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Math. Slovaca 35,1985, No. 3, 243-249 

PROLONGATION OF NATURAL BUNDLES 

ANTON DEKRfiT 

We discuss some special aspects of the theory of natural functions (see [3], [5], 
[6], [7]) in the case of fibre bundles. Our considerations are in the category C00. 

1. Po int fibre frames . Let (N, y) be a manifold with a fixed point yeN. 

Definition 1. Let it: Y-^Xbe a fibre space with a fibre type (N, y), dimX= m. 
The set of r-jets J[o,y)<& of all local fibre isomorphisms 0 from Rm xNtoY will be 
called the space of point fibre frames and denoted FFTyY. 

Let FLmNy be the Lie group of all r-jets of local isomorphisms of the fibre space 
pi: RmxN-+Rm with source and target in (0, y), the composition law of which is 
given by the jet composition. 

Proposition 1. Let ]3 be the target jet projection. Then the space 0: FFTyY—> Yis 
a principal fibre bundle with the structure group FLmNy. 

Proof is routine. 
Remark 1. In the definition of the manifolds FHr

yY, FLmNy the space (Rn, 0), 
n = dimN, can be used instead of (N, y). In this case we use the notations FHrY, 
FLm, n. It is easy to see that FHrY is a reduction of the space HrY of all r-frames on 
Y to the subgroup FLm,n of the group Lm+n of r-jets of all O-preserving local 
diffeomorphisms of Rm+n. 

Let us describe some properties of the group FLmNy. Let DL(N) be the set of all 
local diffeomorphisms on N. Remember that a local map from M to DL(N) is 
differentiable, i.e. q>e CL(M, DL(N)), if the map <p, q>(x, y) = (f(x)(y), from 
MxN to N is differentiable. We define /(o.y)<p: = 1(o,y)<P- Let <pi, 
<p2 6 CL(M, DL(N)). Put cpi c (p2(x) = q)\(x) • (p2(x) where in all our considerations 
the dot means the composition of maps or jets. Let LmNy be the set of r-jets j[o,n<p 
of all maps cpeCL(Rm, DL(N)) that cp(0)(y) = y. Let ax = j[o,y)<pu a2 = 
j{o,y)(p2eLm(N)y. Then aica2 = 1(ro,y)(<PioCP-) is the composition rule of the Lie 
group LmNy. Denote by Lm(N, id)y or Lr

yN the Lie group of such j[o,y)Cp e LmNy for 
which jr

yq)(0) = jr
yidN or q>(x) = q)(0), xeRm, respectively. Clearly the group Lr

yN 
can be identified with the group of r-jets ]ryQ of all local diffeomorphisms of N such 
that g(y) = y. It is easy to show that Lm(N, id)y is a normal subgroup of LmNy, 
Lr

ynLr
m(N, id)y = {e} and Lr

y(N)cLr
m(N, id)y=Lr

mNy. 
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R e m a r k 2 . Let A=j{o,y)<peLr
mNy. Then e: Lr

mNy-*Lr
yNx TmNy, e(A) = 

(jr
y(p(0), jo(p(x,y)) is a diffeomorphism iff r=l. Identifying Tl

mNy with 
TyN(x)(Rm)* we get an Abelian group structure on Tl

mNy. According to the 
left-hand action of L\ on TmNy given by the jet composition we construct the 
semi-direct product L\NX RmNy of the groups LyN and TmNy with the composi
tion rule (ai, bi)(a2, b2) = (fli • a2, bi + at • axb2). In this case e is an isomorphism of 
groups. 

Every local isomorphism <$> of trivial fibre space px: Rm x N—>Rm determines 
the local diffeomorphism / = /?i<£ on Rm and cp e CL(Rm, DL(N)), cp(x) = <P\{X}XN 

so that <P(x, y) = (f(x), cp(x)(y)). In local coordinates (x() on Rm and (ya) on N 
we have for <P: xi=f(xi), ya = (pa(xi, yp). This gives 

Lemma 1. Ler <£, = (/,, cp,), / = 1, 2 be two local isomorphi msofRmxN. Then 

(1'(0,y)<£l =Jhy)®2)<>(jofl = jofl9 j(0,y)(Pl=j[o.y)(P2) 

The group Lm of r-jets jof, where / is a local diffeomorphism of Rm such that 
/(0) = 0, acts on the right-hand side on LmNy by the rule j{o,y)<p o j{o)f = j{o,y)(q) - f). 
Let LmxLmNy be the semi-direct product with the group operation 

(1) (fli, Ai)(a2, A2) = (ai • a2, (A- • a2)cA2) 

It is easy to prove 

Lemma 2. Let a= j{o,y)& eFLr
mNy, <P(f,y). Then the map i: FLr

mNy-+ 
LmxLmNy, i(a) = (jof, j{o,y)(p) is an isomorphism of groups. 

