edge] colouring of G by F and let e be an equivalence on F.
For a € F denote by [a]. the equivalence class containing a. Define a vertex [an
edge] colouring c/e of G thus: for any vertex [edge] x of G put (c/e)(x)=[c(x)]..
We shall call c/e the quotient colouring. Quotient colourings may be used for
generating complete colourings from regular ones.

Lemma 2. Let ¢ be a regular vertex [edge] colouring of a graph G. Then there
exists a quotient vertex [edge| colouring c/e of G which is complete.

Proof. According to Lemma 1 it is sufficient to prove the assertion for vertex
colourings. Let F be the set of colours. Define a reflexive symmetric relation r on F'
by o
(a, b) € rif and only if c(x) = a, c(y) = b for no adjacent vertices x, y of G.

Let e be a maximal equivalence on F which satisfies e < r (such an equivalence
exists by Zorn’s lemma). By the definition of 7, ¢/e is a regular colouring. Further,
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c/e is a pseudocomplete colouring, because if [a].#[b]. and (¢/¢)(x) € [a]..
(c/e)(y) € [b]. for no two adjacent vertices x, y, then

e'=eu(lal. x[b].)u([b]. X[a].)

is also an equivalence on F contained in r, which is a contradiction with the
maximality of e.

Lemma 3. Let H be a subgraph of G. Let ¢ be a regular vertex [cdge] r-colouring
of G and let its restriction c| vy, [ ¢|ean] be a complete vertex [edge] s-colouring of
H. Then for every complete quotient t-colouring c/e of G we have: s<t<r.

Proof is immediate.

Now we define six important characteristics of a given graph G:

The chromatic number x(G) [chromatic index x'(G)] of G is the least number s
of colours such that there exists a regular vertex [edge] s-colouring of G. (Instead
of ““‘chromatic index’ also the terms “‘chromatic class”, “‘edge chromatic number”
and “line chromatic number” are used.)

The pseudoachromatic number y(G) [pseudoachromatic index y'(G)] of G is
the supremum of the set of cardinal numbers s for which there exists a
pseudocomplete vertex [edge] s-colouring of G.

The achromatic number a(G) [achromatic index a'(G)] is the supremum of the
set of cardinal numbers s for which there exists a complete vertex [edge]
s-colouring of G.

Briefly: x(G)=min C;, x'(G)=min C;, y(G)=sup P;, ¥'(G)=sup P¢,
a(G)=sup Ag, a'(G)=sup AS.

It will be seen that these are the only non-trivial extrema defined by the sets Cg,
P, Ag, C&, PS5 and AS.

From (6) it follows that

(7 x'(G)=x(G"), y'(G)=y(G"), a'(G)=a(G").
Moreover, we evidently have

(8) x(G)=sa(G)sy(G)sv(G),

) dG)<xy'()=sa'(G)<sy'(G)<e(qG).

If H is a subgraph of G, then

(10) x(H)sx(G), x'(H)sx'(G),

y(H)=y(G), y'(H)=vy'(G),
a'(H)<a'(G).

(The last inequality follows from Lemmas 2 and 3.)
Simple examples (e. g. the circuit G on 4 vertices and its subgraph H with 3
edges) show that the inequality
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(1) a(H)<a(G)

does not hold in general. However, it follows from Lemmas 2 and 3 that if H is an
induced subgraph of G, then (11) holds.

Later (Theorem 2) we shall show that for every graph G there exist max P
[max P’;;] and max A; [max A/]. Hence the pseudoachromatic number [index] of
G can be defined also as the greatest number s of colours in a pseudocomplete
vertex [edge] s-colouring of G and the achromatic number [index] of G as the
greatest number s of colours in a complete vertex [edge] s-colouring of G.

The chromatic index — which is the edge analogy to the chromatic number —
has been treated in many papers. A survey of main results can be found in [3, 6, 13,
16, 17]. The achromatic index (cf. [5]) is the edge analogy to the achromatic
number studied in [5, 8, 9, 10, 11, 12]. The pseudoachromatic index is the analogy
to the concept of the pseudoachromatic number introduced and studied in [9].

Example. It is easy to show that for the graph Q, of the cube we have
Y'(Qy)=a’(Q;)=6. A complete edge 6-colouring of Q, is given in Fig. 3.

