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QUADRILATERAL EMBEDDINGS OF THE 
CONJUNCTION OF GRAPHS 

VLADIMIR ZELEZNIK 

1. Introduction 

Throughout the paper we are concerned only with finite graphs without loops 
or multiple edges. It is assumed that the reader is familiar with the fundamental 
results of thed theory of graph embeddings in particular with the combinatorial 
tools that describe cellular embeddings of graphs into surfaces as presented in 
Stahl [8]. For terms not defined here the reader is referred to any standard 
textbook of graph theory, e.g. H a r a r y [4]. 

We will use the following notation: v(G), e(G), c(G), y(G) and f(G) will 
denote the number of vertices, the number of edges, the number of components, 
the orientable and the nonorientable genus of the graph G. 

The present paper deals with the conjunction of graphs called also the 
categorical product, the Kronecker product, the tensor product, the cardinal 
product. 

Definition 1. Let for the graphs G, = (IV, Et), i = 1,2, the set Vx, V2 be disjoint. 
The conjunction G, A G2 of the graphs G,, G2 is a graph having Vx x V2 as its 
vertex set and u = [w,, wj is adjacent to v = [vx, uj, ux, v} e Vx, u2,v2 e V29 whenever 
ux is adjacent to vx in Gx and u2 is adjacent to v2 in G2. 

It is clear that v(Gx A G2) = v(Gx).v(G2) and e(Gx A G2) = 2.e(Gx).e(G2). 
The conjunction of two connected graphs is connected if and only if at least 

one of them has an odd cycle ([9]). Thus it can occur that graph G, which will 
be embedded, is disconnected. In this case we will use a 2-cell embedding for 
each of the components of G in the separate manifolds. 

Since we consider the orientable and nonorientable cases, we use the 
(generalized) embedding schemes of Stahl [8] to describe 2-cell embeddings. 

In the second section we will prove that if a bipartite graph G has a diag-
onalizable quadrilateral embedding (cf. Definition 2 below), then the conjun­
ction G with an arbitrary graph has the embedding of the same type. 

In the last part it is shown that the complete bipartite graph with an even 
number of vertices in both partitions, the graph of an s-dimensional cube and 
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the conjunction of an even circuit with an arbitrary circuit have diagonalizable 
quadrilateral embeddings. In consequence the orientable and nonorientable 
genera of some types of graphs are obtained. 

2. The main result 

To formulate it we introduce the following definition. 

Definition 2. Let G = (V,E) be a connected bipartite graph such that 
V = Vx u V and each edge has one vertex from Vx and the other from V2. We say-
that G has a diagonalizable quadrilateral embedding (for abbrevation we shall 
often write DQE) G(S) in some manifold S if. 
(DQE) (/) G(S) is a quadrilateral embedding and 

(ii) there exists a graph G' = (V, E') having an embedding G'(S) and an 
1-factor F such that both vertices of each edge of F are from Vx or 

from V and G'(S) - F= G(S). 
If a graph G is disconnected, we say that G has DQE if each component of 

G has DQE. 
The edges of F will be called the diagonals. 
Example. The graph of the 3-dimensional cube Q3 has a DQE. One of 

the possibilities how to choose the diagonals is shown in Figure 1. 

Fig. 1 

Remark 1. A well-known consequence of Euler's equation (e.g. see 
Ha ra ry [4]) is that the orientable and nonorientable genus of a connected 
graph G having no triangles satisfies the inequality 

r(G) = e(G)/4 - v(G)/2 + 1; 
f(G) = e(G)/2 - v(G) + 1. 

The equality holds if G admits an orientable or nonorientable quadrilateral 
embedding, respectively. Therefore for a graph G having DQE we get (using the 
additivity of the genus parameter over the components of G — [1]) 

r(G) = e(G)/4 - v(G)/2 + c(G), 
f(G) = e(G)/2 - v(G) + c(G). 
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Theorem 1. Let G9 H be graphs, G bipartite. If G has a diagonalizable qua­
drilateral embedding (orientable or nonorientable), then the conjunction G A H 
has also a diagonalizable quadrilateral embedding (orientable or nonorientable, 
respectively). 

Proof. We shall prove a somewhat stronger result. If feF is a diagonal 
joining vertices x9 y from G, then there exists a diagonal/ joining \x9 u]9 \y9 u] 
from G A H for each ue V(H). 