R e m a r k 3. Let c = j{o,y)U> e FHr
yY. Denote Ci = jo(z>-^JZ• ip(z, y) = 

= g(z))eHrX, c2 = jr
y(^\{o},N)eFJr

y(N, Y), c3 = jr
g(o)(x^xp(g-l(x), y))eJrY, 

where FJr
y(N, Y) is a manifold of all r-jets jy% of all local diffeomorphisms from 

N to fibres of Y. Clearly the map :tr: FHr
yY->HrXxx[FJr

y(N, Y)xYJrY], 
Kr(c) — (ci, c2, c3) is a submersion. If r= 1, then in the coordinates 

(*', ya, A), Aa, A ^ ) 4 ( x ' , ya, A), A?, AaA)) 

where A*A\ = df. Every A G J\0Y, (3A = y0eY determines a map A ' : T^X—> T^y 
such that TJZA' = idTx0x and vice versa. 

The group Lmx(LyNxTmNy) acts on the right-hand side on HlXx 
x[FJ\(N, Y)xYJlY] by the rule (H,B, A)(h, b, a) = (Hh, Bb. 
A' + B'• a'-h'~l'H'~l) where the prime denotes the maps of the corresponding 
tangent spaces determined by 1-jets. Then (JZ1, i) is an isomorphism of principal 
fibre bundles. It is directly seen that aa: FHr

yY-*HrXxxFJr
y(N, Y) or JIH: 

FHr
yY-^>HrXxxY is the principal fibre bundle with the structure group 

Lm(N, id)y or LmNy, respectively. 
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2. F ibre base r-frames. Let us remember the notion of fibre r-jets, see [2]. 

Definition 2. Let nr. Y,—>Xiy i = l,2, be two fibre spaces. Then the fibre 
morphisms \p, \p: Yi—• Y2 belong to the same fibre r-jet jX0\B\p with the source 
x0 e Xi ifjyip = jr

y\p for any y e Y-, jiiy = x0. The point x = niip(y), Ji\y = x0 is called 
the target of jr

X0\Bty. 
Let re: Y—>X be a fibre space with the type fibre N. By LBmN we mean the set 

of all fibre r-jets jr
0\B<P of local isomorphisms <& = (/, q>) of the space Rm x N such 

that /(0) = 0, cp e CL(Rm, D(N, N)), where D(N, N) is the set of all diffeomorph-
isms of N. Let Jr

0\B<P, /O|B3>'eLBmN. Then the group structure on LBmN 
determined by the composition rule 

(7O|B*)0'5|B*') = ; O | I I ( * - * / ) 

is not a Lie group structure in the classical sense. 

Definition 3. The set FHr
BY of all fibre r-jets jbBxp of local isomorphisms \p: 

Rm x N--> y , whose domain is a setpTl(U), where Uis an open set in X, is called 
the space of basic r-frames on Y. 

Let 7ir
B(a), aeFHr

BY, be the target of a. The set (FHr
BY)x = {aeFHr

BY, 
JtB(a) = xeX} is called the fibre over x. Let us recall that Jtr

B: FHr
BY-+X is not 

a fibre manifold in the classical sence. Let B = jr
0\Bil> e FHr

BY', A = fas® e LBmN'. 
Denote B - A = jo\B(il> - &) and x(B, A) = BA. It is easy to prove 

Proposition 2. The map x: FHr
BYxLBr

mN-+FHr
BY, x(B,A) = B A is 

a right-hand fibre preserving action of the group LBBN on FHBY and is free and 
transitive on fibres of FHBY. 

Definition 4. Let G be both a Lie group and an algebraic subgroup of LBBN. 
Every subset P of FHB Y, which is a principal G-fibre bundle over X, will be called 
a reduction of FHB Y to group G and is said to be a space of G-basic r-frames on Y. 

3. G-frames . Let G be a Lie group, e: G x N-+N be its left-hand action on N 
and let g: N-+N, g(y) = e(g, y) be the diffeomorphism determined by g e G. We 
use g?g2(y) = g2(gi(y)). 

Definition 5. The action e is said of order k (at ye N) if)k
yg\ = ]k

ygi => g\ = gi for 
any yeN (for y = y). 

Let Hr
9 = {g e G, jr

9g = jr
9 idN} be the isotropic group of order rat y e N . 