3

O

S

Fig. 3. A complete edge 6-colouring of the cube. Fig. 4. A graph G with a'(G) # y'(G).

Obviously, if x(G) [x'(G)] is finite, then every regular vertex y(G)-colouring
[regular edge x'(G)-colouring] is complete. Thus, every graph G with a finite
chromatic number [index] has a complete vertex [edge] colouring. This is true in
general:

Proposition 1. Every graph G has a complete vertex x(G)-colouring [complete
edge x'(G)-colouring].

Proof. Let ¢ be a regular vertex x(G)-colouring [edge x'(G)-colouring]. By
Lemma 2 there exists a quotient vertex [edge] colouring c/e of G that is complete.
Evidently, c/e is a x(G)-colouring [x'(G)-colouring].
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Proposition 2. Let H be an induced subgraph of G. Then every complete vertex
s-c louring o H can be extended into a complete vertex r-colouring of G such that

(12 r<s-+t,

&

where t=x(G). If t=2, then the estimate (12) is sharp.

Proof Let ¢ be a regular vertex ¢-colouring of G by A and let ¢ be a complete
vertex s-colouring of H by B (assume AnB={). Detine a regular vertex
colouring g thus: gly 4,=d qlm;, van =C. By Lemma 2 there exists a quotient
vertex colouring ¢g/e of G which is complete. Evidently, ¢g/¢ is an extension of d
and 1t i an r-colouring such that (12) holds.

Now we prove that (12) is sharp in the sense that for every s, ¢ (1= 2) there exists
1 praph G with x(G)=¢, an induced subgraph H of G and a complete vertex
s- olouring d of H wh ch cannot be extended into a complete r-colouring of G
stch that r<s+r¢

Let S, T besetssuchtha |S| s, |7T|=1¢and choose x ¢ S. Put S*=Su{x}. Let
G ¢ a graph without loops or multiple edges with V(G)=5* X T such that two
vertices (0, 1)), (0, 1) are adjacent if and only if 7,# 7, and either o, # o0,, or
o, —o =x. Evidently, y(G)—+¢ Let H be a subgraph of G induced by the set
V(H) SXxT.A complete vertex s-colouring & of H is defined by d(o, 1) =0. It
15 easy to check that 4 has the desired properties.

3. Vertex colourings

If s and r are cardinal numbers, denote by (s, r) the set of all cardinals ¢ such
that s <t<r. The cardinality of a set I will be denoted by |I|.

Here we shall determine C;, P; and Ag for any graph G (Theorem 2). We also
prove that @(G) and y(G) are in general independent (except a(G)< ¢ (G); see
Theorem 3) and we determine y(G) provided that it is infinite (Theorem 1).

We need the notion of the independence number §(G) of a graph G. Let G be a
graph; denote by I(G) the set of all independent subsets of V(G). Put 8(G)=
sup{|I] | I € I(G)}. We prove first:

Lemma 4. Let G be a graph. Then
B(GY=max {|I| | I € I(G")}.

Proof. It suffices to consider the case when B(G') is a limit cardinal. Let
Xc V(G) satisfy |X|<pB(G'). Consider the graph G- X=(V(G)-X,
E(G)— E), where E is the set of all edges of G incident with a vertex of X. Then
BUG - X)')=B(G") as there are at most |X| independent edges which do not
belong to G — X. Let sup{f.|¢ <y} =pB(G’) and let B, <fB, whenever ¢ <i. Now
we can construct by the induction on ¢ a family {I |¢ <y} that satisfies:
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I, € I(G"),

|LI=8.,
LcE(G-V),

where V, is the set of all vertices of G incident with an edge of U{I,|A<:}. But
then U{I,/Il, <y}=1Iis an independent set of edges of G of cardinality S(G").

Remark. G’ in Lemma 4 cannot be replaced by G. A simple counterexample is
the complement of the disjoint union of the complete graphs of all orders < « for a
limit cardinal a.

Theorem 1. Let G be a graph with an infinite pseudoachromatic number ¢ (G).
Then y(G)=p(G'). -

(In other words: If the pseudoachromatic number is infinite, then it equals the
maximal number of independent edges — cf. Lemma 4.)

