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QUADRILATERAL EMBEDDINGS OF THE
CONJUNCTION OF GRAPHS

VLADIMIR ZELEZNiK

1. Introduction

Throughout the paper we are concerned only with finite graphs without loops
or multiple edges. It is assumed that the reader is familiar with the fundamental
results of thed theory of graph embeddings in particular with the combinatorial
tools that describe cellular embeddings of graphs into surfaces as presented in
Stahl [8]. For terms not defined here the reader is referred to any standard
textbook of graph theory, e.g. Harary [4].

We will use the following notation: v(G), e(G), ¢(G), ¥(G) and #(G) will
denote the number of vertices, the number of edges, the number of components,
the orientable and the nonorientable genus of the graph G.

The present paper deals with the conjunction of graphs called also the

categorical product, the Kronecker product, the tensor product, the cardinal
product.

Definition 1. Let for the graphs G, = (V,, E)), i = 1, 2, the set V, V, be disjoint.
The conjunction G, A G, of the graphs G,, G, is a graph having V|, x V, as its
vertex set and u = [u,, u,] is adjacent to v = [v,,v,), u,, v, € V;, u,, v, € V3, whenever
u, is adjacent to v, in G, and u, is adjacent to v, in G,.

It is clear that v(G, A G,) = v(G)).v(G,) and e(G, A G,) = 2.e(G)).e(G)).

The conjunction of two connected graphs is connected if and only if at least
one of them has an odd cycle ([9]). Thus it can occur that graph G, which will
be embedded, is disconnected. In this case we will use a 2-cell embedding for
each of the components of G in the separate manifolds.

Since we consider the orientable and nonorientable cases, we use the
(generalized) embedding schemes of Stahl [8] to describe 2-cell embeddings.

In the second section we will prove that if a bipartite graph G has a diag-
onalizable quadrilateral embedding (cf. Definition 2 below), then the conjun-
ction G with an arbitrary graph has the embedding of the same type.

In the last part it is shown that the complete bipartite graph with an even
number of vertices in both partitions, the graph of an s-dimensional cube and
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the conjunction of an even circuit with an arbitrary circuit have diagonalizable
quadrilateral embeddings. In consequence the orientable and nonorientable
genera of some types of graphs are obtained.

2. The main result

To formulate it we introduce the following definition.

Definition 2. Let G = (V,E) be a connected bipartite graph such that
V =V, u V; and each edge has one vertex from V, and the other from V,. We say
that G has a diagonalizable quadrilateral embedding (for abbrevation we shall
often write DQE) G(S) in some manifold S if:
(DQE) (/) G(S) is a quadrilateral embedding and
(if) there exists a graph G' = (V, E’) having an embedding G'(S) and an
1-factor F such that both vertices of each edge of F are from V] or
from Vi and G'(S) — F = G(S).
If a graph G is disconnected, we say that G has DQE if each component of
G has DQE.
The edges of F will be called the diagonals.
Example. The graph of the 3-dimensional cube Q; has a DQE. One of
the possibilities how to choose the diagonals is shown in Figure 1.

Fig. 1

Remark 1. A well-known conseqﬁence of Euler’s equation (e.g. see
Harary [4]) is that the orientable and nonorientable genus of a connected
graph G having no triangles satisfies the inequality

7(G) 2 e(G)/4 — v(G)/2 + 1
#(G) = e(G)/2 — v(G) + 1.

The equality holds if G admits an orientable or nonorientable quadrilateral
embedding, respectively. Therefore for a graph G having DQE we get (using the
additivity of the genus parameter over the components of G — [1])

Y(G) = e(G)/4 — v(G)/2 + ¢(G),
H(G) = e(G)/2 — v(G) + ¢(G).
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Theorem 1. Let G, H be graphs, G bipartite. If G has a diagonalizable qua-
drilateral embedding (orientable or nonorientable), then the conjunction G A H
has also a diagonalizable quadrilateral embedding (orientable or nonorientable,
respectively ).

