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ON SOME IDENTITIES 

FOR THE FIBONOMIAL COEFFICIENTS 

JAROSLAV S E I B E R T — P A V E L T R O J O V S K Y 

(Communicated by Stanislav Jakubec) 

ABSTRACT. The Fibonomial coefficients ^ are defined for positive integers 

n > k as follows 

PnPn-1 ' ' ' ^ n - f c + l 

F1F2---Fk 

with Q = 1, where the Fibonacci numbers are given by the recurrence relation 
Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1. In this paper new identities for the 
Fibonomial coefficients are derived. These identities are related to the generating 
function of the kth powers of the Fibonacci numbers . Their proofs are based on 
a reasonable manipu lation with these generating functions. 

1. Introduction 

In 1915 F o n t e n é published a one-page note [2] suggesting a generaliza­
tion of binomial coefficients, replacing the natural numbers by the terms of an 
arbitrary sequence {_4n}^=0 of real or complex numbers. 

J a r d e n considered in [6] the general second order recurrence relation 

yn+2 = 9yn+i - hyn , (i) 

where h / 0 and its auxiliary equation had the roots £, u. Let Un = 
e ^ CJ, be the solution of (1), he defined generalized binomial coefficients 

U^U - .-u 

Є —LŰ 

(m\ UmUm-l'"Um-j + l .,, (m\ 

One may also state the generalized factorial [m]\ = U1U2- •Um with [0]! = 1, 
and then 

(m} [ m l ! . . 
< . > = r.-, r _ ~}

 l o r a n y nonnegative integers m > j . [JV-[m-f. 
2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11B39, 05A15, 05A19. 
K e y w o r d s : Fibonacci number, Lucas number, Fibonomia l coefficient, generating function. 
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J a r d e n showed that for the product zn of the nth terms of ra — 1 sequences 
satisfying (1) holds the rath order recurrence relation 

m 

г+m—j 

T o r r e t t o and F u c h s in [9] established the following identity for { m } 

D 
3 = 0 

m ( Ì 

_:(-Ą™y^uaí+m-я 2 + m-j •u 
am+ra- -jУn+ m-j 

UlU2 • • • Um2/n + a i + a 2 _ | | _ a m + m ( m + 1 ) 7 

where n, a 1 , . . . , a m are any integers and {y^}^^ is an arbitrary sequence 
satisfying (1). 

In [3], G o u l d rewieved the generalized binomial coefficients and he proved 
the inversion theorem for {J 1} and a representation of the bracket function as 
a linear combination of them. 

Since 1964, there has been an accelerated interest in the Fibonomial coeffi­

cients, which correspond to the choice Un = Fn, where Fn are the Fibonacci 

numbers defined by (1) for g — 1, h — —1 and F 0 = 0 , Fx = 1. The Fi­

bonacci numbers can be also expressed by the Binet formula Fn = ° ^ , 

where a _ l + л/5 and ß _ l-л/5 . The Lucas numbers Ln satisfy the basic 

Fibonacci recurrence but LQ = 2, L1 = 1 and therefore Ln = an -f f3n. 

Thus, the Fibonomial coefficients can be expressed for integers n > k > 1 as 

П 
ÍҒ.. 

ѓ=0 ^" 

I? /? . . . /? 
^ n 2 n-1 J n-k+1 

ғkғk_1---ғ1 

n ľ n - 11 ľ n - 1 
k — ^k+i k + ^n-k-l k-1 

with [Q] — 1 and [n] = 0 for n < fc. It is easy to find the important recurrence 
formula for the Fibonomial coefficients in the form 

(2) 

using the well-known identity Fn = Fn_kFk+l + Fn_k_xFk (see e.g. [5]). 
In the past much attention has been focused on the generating function 

oo 
fk(x) — __ F^xn for the kth powers of F n . In [7] R i o r d a n found the general 

n=0 

recurrence for fk(x), and C a r 1 i t z in [1] and H o r a d a m in [4] generalized 
his result and found similar recurrences for the generating functions of different 
types of generalized Fibonacci numbers. They found closed form for the polyno­
mial Nk(x) in the numerator and the polynomial Dk(x) in the denominator of 

10 
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the generating function fk(x). As a special case of H o r a d a m ' s result in [4] it 
is possible to get the following relation for the generating function of an integer 
powers of the Fibonacci numbers 

__(--)^[*ytov 

i=0 

S h a n n o n found in [8] some special results for the numerator and the de­
nominator in the expression of the generating function fk(x). 