For local rotations P, = (p]9 ...9pm)9 P2 = (ql9 ...,q*) we denote P, uP2 = 
= (/?,,...9pm9 qx,...,qk) and P, x {u} = (\px,u], ...,\pm9u]). We will write (a9b) 
instead of ([x,y], \a9b]) in Pxy and analogously b instead of (x,b) in Qx for 
abbrevation. 

The distributive law G, A (G2 + G3) = (G, A G2) + (G, A G3) shows that it is 
sufficient to consider the connected graphs G and H, without loss of generality. 
We proceed by induction on the number e(H). 
1. For e(H) = 1 we have H = K2 and the statement follows from the fact that 
if G is a bipartite graph, then G A K2 has two components and both are 
isomorphic to G. For every vertex x and every edge (y, z) of G the vertex \x, u] 
is from one component and \x, v] is from the other one (and analagously for the 
edges (\y,u], \z,v]) and (\y,v], \z9u])) in G A K2. 

Let (Q9 s) be an embedding scheme which describes a DQE of G in some 
manifold S. We define rotations and the labelling of the edges of G A K2 in the 
following way (let V(K2) = {u9 v})\ For each xe V(G) let Qx be a local rotation; 
then 

Q'xu = Qxx W , 
Q'xv = Qxx M , 

and sx(\x9 u]\y9 v]) = sx(\x9 v]\y9 u]) = s(x9y)9 for each (x9y)eE(G). 
It is obvious that (Q'9sx) where Q' = {Q'xz9xe V(G), ze V(K2)} represents a 
quadrilateral embedding of G A K2. Moreover it is easy to see that if a diagonal 
/ jo ins the vertices x9ye V(G), we can choose a set of diagonals F in G A K2 

in such a way that f joins \x9z] and \y9z] for zeV(K2). Therefore (Q'9sx) 
represents a DQE. 
2. Let us suppose that the statement is valid for any graph having n edges and 
consider the graph H with n + 1 edges. Let e = (w, v) be an edge of H such that 
the graph H' = H — e is connected and deg^(v) > 1. 

The graph G A H' has a DQE in some manifold M. This embedding can be 
represented by the embedding scheme (P,s2) with P = {Prs9 re V(G)9 se V(H')}. 
We also take a scheme (Q9 s) characterizing a DQE of G. Let the vertices x9 y be 
endpoints of the diagonal/,, let the vertices x9 a9y9be V(G) form a quadrilateral 
face and / be situated inside of this quadrangle. Then \x9 v] and \y9 v] are the 
endpoints of an analogue diagonal f[v in 6 A 17' and also the endpoints of a 
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diagonalfh. in G A K2, where F(K2) = e = (u9 v). Then the rotations mentioned 
above have the following forms: 

(1) Q.Y = (a,c,...,b), 
Qy =(b9d9...9a)9 

Qv = (W]9w29..., wmiw)) for we V(G) - {x9y} 

and 

Pxl = ((xl9vx)9(x29 v2)9..., (xn9 v„))9 

Pyv = ((yuV'\)> (y2> VJ, ..., (ym9 V'm))9 

Prs = ((r1, sO,..., (rk9 sk)) otherwise. 

Define the new rotations as follows 
(2) P; = Pv,uQ, x{u , 

P; = P v r u Q v x { u } , 
PL = Qx x {U}9 

P[u = Gv x M, 
>:,• = fin- X {u}, 
^ = fiu.x{i;} for weV(G)-{x9y}9 

Prs = Prs otherwise. 

The labelling s' of the edges of G A H by 0 or 1 is defined as follows. If the 
edge e of G A H'9 then s'(e) = s2(e). On the other hand there must be 
e = ([x9 v]9 [>', u]) for some e' = (x9y)eE(G). Then s'(e) = s(e'). 

If deg//(w) = 1, we have finished otherwise we proceed analogously (we only 
interchange u and v). 

By repeating this process for each of the diagonalsf2, ...,fw of the graph G' 
("old" rotations (1) and "old" voltage map sx in every step are "new" rotations 
(2) and a map s' from the preceding step) we obtain a quadrilateral embedding 
of the graph G A H represented by (P\s'). 