Proof. We shall prove a somewhat stronger result. If fe F is a diagonal
joining vertices x, y from G, then there exists a diagonal f, joining [x, u], [y, u]
from G A H for each ue V(H).

For local rotations P, = (p,...,p,), P,=(q,,...,q;) we denote P,UP, =
=Dy esPms Q15> Q) and P, x {u} = ([p,, ul, ..., [P u]). We will write (a, b)
instead of ([x,y], [a,b]) in P, and analogously b instead of (x,b) in Q, for
abbrevation.

The distributive law G, A (G, + G3) = (G, A G,) + (G, A G;) shows that it is
sufficient to consider the connected graphs G and H, without loss of generality.
We proceed by induction on the number e(H).

. For e(H) = 1 we have H = K, and the statement follows from the fact that
1f G is a bipartite graph, then G A K, has two components and both are
isomorphic to G. For every vertex x and every edge (y, z) of G the vertex [x, u]
is from one component and [x, v] is from the other one (and analagously for the
edges ([y,u), [z,v]) and ([y,?], [z,u])) in G A K.

Let (Q,s) be an embedding scheme which describes a DQE of G in some
manifold S. We define rotations and the labelling of the edges of G A K, in the
following way (let V(K,) = {u,v}): For each xe V(G) let Q, be a local rotation;
then

Q= 0, x {v},
Q;u =0, X {u}a

and s,([x, u]ly, v]) = s,([x, v]ly, u]) = s(x,y), for each (x,y)e E(G).

It is obvious that (Q’,s,) where Q' ={Q%,,xe V(G), ze V(K,)} represents a
quadrilateral embedding of G A K,. Moreover it is easy to see that if a diagonal
f joins the vertices x, y € V(G), we can choose a set of diagonals F’ in G A K,
in such a way that f, joins [x,z] and [y,z] for ze V(K,). Therefore (Q’,s,)
represents a DQE.

2. Let us suppose that the statement is valid for any graph having n edges and
consider the graph H with n + 1 edges. Let e = (u, v) be an edge of H such that
the graph H' = H — e is connected and degy(v) > 1.

The graph G A H’ has a DQE in some manifold M. This embedding can be
represented by the embedding scheme (P, s,) with P = {P,, re V(G), se V(H")}.
We also take a scheme (Q, s) characterizing a DQE of G. Let the vertices x, y be
endpoints of the diagonal £}, let the vertices x, a, y, b€ V(G) form a quadrilateral
face and f, be situated inside of this quadrangle. Then [x, v] and [y, v] are the
endpoints of an analogue diagonal f{, in G A H’ and also the endpoints of a
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diagonal f;, in G A K,, where E(K,) = e = (u,v). Then the rotations mentioned
above have the following forms:

(1) 0.=(a,c,...,b),
Q, =(.d,...a),
0, =W, Wy ..uW,,y for weV(G)—{x,y}

and

P\’L‘ = ((xl ’ vl)9 (Xza UZ)’ R (X,,, Un)),
P = (1,01 (2,09, s Wy U))s

P, =((r,s),...,(r,s,)) otherwise.
Define the new rotations as follows

(2) P, =P, vQ, x{u,
P, =P, uQ, % {u},
P, = Q, x {u},
P, =0, x {v},
P::-r = Qu' X {u}a
P.=0,x{v} for weV(G)—{x,y},
P, = P, otherwise.

The labelling s” of the edges of G A H by 0 or 1 is defined as follows. If the
edge e of G A H’, then s'(e) = sy(¢). On the other hand there must be
e = ([x,v],[y, u)) for some e’ = (x,y)€ E(G). Then s'(e) = s(e’).

If deg,(u4) = 1, we have finished otherwise we proceed analogously (we only
interchange « and v).

By repeating this process for each of the diagonals f;, ..., f,, of the graph G’
(“‘old” rotations (1) and “old” voltage map s, in every step are “‘new’ rotations
(2) and a map s’ from the preceding step) we obtain a quadrilateral embedding
of the graph G A H represented by (P’,s").