It is easy to obtain for any odd integer k that 

^ - ^ | G ) i - T - f e -
and for any even integer k that 

after simplification of one of S h a n n o n ' s results. 
The integers di = ( — 1)M*+1) [k~^1] are terms of the sequence which was 

named as "signed Fibonomial triangle" in the on-line encyclopedia of integer 
sequences (maintained by N. J. A. Sloane) with ID Number A055870. The en­
cyclopedia gives only the following identity in the connection with this sequence 
(see [10]) 

k-\-l 

n-3 
j=0 J 

-ří , = 0 . 

where n, k are any positive integers such that n > k + 1. It is clear that this 
identity correspond to the sum in the numerator of the generating function (3) 
for i > k + 1. 

From (3), (4) and (5) we get the following generating functions of dt 

V *+i 
D^(x) = JJ (1 - (-lYLk_2j X-X*)=Y_ diX* (6) 

j=0 t=0 

for any odd positive integer k and 

l - i fc+i 
D(e){x) = ( i _ ( . l ) ^ ) J J ( i _ (- l )^L f c _ 2 . X + x2) = ^ d ^ (7) 

j=0 2=0 

for any even positive integer k. 

11 
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2. T h e m a i n resul ts 

One of important features of the generating function of a sequence is the 

possibility to find a family of relations for its terms by suitable manipulation 

with it. Concretely, proofs of Theorems in this paper are based on divisibility 

of the polynomial D^(x) by factors x + (-l)Jak~2j and x + (-1)JPk~2j 

or on divisibility of the polynomial D^e\x) by factors x + (-l)J+1ak~2j;, 

x + (-l)J+1(3k~2j and l - ( - l ) l x . 

The main results are given in the following theorems: 

THEOREM 1. Let m be any odd positive integer. Then 

У^(_l)é(™+* 
ѓ = 0 

= 0 . 

THEOREM 2. Let k be any positive integer and I < ^TJ— 
nonnegative integers. Then 

E(-Df (2l+i+l)Г(k-i)(k-2l) k+1 

i 
0 . 

m > k be any 

k~21 

THEOREM 3. Let k be any positive integer, I < --=- . n and m > k be any 
nonnegative integers. Then 

m 

2_A l j L(k-2l)(i+n) 
. = 0 

fc + 1 

І 
= 0. (8) 

3. T h e pre l iminary resul ts 

Let k be an arbitrary nonnegative integer. Suppose { x n } ^ 0 is any sequence 

of real numbers satisfying the recurrence relation 

Xn+2 ~ Xxn+1 + ( - ! ) ^ n = ° > XQ = 0 , ^ = 1 , (9) 

where A is a real number. As (9) is a special case of (1) it is evident that 

1 
x„ — 

Л+v/Л 2 -4(-l) f e Л-v/Л 2 -4(- l ) fc 
n

 v/A2-4(-l)'= \V 2 

for any nonnegative integer n . 

12 
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LEMMA 1. Let I < ^ - be any nonnegative integer. Let {xn}™=0 be any 

sequence of real numbers defined by the recurrence xn+2 = ( — l)lLk_2lxn+l 

— { — l)kxn for n > 0. with x0 = 0. xx = 1. Then 

F 

X = ( i\Kn+l)rn(k-2l) ^ 

^k-21 

P r o o f . The assertion follows from (10) using the well-known formula 
Ln - 4 ( - l ) n = 5F^ and the Binet formulas for Fn and Ln. D 

LEMMA 2. Let {an}^=^, {bn}^=0 be any sequences of real numbers, k be any 
nonnegative integer and {.xn}n^0 be any sequence (9). Then for n > 1 

^ = a„ - 4 - 1 + (--) f e a n -2 (11) 

if and only if 

n-2 

an = Y- Xi+lK-i + V l " (-!) fc^n-la0 ' (1 2) 2 = 0 

P r o o f . Let us show that the identity (11) implies the identity (12). We 
have 

n 2 

] L xг+iK-i + xnai ~ (-^Ťxn-iao 
i 0 
n 2 

= I ] Xѓ+1 (an-i - Xan-1-І + ( - l ) Л a n - 2 - ť ) + Xnai ~ (~l)kxn-ia0 
i 0 
n-2 n - 3 n - 3 

= X] *г+lan-г " Л Y. x

г+l^n-l-i + (~lt ^ X

г+ian-2-i + ai (Xn " Xxn-l) 
i 0 i=0 i=0 

n-2 n - 3 

=
 Xian +

 X
2

a
n-1 + /__, Xi+lӣn-i ~ Xxian-1 ~ X 2__j Xi+Ian-1-І 

i=2 i=l 
n—4 

+ (-l)kY/xi+1an_2_l 

i=0 

n-2 

= an + an-l (X2 ~Xxi) + J2 an-i (Xi+1 - XXІ + ( - ! ) Ч - l ) = ün • 
г = 2 

Thus, this part of the statement is true and similarly we can prove that the 
reversed implication holds too. D 