It is obvious that this final embedding is orientable or nonorientable if the 
embedding (Q9 s) of G is orientable or nonorientable, respectively. In the first 
case, we can take the labelling s to be constantly equal to 0. In the second case 
there exists an even cycle C = (x]9xl9 ...9x2k) (all cycles are even) in G for which 
the odd number of edges are labelled by 1. It follows from the construction of 
(P',s') that in the first case s' is constantly equal to 0, too. In the second case 
there exists also in G A H a cycle [x]9u][x29v][x39u]9 ...9[x2k9v] for any (u9v)e 
e E(H) with the same labelling as C. This completes the proof. 

Remark 2. The definition of "new" rotations and labelling (2) from the 
"old" ones (1) in the proff of Theorem 1 corresponds to the following construc­
tion. 

Let C, be a simple closed curve in S' such thatflt;, [x9 v] and [y9 v] are inside 
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C, and all the other vertices of G A K2 are outside Cx. Moreover, if eX9 ...9ek or 
e\9...9e'mare edges incident with vertex [x9v] or [y,v]9 respectively, then 

C 1ne / = bl, Cxne'j = bj for / = l , . . . , k , f=l,...,m and 

G(5)nC, = {bl9...9bk9b\9...9b'm}. 

Let C2 be a curve and {c-,..., ci9 c\9..., cj} be a set of points in M, having the 
same properties as Cx and {bX9 ...,b'm). In S'9 resp. in M, remove the open disk 
having CX9 resp. C2 as its boundary. Then adjoin a topological cylinder Kwith 
bases Cx and C2 such that Kn (M u S) = C, u C2. Let X', F e K - (C, u C2) be 
two different points. Join X' with each of the points bl9 ...9bk9 c]9 ...,c, and Y' 
with each of the points b\9 ...9b'm9 c\9 ...9c] by mutually disjoint arcs. Points X'9 

Y' correspond to the vertices [x9 v]9 [y9 v] in the graph G A H9 therefore we 
rename them [x9 v] and [y9 v]. 

After this construction two quadrangles [a9 u][x9 v][b9 u][y, v] and 
a'[x9 v] b'[y9 v] change into the quadrangles [a, u][x9 v] a'[y9 v] and [b9 u][x9 v] x 
b'[y9 v] (see Figure 2). From this it is clear that we can join [x9 v] and [y9 v] by the 
diagonal fXv. 

[b,u] 

Fig. 2 
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3. Applications to new genus results 

Here we give only a small number of the consequences of Theorem 1. The 
reader will be able to find many other applications. Recall that Cn denotes the 
circuit of n vertices, Qs the graph of the s-dimensional cube, Kmn the complete 
bipartite graph. 

Let GX,G2, ...,Gn be graphs. Define graph H„ as follows: 

HX = GX 

Hk = Hk_xAGk for k = 2,3,...,n. 

Since the conjunction of two graphs is bipartite if and only if at least one of 
them is bipartite (see, e.g., W e i c h s e l [7]), it follows that if at least one of 
the Gj is bipartite, so is the graph Hn; this fact will often be employed. If not 
assumed otherwise, m{ and nt denotes the number of edges and vertices of the 
graph Gh respectively. 

From now on let X(i,n) denote the product of the numbers xhxi+ x, ...,xn 

(analogously the product bj.bj+x br will be denoted by B(j,r), etc.) 

Theorem 2. Let the connected bipartite graph Gx have an orientable or a 
nonorientable quadrilateral embedding, respectively. Let G2, ...,Gn be connected 
graphs, k of them bipartite. Then we have 

y(Hn) = 2n~\M(\,n) - N(\,n)/2 + 2k, or 
f(Hn) = 2n~2.M(\,n) - N(\,n) + 2k, respectively. 

Proof . We apply Theorem 1 n — 1 times, to obtain a quadrilateral embed­
ding of Hn. Since v(Hn) = N(\,n), e(Hn) = 2n~l.M(\,n) and c(Hn) = 2k, the 
statement follows from Remark 1. 

Theorem 3. The graph Qs has an orientable DQE whenever s_i2 and it has a 
nonorientable DQE whenever s _ 6. 