Proof. I. Suppose that ¢(G)<B(G'). By Lemma 4 there exist §(G') indepen-
dent edges in G. As y(G) is infinite, B(G') is infinite as well so that there exists in
G a (vertex) pseudocomplete B(G')-colouring. It follows that S(G')<y(G), a
contradiction.

I1. Suppose that y(G)>B(G'). Distinguish two. cases:

a) Y(G)>R,. Put A =max {f(G’), 8,}. As A <y(G), there exists an infinite
cardinal number s such that A <s<y¥(G) and G has a pseudocomplete vertex
s-colouring. Form s disjoint pairs of colours and choose for each of these pairs
{f, g} an edge joiring vertices with colours f and g. We get s independent edges,
which is impossible, since s > A =#(G’).

b) y(G)=NR,. Then B(G") is finite. Evidently there exists a natural number s
such that 2(f(G')+1)<s <R, and G has a pseudocomplete vertex s-colouring.
Form B(G') + 1 disjoint pairs of colours and choose for each of them, say, {f, g},
an edge joining vertices with colours f and g. We get §(G') + 1 independent edges,
which is impossible.

As I and II have led to contradictions, we have y(G)=B(G").

Theorem 2. For any graph G we have:
(13) ’ Co =(x(G), v(G)).

{0}, if v(G)=0;
(1, 9(G)), if v(G)#0.
(15) As=(x(G), a(G)). _
Proof. (13) Let S be a set of cardinality |S|=s, s € (X(G), v(G)) and let A
and B be disjoint subsets of S such that AUB =S, |A|=x(G). Let f be a regular

vertex x(G)-colouring of G with the set A of colours. vaiously there exist
injections

(14)  p|
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g: A— V(G),
h: B> V(G)—g(A).

Then the mapping / given by

. _[ hT(v)ifv e A(B),
’(“)‘{f(v) if v e V(G)—h(B)

is a regular vertex s-colouring of G.

(14) As the case v(G) =0 is trivial, suppose v(G)#0. Let | <s<¢<y(G) and
let there exist a pseudocomplete vertex ¢-colouring of G. Then identifying an
appropriate number of colours we get easily a pseudocomplete vertex s-coloutring
of ‘G. It remains to prove ¢(G) € P;. If y(G) is finite, this is evident. However, if
w(G) is infinite, according to Theorem 1 we have y(G)=B(G'), so that there
exist y(G) independent edges in G and it is easy to find a pseudocomplete vertex
(G)-colouring of G.

(15) From the definitions of y(G) and a(G) it follows that A; < (x(G), a(G))
and x(G) € Ag. Suppose that ¥(G)<s<a(G). To prove that G has a complete
vertex s-colouring (and thus to generalize the Homomorphism Interpolation
Theorem; see [10, 12] and in more general form [4]), we distinguish three cases.

(A) s = a(G). We may assume that a(G) is a limit cardinal. Let sup {a, |t <7y} =
a(G) and suppose a, <a, for t <A. Now we can construct by the induction a
family of graphs {G,|t <y} such that

1° @, is a subgraph of G, a(G,)=a, for 1 <y;
2° V(G)NV(G,)=0 for 1t#4;
3° a(G-u(V(G)|A<t))=a(G) for 1<y.

Let ¢,: V(G,)— A, be a complete vertex f,-colouring, where 8, = a, ; assume
A,.NA, =0 for t#A. Then

d: U(V(G)|t<y)»U(A|t<y)

is a regular B-colouring, where f=sup B, =supa, = a(G) so that f=a(G). Let ¢
be any regular vertex colouring of G that is an extension of d. Then by Lemma 2
there exists a quotient vertex colouring c/e that is complete. But ¢/e has to be an
a(G)-colouring by Lemma 3. '

(B) x(G)<s < a(G), where s is finite. We use the method of M. Boguszak, S.
Poljak and J. Tima [4]. Evidently there is a complete vertex s'-colouring 7 of G
for some s', where s <s’'<a(G). Choose s colours c;, c,, ..., ¢, from these s’
colours and for every pair (¢, c;) of these colours (i # j) choose in G an edge whose
endvertices have colours ¢; and c;. Let M be-the set of all endvertices of these edges
and let H be a subgraph of G induced by M. Obviously there is a complete vertex
s-colouring of H. Let e be the equivalence on V(G) defined thus (u, v € V(G)):
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(u,v)ee ifandonlyif u=v or
u,v € V(H), t(u)=t(v).