It is obvious that this final embedding is orientable or nonorientable if the
embedding (Q, s) of G is orientable or nonorientable, respectively. In the first
case, we can take the labelling s to be constantly equal to 0. In the second case
there exists an even cycle C = (x,, x,, ..., X) (all cycles are even) in G for which
the odd number of edges are labelled by 1. It follows from the construction of
(P’,s) that in the first case s” is constantly equal to 0, too. In the second case
there exists also in G A H a cycle [x,, u][x,, v][x3, 4], ..., [xx, v] for any (u,v)e
€ E(H) with the same labelling as C. This completes the proof.

Remark 2. The definition of “new” rotations and labelling (2) from the
“old” ones (1) in the proff of Theorem 1 corresponds to the following construc-
tion.

Let C, be a simple closed curve in S’ such that f,,, [x,v] and [y, v] are inside
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C, and all the other vertices of G A K, are outside C,. Moreover, if e,, ..., e, or
e, ...,e, are edges incident with vertex [x, v] or [y, v], respectively, then

Cine=b, Cine=b for i=1,...k, j=1,...,m and
G(S)f\cl ={b1""’bk’ ;,.--,b’,n}.

Let C, be a curve and {c,, ..., c;, ¢}, ..., ¢/} be a set of points in M, having the
same properties as C, and {b,, ..., b,,}. In §’, resp. in M, remove the open disk
having C,, resp. C, as its boundary. Then adjoin a topological cylinder K with
bases C, and C,such that Kn(Mu S)=C,uC,. Let X', Ye K — (C,uC,) be
two different points. Join X” with each of the points b,, ..., b, ¢,,...,c;and Y’
with each of the points b1, ..., b, ci, ..., c; by mutually disjoint arcs. Points X”,
Y’ correspond to the vertices [x,v], [y,v] in the graph G A H, therefore we
rename them [x,v] and [y, v].

After this construction two quadrangles [a, u][x, v][b, u][y, v] and
a’[x,v]b’[y,v] change into the quadrangles [a, u][x,v]a’[y,v] and [b, u][x, v] x
b'[y, v] (see Figure 2). From this it is clear that we can join [x, v] and [y, v] by the
diagonal f,,.
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3. Applications to new genus results

Here we give only a small number of the consequences of Theorem 1. The
reader will be able to find many other applications. Recall that C, denotes the
circuit of n vertices, Q, the graph of the s-dimensional cube, K,, , the complete
bipartite graph.

Let G|, G,,...,G, be graphs. Define graph H, as follows:

Hl = Gl
Hk=Hk——]/\Gk fOI‘ k=2,3,...,n.

Since the conjunction of two graphs is bipartite if and only if at least one of
them is bipartite (see, e.g., Weichsel [7]), it follows that if at least one of
the G, is bipartite, so is the graph H,; this fact will often be employed. If not
assumed otherwise, m; and n; denotes the number of edges and vertices of the
graph G,, respectively.

From now on let X(i,n) denote the product of the numbers x;, x;, ,, ..., x,
(analogously the product b;.b;, ,.....b, will be denoted by B(j,r), etc.)

Theorem 2. Let the connected bipartite graph G, have an orientable or a
nonorientable quadrilateral embedding, respectively. Let G,, ..., G, be connected
graphs, k of them bipartite. Then we have

y(H,) =2""*.M(1,n) — N(1,n)/2 + 2, or
7(H,) =2""*.M(1,n) — N(1,n) + 2%, respectively.

Proof. We apply Theorem 1 n — 1 times, to obtain a quadrilateral embed-
ding of H,. Since v(H,) = N(1,n), e(H,) =2"~'.M(1,n) and c(H,) = 2%, the
statement follows from Remark 1.

Theorem 3. The graph Q, has an orientable DQE whenever s = 2 and it has a
nonorientable DQE whenever s = 6.

