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HYPERINVARIANT SUBSPACE LATTICE
OF WEAK CONTRACTIONS

- MICHAL ZAJAC

1. Introduction

The present paper is a continuation of our preceding work [6]. We follow the
notation of [6]. Recall that for the Hilbert space 9, () denotes the lattice of all
(closed) subspaces of . If T is a bounded linear operator on 9, lat(7) and
hyperlat (7T) will denote the invariant and the hyperinvariant subspace lattice of T,
respectively.

Let {T}' and {T}" denote the commutant and the double commutant of T,

respectively. Obviously for every S € { T}" ker S and rn—g S are from hyperlat (7). In
[6] we studied which contractions have the following property.:
(L) hyperlat(T) is the smallest complete sublattice of ¥(9) which contains all

subspaces that are of the form ker u(T) or mgv(T) for u and v from H".
Here we shall study a more general property of T
(L’) hyperlat(T) is the smallest complete sublattice of () which contains all

- subspaces of the form ker S or mgV for S, V from {T}".

Obviously (L) = (L').

Let E, be the n-dimensional Euclidian space and let L% and H> denote the
standard Lebesgue and Hardy spaces of E,-valued functions defined on the unit
circle C (1=n=w). Instead of e“ we use ¢ to denote the argument of a function
defined on C. A statement involving ¢ is said to be true if it holds for almost all ¢
with respect to the Lebesgue measure. If F; and F. are Borel subsets of C, then
F, c F; means that their difference F;\F; is of the Lebesgue measure zero, F; = F;
means that their symmetric difference has the measure zero.

2. Ci weak contractions

Let T be a completely non-unitary (c.n.u.) Ci; weak contraction. As was shown
in [1, chap. VIII] its defect indices are equal (dr=drx) and its characteristic
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function ©@r admits a scalar multiple. We shall consider the functional model of
such contraction defined on

H=[H:®AL)O{Ow® Aw: we H’}
by

T(f@®g)=P(e"f@e"g) for fDgeH,

where
A()=(I- O:(t)*Ox(1))"”

and P denotes the orthogonal projection onto H, n = dr=drx.

There is a one-to-one correspondence between the invariant subspaces of T and
the regular factorizations of ©r [1, theorem VIIL.1.1]. Moreover, the invariant

subspace K corresponding to the regular factorization @r = 0,0, has the represen-
tation

K={0u@Z (A u®v): ue H;, ve AL} O {Omw@D Aw: we H}},
where A;(£)=(I— ©;(1)*©,(¢))'?, j=1, 2, m is the dimension of the intermediate
space of this factorization and Z denotes the unitary operator from AL’ onto A,L?,

@ A\L? for which Z(Av) = A:0,v@A,v for velLl.

For c.n.u. Ci; contractions Sz.-Nagy and Foias [1, chap. VIL.5] developed
a spectral decomposition. Let Hr be the spectral subspace associated with the Borel

subset F of C. Note that Hr is the (unique) invariant subspace corresponding to the
regular factorization @ = 0,0, satisfying:

(i) O, is outer.

(ii) ©.(¢) is isometric (hence unitary) for t€ F', the complement of F.
(iii) ©,(t) is isometric for t€ F.
Recall that

Hr = Hrng,
where E = {t: O(t) is not isometric}.

Radu I. Teodorescu [3] showed that hyperlat(T) consists of all Hg. For any
Borel subset Fc C let

(2.1)

Kr={f@geH: ~Axf+Org=00n F'},
where Ax=(I— ©:0%)"?. We shall show that K¢ = Hp.

First we shall prove the following additional properties of the factorization
corresponding to Hr.

Lemma 2.1. Let T be a c.n.u. weak C; contraction and let F be a Borel subset of

C. Let ©Or= 0,0, be the regular factorization corresponding to Hr. Then
(iv) For te C there exist Or(t)7", @:(8)7", @()".
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(v) For te F ©y(t) is a unitary operator.
(vi) The intermediate space of this factorization is of the dimension n = dr = drx.

Proof. As already mentioned ©r admits a scalar multiple 6(# 0). In the proof
of [1, theorem VIIL6.2] it was shown that @, admits the scalar multiple é too.
According to [1, proposition V.6.4] 6 is a scalar multiple of @, too. Moreover,
since Or is outer we may suppose that é is outer and then ©, and O, are both outer
[1, theorem V.6.2]. Let Q be the contractive analytic function such that ©rQ =
Q6;=481. Then O(1)™" =3:—t)— (#). Similarly also ©,(¢)™" and ©,(¢)™" do exist.
This proves both (iv) and (vi). Since ©, is outer, ©,(t)H>= H>. For t€ F O,(¢) is
isometry, hence unitary. And so (v) is also proved.

Now we shall show that the proof of the equality Hr = Kr in [4, § 3], where only
C1: contractions with finite defect indices were considered, applies to c.n.u. weak
contractions (with not necessarily finite defect indices) with only a few changes.

Lemma 2.2. For any Borel subset F= C

(a) Krelat(T)
(b) KF,-.E = KF

(¢) If {F.} is a sequence of Borel subsets of C and F =\ F,., then Kr =) KF,..

Proof. The proof of [4, lemmas 3.1 and 3.2] applies to our case without any
change.

Lemma 2.3. For any Borel subset Fc C, Hr = Kr.

Proof. By lemma 2.2(b) and by (2.1) we may assume that Fc E. Let
Or = 0,0, be the regular factorization corresponding to Hr. By lemma 2.1(vi) the
intermediate space of this factorization has the dimension n = dr = dr+. Hence

Hr={0:u@®Z ' (A:u@v): ue H2, ve AL} O{Ow@ Aw: we H3}.
Recall that by (ii) for te F' ©,(¢) is unitary, hence A,(¢)=0. Let
Ou@Z (A u@v) € Hr.
Since on F' Z7(A2u@v)=Z"'(A:u@0) = AOtu and OrA = AxOr we have on
F':

—A*@zu + @TZ_I(Ale@U) = —‘A*@zu + @TA@TU=
= —Atezll + AxO,0,0%tu=0.