Evidently x(G/e)=s. However, the graph G/e can be obtained from G by a finite.
number O/f identifications of two vertices. Thus we get a finite sequence of graphs

P={G=G()1 Gla GZ’ G.‘h ey G/e=G,,}.

As with each identification the chromatic number increases by one or remains
unaltered, in P there is a graph G, with chromatic number x(G,)=s. Let G, arise
from G by an equivalence €', i. e. G, = G/e’. Colour G by s colours c,, ¢, ..., ¢, as
follows. If a vertex v belongs to the class of e’ whose vertices correspond to a
vertex of G, coloured by ¢;, we colour.v by ¢,. Evidently we obtain a complete
vertex s-colouring of G.

(©) x(G)<s<a(G), where s is infinite. As in (B), there is a complete vertex
s'-colouring of G for some s’, where s <s’'<a(G). Let H be a subgraph of G
induced by the vertices coloured by some of fixed s colours. According to
Proposition 2 the complete vertex s-colouring of H can be extended into a
complete vertex r-colouring ¢ of G such that r<s + y(G). By Lemma 2 there is an
equivalence e such that c/e is a complete vertex colouring of G. By Lemma 3 c¢/e is
a r-colouring, where s<t<r<s+ y(G)=s, because s is infinite and x(G)<s.
Therefore ¢=s and c/e is a complete vertex s-colouring of G.

Theorem 3. Let s and ¢t be cardinal numbers such that 2<s <t. Then there exists
a graph G with a(G)=s and y(G)=t.

Proof. Let G be a complete s-partite graph. If 7 is infinite, suppose that every
part of G has ¢ vertices. If ¢ is finite, let two parts of G have ¢ —s + 1 vertices each
and each of the remaining s — 2 parts of G consist of one vertex. In both cases it is
easy to check that a(G)=s and ¥ (G)=t.

Remarks. 1. In Theorem 3 we must suppose s =2, because if a(G)<2, then
¥(G)=a(G). |

2. A (vertex) colouring of a graph G can be considered as a special case of a
partition of a set, namely of the vertex set of G. In this way many notions and
results concerning the graph colourings including the Homomorphism Interpola-
tion Theorem may be generalized [1, 4, 7, 15].

4. Edge colourings .

Theorem 4. For every graph G we have:

Cs=(x'(G), e(G));
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P’={ {0} if e(G) =0,
W1, 9'(G)) if e(G)#0;

Aé=(x'(G), a'(G)).
Proof. These results easily follow from (6), Theorem 2, (7) and the fact that
v(G')=e(G).
To make Theorem 4 more applicable, we need some results concerning x'(G),
¥'(G) and a’'(G) — see Propositions 3 and 4 below.

Proposition 3. Let G be a graph with degree d(G) and chromatic index x'(G). If
d(G) is finite, then

(16) d(G)<x'(G)<[id(G)].
If d(G) is infinite, then .
(17) : X' (G)=d(G).

Proof. (16) has been proved in [6, Theorem 3]; for finite graphs also in [3, 14,
16, 17]. (17) has been established in [6, Theorem 1]. Evidently, the fact that in [6]
loops were excluded, is not essential.

Lemma 5. Let G be a connected graph with a finite chromatic index x'(G) and
an infinite size (number of edges). Let x'(G)<s <R,. Then there exists a complete
edge s-colouring of G.