P roof . We use the quadrilateral embedding of Qs given in [2] (s = 2) or 
in [5] (s ~ 6) for the orientable or the nonorientable case, respectively. In both 
cases we can choose the diagonals in the same way. We denote the vertices of 
Qs by a binary sequence (axa2... as) of length s, where a, — 0 or 1, in such a way 
that two vertices are adjacent whenever their sequences differ in exactly one 
place. Let a denote an arbitrary binary sequence of length s — 3. We can join 
the vertices (OaOO) and (laOO), resp. (OaOl) and ( l a l l ) , resp. (Oall) and (lalO), 
resp. (OalO) and (laOO), by a diagonal situated inside of quadrangle (OaOO) 
(OaOl) (laOl) (laOO), resp. (OaOl) (Oall) ( l a l l ) (laOl), resp. (Oall) (OalO) 
(lalO) ( l a l l ) , resp. (OalO) (OaOO) (laOO) (lalO). These quadrangles are located 
on the cylinders added in the last step of construction of the given embeddings. 
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Corollary 1. Let G{ = Qs.for i = 1, ...,n, sx = 2 in the orientable case, sx = 6 
in the nonorientable case and s = sx + ... + sn. Then 

r(Hn) = 2s~\(S(\,n) - 4) + 2n~u, 
f(Hn) = 2s-2.(S(\,n)-4) + 2"-\ 

Theorem 4. The graph KlTylq has an orientable DQE for each r _ 1, q = 1 and it 
has a nonorientable DQE whenever r ^ 1, q ^ 2. 

Proof. Let Vx u V2 be a partition of vertices of K2/. 2<r Denote 1,2, ...,2r, 
resp. \',2',...,(2q)' the vertices from J ,̂ resp. J .̂ 

In the orientable case we take the quadrilateral embedding of K2r 2<7 given in 
[6]. Then we can join the vertices i and i + 1 from Vx by a diagonal in the 
quadrangle i, V, i + 1, (2#)' for i = 1, 3, 5,...,2r - 1 and the vertices/, (/ + 1)' 
in the quadrangle \,f, 2r, (j + 1)' forj = 1,3,5, ...,2q — 1. 

In the nonorientable case we will use the embedding given in [7]. We join the 
vertices i and i + 1 by a diagonal inside the quadrangle (2q)',i, V, i + 1 for 
i = 2,4, . . . , 2 r - 2 and the vertices 1 and 2r in (2q)',2r,\',\. The vertices 
/ , ( / + \)' forj =3 ,5 , . . . , 2q- 1 are joined inside/, 1,(/ + l) ' ,2and V with 2' 
in l ' ,4,2',2. 

Corollary 2. Let Gx = K2r 2<7i, Gt = Kr.q for i = 2, ...,n, qx = 2 in the nono­
rientable case. Let mj = rj.qj and nj = rj + qjforj = \,2,...,n. Then 

r(Hn) = 2n'x.(M(\,n) + 1) - N(\,n), 
f(Hn) = 2»-\2.M(\,n)+\)-2.N(\,n). 

Theorem 5. The conjunction of two circuits Cm and Cn has an orientable 
quadrilateral embedding. Moreover this embedding is a DQE if and only if at least 
one of the numbers m, n is even. 

Proof. Denote the vertices of the first circuit by \,...,m and by 1,...,AI 

those of the second in the cyclic ordering and define the local rotations as 
follows: 

Pa = (P " W - 1L [i ~ 1J + 1L V + 1J + 1L 
[ i+l , j—1]), for i = 1,2, ...,m and j = 1,2, ...,n. 

Then the orbits (each corresponding to a quadrilateral face) determined by the 
rotation P([x,y], [u, v]) = ([u, v], Puv([*,y])) are 

[Uj][i + l,j + IIP + 2,j][i + l,j - 1], 

where the first index is taken modulo m, the second modulo n and we write m 
(resp. n) instead of 0. This choice P = (Pn,Pi2, ..->Pmn) determines a quadrila­
teral embedding for each of the components of the graph Cm A Cn in the 
orientable manifold S. 
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Now let n be even. We can join vertices [i,j] and [i + 2,j] by a diagonal for 
/ = 4fc+ 1 and i = 4k + 2, k = 0,1,2,... and j= 1,2, ...,m in the quadrangle 
M [ / + l , j + l ] [ i ' + 2 , j ] [ i + l , j - l ] . 

If both m,« are odd, then v(Cm A CJ is odd, therefore Cm A C„ cannot have 
DQE. 

Corollary 3. For the genus of the conjunction of two circuits Cm and Cn we have 

Y(Cm A Cn) = 2 if both m and n are even; 
= 1 otherwise. 