Proof. We use the quadrilateral embedding of Q. given in [2] (s = 2) or
in [5] (s = 6) for the orientable or the nonorientable case, respectively. In both
cases we can choose the diagonals in the same way. We denote the vertices of
0, by a binary sequence (a,a, ... a,) of length s, where a; = 0 or 1, in such a way
that two vertices are adjacent whenever their sequences differ in exactly one
place. Let a denote an arbitrary binary sequence of length s — 3. We can join
the vertices (0a00) and (1a00), resp. (0a01) and (1all), resp. (0all) and (1a10),
resp. (0al0) and (1a00), by a diagonal situated inside of quadrangle (0a00)
(0a01) (1a01) (1a00), resp. (0a01) (0all) (1all) (1a01), resp. (0all) (0al0)
(1a10) (1al1), resp. (0a10) (0a00) (1a00) (1a10). These quadrangles are located
on the cylinders added in the last step of construction of the given embeddings.
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Corollary 1. Let G;= Q; for i = 1,...,n, s, 2 2 in the orientable case, s, 2 6
in the nonorientable case and s = s, + ... + s,. Then

Y(H,) =23 .(S(1,n) —4) + 2"~ ";
7(”71) = 2x_2.(S(1,n) _4) + 2n—l.

Theorem 4. The graph K,, », has an orientable DQE for eachr 2 1,9 2 1 and it
has a nonorientable DQE whenever r 2 1, q = 2.

Proof. Let VU V; be a partition of vertices of K,, ,,. Denote 1,2,...,2r,
resp. 1,2/, ...,(2q) the vertices from V;, resp. V;.

In the orientable case we take the quadrilateral embedding of K, ,, given in
[6]. Then we can join the vertices i and i + 1 from V] by a diagonal in the
quadrangle i, 1’,i + 1, (2q) fori= 1,3, 5,...,2r — 1 and the vertices j/, (j + 1)’
in the quadrangle 1, j/, 2r, (j + 1)’ for j = 1,3,5,...,29g — 1.

In the nonorientable case we will use the embedding given in [7]. We join the
vertices i and i + 1 by a diagonal inside the quadrangle (29)’,i,1°, i + 1 for
i=2,4,...,2r —2 and the vertices 1 and 2r in (2¢q)’,2r,1’,1. The vertices
Jj,G+ 1) forj=3,5,...,2q — 1 are joined inside j/,1,(j + 1)’,2 and 1" with 2’
in 1,4,2,2.

Corollary 2. Let G, = K, »,, G;=K, , for i=2,...,n, g, 2 2 in the nono-
rientable case. Let m;=r;.q; and n; = r; + q; for j = 1,2,...,n. Then

y(H,) =2""".(M(1,n) + 1) — N(1,n),
#(H,) =2""'2.M(1,n) + 1) — 2.N(1,n).

Theorem 5. The conjunction of two circuits C,, and C, has an orientable
quadrilateral embedding. Moreover this embedding is a DQE if and only if at least
one of the numbers m, n is even.

Proof. Denote the vertices of the first circuit by 1,...,m and by 1,...,n
those of the second in the cyclic ordering and define the local rotations as
follows:

Bp=l—-1j-1,[—-1Lj+1}, i+ 1,j+1],
[i+1,j—1], for i=1,2,....m and j=1,2,...,n

Then the orbits (each corresponding to a quadrilateral face) determined by the
rotation P([x, y], [u,v]) = ([u, v], P,,([x,y])) are

[0+ 1)+ 1+ 2,10 + 1,j — 1],

where the first index is taken modulo m, the second modulo # and we write m
(resp. n) instead of 0. This choice P = (B, B, ..., B,,) determines a quadrila-
teral embedding for each of the components of the graph C, A C, in the
orientable manifold S.
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Now let # be even. We can join vertices [i,/] and [i + 2,/] by a diagonal for
i=4k+1landi=4k+2 k=0,1,2,... and j = 1,2,...,m in the quadrangle

If both m, n are odd, then v(C,, A C,) is odd, therefore C,, A C, cannot have
DQE.

Corollary 3. For the genus of the conjunction of two circuits C,, and C, we have

WC, A C) =2 if bothm and n are even;
=1 otherwise.