Proof. There exists a complete edge x'(G)-colouring @ of G. Suppose that the
colours are 1, 2, 3, ..., x'(G)=2. Choose to every pair of colours f and f* two
adjacent edges ¢ and e* such that @(e)=f, (e*)=f*. As x'(G) is finite, all the
edges chosen in such a way generate a finite subgraph H of G. According to
Proposition 3 d(G) is also finite. As G is connected, there exists an infinite path in
G. But H js a finite graph, therefore in G — H there is also an infinite path (e,, e,,
e,, ...). Change the colours of the edges e, e, e, ... into the colours f, =1, f,=2,
f3= 1, f4=37f5=29 f6=3af7= 1, fs=4, f9=2,fw=4af1| =3, f12=4, f13= 1, f14=5,
... in such a way that the edges e, e,, e, ... are successively coloured by the colours
fi, f>, fs, ...; however if in colouring an edge e such a colour f; should be used that
the regularity of the colouring is destroyed, then delete f; from the sequence and
colour e by the next colour f; (> /) that does not spoil the regularity of colouring.
If 5 is finite, then the sequence (f,, f, fs, ...) ends with the colours s — 1 and s. After
exhausting the members of the sequence (possibly with deleting some members)
the process of changing the colours ends and the colours of the other edges of the
path (e,, e, €, ...) remain unaltered. If s =R, then the sequence of colours (f,, f.,
f5, ...) is infinite and (possibly after deleting some members) by it all the edges of
the path (e,, e,, €5, ...) can be coloured. It is evident that a complete edge
s-colouring of G will arise.
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Proposition 4. Let G be a graph with the dispersion c(G), degree d(G) and size
e(G). Then we have:
(i) If G has no essential edges, then

o [0ife(G)=0,
a(G)_w(G)_{life(G)#:O.

(ii) If G has a non-zero finite number of essential edges, then J(G) is a finite
graph and

a'(G)=a'(J(G)), y'(G)=vy'(J(G)).
(iii) If G has an infinite number of essential edges, then
a'(G)=vy'(G)=max {c(G), d(G), R,}.

Proof. (i) and (ii) are trivial. Therefore we prove only (iii).
If either ¢(G) or d(G) is infinite, then

max {c(G), d(G), R,} =c(G)d(G).

As there are at most ¢(G)d(G) pairs of adjacent vertices it suffices to show that
there exists a_completé c(G)d(G)-colouring of G. However, this fact for ¢(G) <
d(G) follows from Proposition 3 and for c¢(G)>d(G) it is evident.

If both ¢(G) and d(G) are finite, we may apply Proposition 3 and Lemma 5 and
we obtain that there exists a complete edge N,-colouring of G. As e(G) =R, we
have

a'(G)=y'(G)=R,.

Theorem 5. Let G be a graph with an infinite degree d(G). A complete edge
s-colouring of G exists if and only if

~d(G)ss<=max{c(G), d(G)},
where c(G) is the dispersion of G.

Proof. If d(G) is infinite, then G has an infinite number of essential edges and
the result follows from Theorem 4, Proposition 3 and Proposition 4. .

Corollary. A complete edge s-colouring of a connected graph with an infinite
degree d(G) exists if and only if s =d(G).

Proof. Put ¢(G)=1 in Theorem 5.

5. Results concerning finite graphs

Theorem 4 reduces the problem of existence of a complete, a pseudocomplete,
and a regular edge s-colouring of a graph G to determining the characteristics
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e(G), x'(G), ¥'(G) and a'(G). Proposition 4 for every graph G either determines
¥'(G) and a’(G) or reduces the problem of finding them to the case of finite
graphs. Therefore in the sequel we shall study the achromatic index and the
pseudoachromatic index of a finite graph. The chromatic index of a finite graph has
been studied in [2, 3, 16, 17] and many other works ; the case of infinite graphs has
been treated in [6].

Basic properties of a(G), a'(G), ¢(G) and y'(G) for finite graphs G
(especially, for paths P,, and circuits C,, on m vertices) were presented by the first
author at the summer school on Combinatorial Structures and Graph Theory in
Zlata Idka (Czechoslovakia) in May 1971 and at the Seminar on Discrete
Mathematics in Odessa (USSR) in September 1972. Meanwhile a considerable
part of these results has been independently discovered by F. Bories and J. L.
Jolivet[5]and by D. Geller and H. Kronk [8]. Therefore we mention them only
briefly. :

Theorem 6. Let m be a positive integer. Put

a=[\5]

\

Then we have:

(18) 2A ifm<2A*+ A or
a'(C,,,)=a(C,,,)={ifm=2A2+A+1>1;

2A + 1, otherwise.

e _[2A ifm<2A’+A;
19) w(C'")_w(c'")_{ZA+1ifm>2A2+A.
(20) V' (Pni)=y(P)=a' (P =a(P,)=

_{ 24 ifm<2A*+ A,
T12A+1ifm>2A%+ A.