This shows that @ u@® Z'(Au@v) € Kr, and so Hrc K.
The proof of the following lemma is also the same as the proof of the
corresponding lemma 3.4 of [4].
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Lemma 2.4. Let Or — ©, 0, be the regular factorization corresponding to Hy. If
there exists an M >0 such that (for almost all t) ||©,(¢)'|| =M, then Hr =K.

Theorem 2.5. Let T be a c.n.u. weak contraction. For any Borel subset F < C let
Hr and K be defined as before. Then Hr = K.

Proof. Let Or= ©,0; be the regular factorization corresponding to H. For
each positive integer m let

E,={t:||0:(8)!|| > m}UF.
Then () F.»=F. According to [1, theorem VIL.6.2] (| Hr, = Hr and by lemma

2.2(c) we have [\ Kg, — Kr. Thus to complete the proof it suffices to show that

H, = Kr,, for all m.

Let Or= 0,,.0,, be the regular factorization corresponding to Hp,. Since
Fc F,,, H- < He,,. Hence there exist a contractive analytic function £2,, such that
O, = 2.0 [1, proposition VIL.2.4]. Hence Or= 0:,02,,0; = 0,0, since O is
outer, then @, = 0,,L2, By lemma 2.1(iv) both O:(¢) and ©..(?) are invertible
(for almost all £) We h ve

02 ()7l = [ 2n(1) () " = ©2(2) *|=m

for te F,. By lemma 2.1(v) for t€F, O:.(t) is unitary and so ||@:.(¢) || =1.
Hence (for almost all ¢) || O:.(f) '||=m. Applying lemma 2.4 we have Hr, = K,
and consequently Hr — K.

Theorem 2.6. Let T be a c.n u. weak contraction of the class C,; defined on

H=[H:®AL)O[Ow@® Aw: we H].

Let K e $(H). Then the following are equivalent to each other
(1) Kehyperlat(T)
(2) K=kerS for some Se{T}"
(3) K—mgV for some Ve{T},
hence T has property (L').
We have ju t proved that Hr = Kr. Every hyperinvariant sub pace for T is of the
form Hy [3, proposition 3]. And so the proof of this theorem in the case of finite
defect indices [4, theor m 3.6] applies to our case too.

3. G neral c.n u. weak ¢ ntraction

P.Y. WU showed [5, theorem 8] that every c n.u. weak contraction with finite
defect indices has the property (L’). Using the results of § 2 and of [6] it will now be
easy to show that all cnu weak contractions have the property (L').
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For a c.n.u. weak contraction T on £ we can consider its Co — C}; decomposition
[1, chap. VIIL.2]. Let o, $: be the invariant subspaces for T such that To= T|9o
and Ti = T|9, are the G and the Ci; parts of T, respectively. Do and 9, are even
hyperinvariant for T and

@ov.@1=©, @on@1= {0} (31)
Moreover by [1, proposition VIII1.2.4]

Do=kerm(T), $1=mgm(T), (3.2)

where m is the minimal function of 7o. Note that m(T)e{T}". By [S, theorem 1]
there exists also S e {T}" such that

Po=mgS Di=kerS (3.3)

Lemma 3.1. Let Do, D1 € F() be such that To= T|Qo and Ty = T|9, are the C,
and the C, parts of T, respectively, let S € { T}" be such that (3.3) holds and let m
be the minimal function of To.

If Soe {To}", S1€{T1}", then SoSe€{T}", Ssm(T)e{T}" and

(i) ker So=ker SoeSNrng S, rngS,=mgS,S

(i) ker S;=ker Sym(T)nmgm(T), mg S, =mgSim(T)
Proof. Let Ve {T}', since o, : are from hyperlat(T), Vhoc= Ho, V1< D1.
Let Vo= V|9, Vi= V|91, obviously

VoTo=To Vo, VWT=T:V;
and so
SoVo= VoS, S1Vi=V;S:.

For hoe 9o we have then
SoSVho = So VSho = S:) VoSho = VoSoSho = VSoSho

and similarly for A€ SoSVhy = VS,Sh;. This shows that SoSe{T}";
Sim(T)e {T}" can be shown in the same way.

Se{T}' <{T)}'. It follows that S|9o€ {To}’, S|9:€ {T1} . Let hoeker So. Then
SoSho = So(S|Do)ho = (8]|Do)Soho=0, together with (3.3) this shows that ker So

ker S,Snmg$S. Let hoeker SoSNmg S; then SoSho=SSoho=0 and by (3.1) and
(3.3) Soho=0.

mg So = SoDo = SoSH = SoSP and so (i) is proved. Using (3.1) and (3.2) (ii) can
be proved in the same way.
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Theorem 3.2. Every c.n.u. weak contraction has the property (L’).

Proof. Let 9o, D1, To, T1, S and m be as in the preceding lemma. Let
K ehyperlat(T). If z does not belong to the spectrum of T, then (z—T7)'
commutes with T, it follows that (z — T)™'|K = (z — T|K)~". This shows that T|K
is also a c.n.u. weak contraction and we may consider its Co — part T| K, and its Ci;
— part T|K;. According to [1, proposition VIIL.2.2] Ko= KNn$o, Ki = KN91. As
was shown in the proof of [5, theorem 3] Ko € hyperlat(To), K: € hyperlat(T;). It
follows by theorem 2.6, by [6, corollary 3.4] and by lemma 3.1 that T has the

property (L').
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