13 
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LEMMA 3. Let {an}^L0 . {bn}^=0 be any sequences of real numbers and A ^ O 
be any real number. Then for an arbitrary positive integer n 

«„ = &„-i+A&„ (13) 

if and only if 

bn = \-n(J2X-\-l)i+nai + {-l)nbA. (14) 

P r o o f . Let us show that identity (13) implies identity (14). Hence we have 
to prove that 

n 

An&„ = E A '"1(-1)<+n(6<-i + Xbi) + ( - ^ o (15) 
2 = 1 

for any positive integer n. We use induction on n. It is evident that for n — 1 
identity (15) holds. If we suppose that (15) holds for any n its validity for n + 1 
is implied by 

n+l 

EAi_1(-1) ,'+n+1(^-i + A6i) + (-i)n+1*o 
2 = 1 

= jry-1(-i)i+n+1(bt_1 + \bi) + \n(bn + \bn+1) + (-ir+% 
2 = 1 

= -A B 6 n + A»(6n + A 6 n + 1 ) = A » + 1 6 f l + i -
Hence this part of the assertion is true and similarly we can prove the reversed 
implication. • 

4. The proofs of the main theorems 

k 
P r o o f of T h e o r e m 1. We define a polynomial Pk{x) = Yl Pn{k)xn by 

n=0 

D^Ҳx) 
nw =1 , jl = n 0 - (--)^*-2j*+*2) (16) 

l - ( - l ) 2 X f £ 
for any even nonnegative integer k. 

The following relations are implied by (7) and (16) 

d0 = P0(
k) = 1, 

4 =!>.(*)+ ( - - ) t + 1 P . - i ( fc )> * = 1,2 . . . . ,*, 

rffc+1 = (-l)-+V*W = (- l) '+ 1 . 

14 
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Putting Pi(k) = 0 for i < 0 or i > k we obtain the general recurrence 

pi(k) + (-l)*+1pi_1(k) = di, (17) 

which holds for any integer i. 
We will prove the relation 

n 
k P„(*) = £ ( - - ) - ( n + < 4 . (18) 

ѓ = 0 

where n is any nonnegative integer. 

(i) Let | = 0 (mod 2). 
From (17) we get d{ = p{(k) — p{_x(k) for any integer i. Hence 

г=0 ѓ=0 

and 

í > . = £(Pi(fe) - P І - I W ) =P„(fe) -P_!(Л) 

n 

*»(*) = £<*.• 
(ii) Let | = 1 (mod 2). 
Analogously from (17) we get d{ =p{(k) +pi_1{k) and 

]T(-iy+1d. = £(-i)i+1(Pi(fc)+Pi_1(fc)) = (-ir+1p„(fc) -?_,(*). 
?' 0 2 = 0 

Thus, the relation 

PnW = ("l)n+1E(-l)Z+1^ 
. i=0 
is true. 

Setting ^ = ( - l ) " ^ - [^t1] m (18) and replacing k + 1 by m, the proof is 
finished. • 

P r o o f of T h e o r e m 2 . We need consider twro cases. 
(i) Let k be any odd positive integer. 

Define polynomials D\0)(x) = ^ Pi(kJ)xl by 
z=0 

<<*> - i i c - ( - ^ - ^ - - * 2 ) = i - ( - . ^ , - ^ • <i9» 

where / < ------- is any nonnegative integer. 

15 
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Multiplying D^(x) by 1 — (—l) lLk_2lx — x2 and comparing with _~(°)(~) 
we have 

p 0(M) = d0 = 1, 

Pl(kJ) - (-l)lLk_2lPo(k,l) = d_ = -Fk+1, 

Pi(kJ) - (-lYL^^kJ) -Pi_2(kJ) = di: i = 2,3,...,fc-l, 

-(-l)^fc_2lP„_i(fc,0 -P„-2(fc,0 = d„ = ( - 1 ) ^ F , + 1 , 

p*-i(M) = -A+i = ( - i ) ^ . 