Proof. The results (18) and (20) concerning & and a’ were (in an other form)
proved in [5] and [8]. It is easy to check that all the proofs can be used for ¥ and v’
as well and we get the same results except the case m=2A*+ A+ 1, when
Y'(C,)=v(C,)=2A + 1. The theorem follows.

Let G be a finite graph containing exactly z(G) (unordered) pairs of adjacent
edges. The condition ’

(}/}’50)) <z(G)

implies that
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21 a'(G)=sy'(G)<s[; (1+V8z(G)+1)].

The estimate (21) is attained, €. g., for any star (tree of diameter 1 or 2). From
(21) it is possible to deduce further conditions, for instance, for any finite graph G
with degree d(G) and order v(G) we have:

(22)

a'(G)<y'(G)<[} (1 +Vav(G)d(G)(d(G)—1)+1)].

However, many basic problems concerning the achromatic [pseudoachromatic]
index of a graph remain open. We state only two of them.

Problem 1. Determine the achromatic [pseudoachromatic] index of the finite
complete graph of a given order (cf. [5]).
It is easy to find these values for “small” n:

n 1 2 3 456 17
a(K) 0 1 3 3 7 8 11
v(K,) 01 3 4 7 8 11

It may be interesting to study graphs G such that a'(G)# y¢'(G). From
Proposition 4 it follows that if such a graph G has no isolated vertices or edges,
then G must be finite. Simple examples are three 4-vertex graphs: the graph of
Fig. 1, the circuit C, and the complete graph K,. The graph of Fig. 4 has achromatic
index 4 and pseudoachromatic index 5. The circuit Cya2,a4: (A=1, 2, 3, ...) has
achromatic index 2A and pseudoachromatic index 2A + 1 (see Theorem 6).

Problem 2. Find all ordered pairs (s, ¢) of cardinal numbers such that there exists
a graph G with a'(G)=s and y'(G)=t.

Theorem 3 and Remark 1 show that the corresponding ordered pairs for vertex
colourings are (0, 0), (1, 1) and all (s, ¢) with 2<s<.
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IMTOJIHBIE U TNCEBOOITOJMHBIE PACKPACKH I'PA®A
I0pait Bocak—SIpocnas Hewetpxun
Pesiome

Packpacka BepuuuH [peGep] rpacda Ha3bIBaeTBs NCEBIONONHON, ECIU A4S JIOOBIX [BYX PA3NUYHbIX
uBeToB B rpade HailayTcs [BE CMEXHble BepliMHbl [peGpa] okpauwenHble B 3T useta. Packpacka
Ha3bIBAaETCA MOJIHOM, €CIM OHa IMCEBROMONHA M mpaBuabHa. ITpobneMa, npu kakux ycnosusx rpacd
MMEET MOJHYIO (NCEeBONONHYI0) PacCKPACKy BepIUMH [peGep] ¢ AaHHBIM KOJIMYECTBOM LBETOB BENET K
U3YYEHHIO aXpOMaTHYECKOro 4ucna [knacca] rpacga, To ecTb, MAKCHMAJBLHOIO KOJIMYECTBA LBETOB
Takux packpacok. Iloka3zaHo, YTO 3TH MHBapuaHTbl rpada Bceraa onpeaefieHbl (BKOYas ciydan
6eckOHEYHbIX rpachoB) M 4YTO CNPABEANMBBI PE3yNbTaThl AHAJOTMYHBI M3BECTHOM TeopeMe 06
MHTEpNoNsuuM roMoMopdu3MoB. KpoMe Toro, aist 1o6bIx ABYX KapPAMHAIbHBIX YUCEN S U ¢ TAKHX, YTO
2<s5 <t cyuecTByeT rpad ¢ aXxpOMaTHYECKMM YHMCIOM § M TNCEBAOAXPOMATHYECKUM uYucioM ¢. Ecnn
NCEB0aXPOMATHYECKOE YHCIO rpacdha GECKOHEYHO, TO OHO PAaBHO MAaKCHMalbHOMY YHMCNY €ro
He3aBUCHMMBIX pebep. [Ins packpacok pe6Gep BbIBOAATCS Gonee npocTbie pe3ynbTaThl. [TocneqHss yactb
CTaThH NOCBALIEHA CJy4al0 KOHEYHBIX rpadoB.
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