Proof. The graph C,, A C, is connected if and only if m or n is odd (see,
e.g., Weichsel [9]). On the other hand it is easy to see that C, A C, has
two isomorphic components for both m and »n even. From the nonplanarity of
C, A C, (Farsan, Waller [3]) and the additivity of the genus parameter
over the components ([1]) it follows that

WC,A C,) =2 if both mand n are even, and
nWC,, A C,)=1 otherwise.

Now it is sufficient to show that each of the components of C,, A C, can be
embedded in S, (the torus). We use a quadrilateral embedding of C,, A C, given
in Theorem 5. For the number of regions r(K) of any component K of C,, A C,
we have 4 . r(K) = 2. e(K), because each of the regions is a quadrangle and each
of the edges belongs to two regions. Moreover, ¢(K) = 2. v(K) and therefore we
have ¢(S) = 1, because

2.(1=78)) = v(K) — e(K) + r(K).

Theorem 6. The graph C, A C,, has a nonorientable DQE.

Proof. The denotation of the vertices, the definition of the local rotations
and a choice of diagonals are the same as in the proof of Theorem 5. The
labelling s is equal to 1 for every edge of the quadrangle [1, 1], [2, m], [3, 1], [4, m]
and s(e) = 0 otherwise. Since in the cycle [1, 1], [2, 1], [1, 3], [2,4], ..., [2,m] (if m
is odd we have...., [1,m], [2,1],[1, 2], ... inside) only the edge ([1, 1][2, #]) has the
labelling 1, the embedding scheme (P, s) defines the nonorientable embedding.

Corollary 4. Let G, = Gy, , G; = C,,, fori =2,...,nand m; 2 2 in the orient-
able case and m, =2 in the nonorientable case. Let k = |{m;; 2 < i< n, m; is
even}|. Then

y(H,) = M(1,n). (2"~ = 1) + 2,
HH,)=2.M(1,n).(2""*— 1) + 2.

Proof. By proofs of Theorems 5 and 6 the graph H, has DQE in both cases.
Since e(H,) =2""'.2.M(1,n), v(H,) = 2.M(1,n) and c(H,) = 2*, the state-
ment is proved.
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For the special cases of the powers of the conjunction of the graphs Q,, K, »,
and C,,, we have

Corollary 5. Let s=2,r21,q =1, m = 2 in the orientable case and s 2 6,
r=1,q=2, m=2is the nonorientable case. Let

a) Gi = Qs
b) Gi = K2r,2q
c) Gi=0GCy,

fori=1,...,n. Then

a) yH)=2"".Q2.s"—1)+2""";
FH)=2"*. 2 2s"=1)+2""Y

b) Y(H)=2""'.(4"".(r.q"—(r+q)"+1);
FH)=2".&""(r.q) —(r+q+27");

c) yH)=2""".(m".2" = 1)+ 1);
7(H")=23n—2_22n+2n—1.
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YETBIPEXCTPOHHUE BJIOXEHUA COEOJUHEHUSA 'PA®OB
Vladimir Zeleznik

Pe3rome

B cTaTbe 3aHMMAETCA YETBIPEXCTPOHHUMH BJIOXKEHUSMH JIBYAOJIbHBIX Ipad)oB, MOPOXKIACHHBIX
coevHeHHeM rpa¢oB, B OPHEHTUPYEMYIO HJIH HEOPUEHTHPYEMYIO NIOBEPXHOCTh. [ 1aBHBIM pe3yJi-
bTATOM [aHHOM paboTHI ABJISETCA ClIEAYIOLIas TeopeMa:

Ecnu aBynonbHbId rpad MMeeT AMaroHaJIu3upyeMoe YeThIPEXCTOPOHHEE BJIOXKEHHE (OPHEHTH-
PpyeMoe HJIM HEOPHEHTHPYEMOE), TO U COeMHEHHe 3Toro rpada c obbIM rpadoM uMeeeT Takoe
BJIOXKEHHE.

Kak cnencrBue nostydeH paa GopMyJ 111 OpUEHTHPYEMOTO U HEOPMEHTUPYEMOTo poaa rpada,
MOJIYYEHHOr0 COeqUHEHUEM n rpados.
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