Proof. The graph Cm A Cn is connected if and only if m or n is odd (see, 
e.g., Weichsel [9]). On the other hand it is easy to see that Cm A Cn has 
two isomorphic components for both m and n even. From the nonplanarity of 
Cm

 A Q (Farsan, Waller [3]) and the additivity of the genus parameter 
over the components ([1]) it follows that 

Y(Cm A Cn) = 2 if both m and n are even, and 
Y(Cm A Cn) = 1 otherwise. 

Now it is sufficient to show that each of the components of Cm A Cn can be 
embedded in Sx (the torus). We use a quadrilateral embedding of Cm A Cn given 
in Theorem 5. For the number of regions r(K) of any component K of Cm A Cn 

we have 4. r(K) = 2. e(K), because each of the regions is a quadrangle and each 
of the edges belongs to two regions. Moreover, e(K) = 2. v(K) and therefore we 
have Y(S) = -> because 

2.(1-r(S)) = v(K)-e(K) + r(K). 

Theorem 6. The graph C4 A Cm has a nonorientable DQE. 
Proof. The denotation of the vertices, the definition of the local rotations 

and a choice of diagonals are the same as in the proof of Theorem 5. The 
labelling s is equal to 1 for every edge of the quadrangle [1,1], [2, m], [3,1], [4, m] 
and s(e) = 0 otherwise. Since in the cycle [1,1], [2,1], [1,3], [2,4],..., [2,m] (if m 
is odd we have..., [l,m], [2,1], [1,2],... inside) only the edge ([1,1][2, u]) has the 
labelling 1, the embedding scheme (P, s) defines the nonorientable embedding. 

Corollary 4. Let Gx = Clm , G, = Cw.,jor i = 2,...,n andmx ^ 2 in the orient-
able case and mx = 2 in the nonorientable case. Let k = \{mt; 2 ^ / _̂  n, m, is 
even}\. Then 

Y(Hn) = M(\,n).(2n~2-\) + 2k, 
Y(Hn) = 2.M(\,n).(2n~2-\) + 2k. 

Proof. By proofs of Theorems 5 and 6 the graph H2 has DQE in both cases. 
Since e(Hn) = 2n~l .2.M(\,n), v(Hn) = 2.M(\,n) and c(Hn) = 2k, the state­
ment is proved. 
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For the special cases of the powers of the conjunction of the graphs Qs, K2r2q 

and C2m we have 

Corollary 5. Let s = 2, r = 1, q = 1, m = 2 in the orientable case and s = 6, 
r = 1, q = 2, m = 2 is the nonorientable case. Let 

a) Gi = Qs 

b) Gt = Klraq 

c) G( = C2m 

for i = 1,...,«. T/tew 

a) y(H„) = 2S~X.(2~2.s" - 1) + 2""'; 
/(//„) = 2"-*.(2~2 .5"-1) + 2 " - 1 ; 

6J y(n„) -= 2 - ' . (4"" ' . (r . ty)- - (r + ?)" + 1); 
f(//„) = 2".(4""' .(r.?)" - (r + ?)" + 2- ') ; 

cj r(7/„) = 2 " - , . ( m " . ( 2 " - 2 - l ) + l ) ; 
/(//„} = 2 3 " - 2 - 2 ^ + 2 " - ' . 
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ЧETЫPEXCTPOHHИE BЛOЖEHИЯ COEДИHEHИЯ ГPAФOB 

Vladimír Železník 

Peзюмe 

B cтaтьe зaнимaeтcя чeтыpexcтpoнними влoжeниями двyдoльныx гpaфoв, пopoждeнныx 
coeдинeниeм гpaфoв, в opиeнтиpyeмyю или нeopиeнтиpyeмyю пoвepxнocть. Глaвным peзyл-
ьтaтoм дaннoй paбoты являeтcя cлeдyющaя тeopeмa: 

Ecли двyдoльный гpaф имeeт диaгoнaлизиpyeмoe чeтыpexcтopoннee влoжeниe (opиeнти-
pyeмoe или нeopиeнтиpyeмoe), тo и coeдинeниe зтoгo гpaфa c любым гpaфoм имeeeт тaкoe 
влoжeниe. 

Kaк cлeдcтвиe пoлyчeн pяд фopмyл для opиeнтиpyeмoгo и нeopиeнтиpyeмoгo poдa гpaфa, 
пoлyчeннoгo coeдинeниeм n гpaфoв. 
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