Putting ILj(&, /) = 0 for i < 0 or i > k — 1 we can rewrite the previous relations 
into the recurrence 

p.(fc, /) - (-l)lLk_2l Pi_x(k, I) - Pi_2(k, I) = d{, 

which holds for any integer i. Hence using Lemma 2 we get 

p0(k, l) = 1 , Pl(k, l) = (~l)lLk_2l - Fk+1, 
n-2 

Pn(k> l)=J2 Xi+1 dn-i + {(~l)lLk-2l ~ Fk+l)Xn + Xn-1 , " > 1 • 
i=0 

Further, Lemma 1 and the formula i p I ^ g = Fp(q+i) + (~"l)P^P(g-i) imply the 
relation 

n rp 

Pn(k, I) = _ > - ) , ( " - ° (n-;+1)(fc-2° rf, • (20) 
z=0 * " 2 ' 

Setting n = k — 1 in (20) we obtain 

*__ (-i)'(--i-o W « ) ^ = _,fc+i, 
z=0 " * - - ' 

As the summand (—l)z(fc_1~*) (k^)^-21) ^ in the previous sum is equal to zero 

for i -= k and it is equal to dk+1 for i = k + 1 the following relation 

fe+i IT 

y~v_iyo- - i -*) (k-i)(k-2i) d __ 0 

z=0 - ^ " 2 . 

is true. As for i > k -f 1 the integers d{ are equal to zero we get 
m —> 

V ~ v ^ / ( f c - l - z ) r(k-i)(k-2l) ^ __ Q 

z=0 " ^ - 2 -

for any integer m > k. Putting Ĝ  = (—1) 2 [fe|X] in the previous identity 
we obtain the assertion. 

16 
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(ii) Let k be any even positive integer. 

(e) k~l 

Similarly, we now define polynomials D\e)(x) = Yl Pi(kJ)xl by 
г=0 

fc-2 
2 

k D\*\X) = (i - (- i ) !,) TT(i - (-iyLk_2jX + x*) = x _ {_^_lx + x_, 
3j7i 

where / < ^=^ is any nonnegative integer. This fact and Lemma 1 with Lemma 2 

lead to the assertion and the proof is over. • 

P r o o f of T h e o r e m 3 . The proof falls naturally into two parts. 

(i) Let k be any odd positive integer. 

We first prove that 

У^(_l)M2Иѓ-l)a(/c-2/)(ѓ+n) 

ѓ=0 

k + 1 

І 
= 0 (21) 

for any positive integer m> k. The expression 1 - (— l ) l L k _ 2 l x — x2 in D^°\x) 

is possible to factorize for an arbitrary integer / < ---j- in the form 
k-2l ' 

2~~ 

i - (-irV 2 l x - x2 = -(* + (-i)'afc-2') (x + (-iypk~21). 

Therefore we can define for any integer / < -̂=— polynomials 

JL D(°)(т) 

Ql{x) = Zф,lџ. = - < - L t 
^ ..• + (_l).afe-2. 

Thus, comparing the product (x + (—l)lak-2l)Ql(x) with Z)(°)(x) we have 

(-l)lak-2lq0(k,l) = d0 = l, 

qi_l(k,l) + (-l)'ak-2lql(k,l) = di, i = l,2,...,k, 

qk(k,i) = dk+1 = ( - 1 ) ^ . 

Putting qm(k, I) = 0 for m < 0 or m > k the previous relations can be rewritten 
into the recurrence 

qm_1(k,l) + (-iyak-2lqm(k,l) = dm 

for any integer m. With respect to Lemma 3 the equality 

m 

qm(k,l) = Y_(-l)l{i-l)+t+l{m+1)^k-2l^i-m^)dl 
i=o 

17 
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holds and hence for m > fc we obtain identity (21) putting d̂  = ( —l) 2 [k^1] 
and after a certain modification. 

Similarly, we can obtain the identity 

X^(_l)é(2 í+i-l)đ(ќ-2í)(i+n 

i = 0 

fc + ľ 
i 

= 0 (22) 

replacing a by j3 in the previous part of the proof. 
The summation of equalities (21) and (22) gives 

£(_1)j(2.+i-l)L 
(k-2l)(i+n) 

ѓ=0 

fc+1 
І 

= 0. (23) 

(ii) Let fc be any even positive integer. 

We can prove this case analogously but now we factorize in D(e)(x) the term 
1 — (— l ) l L k _ 2 l x + x2 in the form 

1 - (-l)lLk_2l x + x2 = (x + (-l)l+1ak-21) (x + ( - l ) ' + i ^ - 2 ' ) . 

It leads to the result 

£(_;L)é(2Ж+i)_ 
(k-2l)(i+n) 

i=0 

fc + 1 
i 

= 0 

and the assertion follows from identities (23) and (24). 

(24) 

D 
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