Lemma 3. i / the action e is effective, (g =^n^> g = h), then it is of order katy iff 
Hy = {e} where e is the unit of G. 

Definition 6. A local isomorphism <P = (f>q>)ofRmx Nis called a G-isomorphi-
sm if (p is such a local map from Rm to G that <P(x, y) = (f(x), (f(*)(y))- A 
G-isomorphism <P is said to be trivial if & = (idRm, <p)= <£,,. 
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Lemma 4. Let cpu cp2: Rm-+G and let jo(pi= ]roCp2eTmG. Then /fo.y)^ = 
j(0, y)®^ for any y eN. 

Proof follows from identity 

<2><P = (idR mXe)- (id* mX(ptx idN)(A x id ) 

where A: Rm-+RmxRm, A(x) = (x, x) is the diagonal map 

Corollary 1. If jo(pi = jhcp2e TmG, then 0m, 0^ belong to the same fibre r-jet 
with source and target OeRm. This gives the map §: TmG-^LBmN, %(jr

0q)) = 

Let GLr
myN be the manifold of all jets j(o,y)<P<p where cj>v is a trivial G-morphism. 

We will describe th set 

rj~1(j(o,y)idR^s) for r\\ TmG-+GLr N, r\(]r
0 ) jr

0 y ) 0 v . 

Let M, Q be differentiate m nifolds and S cz Q be a clo ed submanifold of Q. 
A mapping h: M —• O is sad to have the contact of order r with 5 at x0 e M if there 
is such a map h: M—*S that ]r

xh=jr
xh. The action £ of G on N determines the 

mappings ek: G^>Jy(N, N), ek(h)~jy(i, e°y(h)-fi(y). The action e is called 
r-normal if d\m(ek

y(G)) = q — dk, q - d i m G , d — d\mHk, tor k = 0, .. , r. 

Lemma 5. Let the action eofGonNbe r-normal. Then j{o, )<&<? — j{o,y) idR-XN iff 
cp: Rm-*G has the contact of order k with Hr

y
 k at OeRm tor k = 0, ..., r. 

Proof. There is a sequence H°yzD H\ZD ... =>Hy of the clo ed i otropic subgroups 
of the point y eN. There is a local chart (zp) on G such that e = (0, ..., 0) and 
(z1, ..., zdk, 0, ..., 0)eHk, k = 0, .., r. In this chart let e: Gx7V--»Nbe given by 
ya = Fa(yfi,zp). Then for a = (z\ ...,zd>, 0, ..,0)eH> 

(2) Fa(y,a)-ya, 3Fa(y, a)/3y" - da, 

ds+kFa(y,a)/dy^...dy^3zPl...dzPk=0 

where s = 0, 1, . . . , ; , pl - 1, ..., d}, j-0, ..., r. Let cp be given by zp = cpp(xl) and 
let jo(p = (ap, ap, .., ap

x lr, cp(0) = a. Then the equations for <P<p are: xl = x{, 
ya = Fa(yf,

9z
p = <pp(x)) and /(

r
0y)<ZV-(ba,fra, ., ba ,, .., b% Pkll .„, b%, ..., 

ba
x. .Pr), where 

(3) ba.iu~
yZdsFa(y, a)/dzPi...dzp^aPl..ap% u = \, ..., r 

s = l 

(4) hi.,*, ,u=J1d
s+kFa(y,a)/dye ...dy^dz"'.. 3z'«2>p!...ap-, 

s 1 a 

k 1, .. , r— 1; u = l , . . , r — k 

(5) b% dF°(y,a)/dyP, ..,bl 3 F°(y, a)ldy*.. >* 
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where o denotes the set of all a-decompositions of the sequence i\...iu (an s-part 
decomposition 7t of the sequence i\...iu is called a a-decomposition if Jt(il...iu) = 
Oi...os = (icl...ihi)(iC2...ih2)...(ics.ihs) and C i<c 2 < . . . <cs, Cj<...<hh For instance 
n(i\i2hu) = (i\U)(i2n) or = (ii)(i2i-t)i3 are examples of a-decompositions). Since 
7(o.y> idR-xN= (ya, b% = 8^, 0, ..., 0) the assertion of our Lemma follows from (2), 
(3), (4), (5). 

We supose that the action e is r-normal. Then by Lemma 5 we can prove 

Lemma 6. The group homomorphism §: TmG-^LBmN is injective iff the action 
e is effective. 

Corollary. If the action e is effective, then the group of all fibre r-jets jo\B<$><p of all 
trivial G-isomorphisms <P<p can be identified with the group TmG. The 
homomorphism § can be extended on §: Lr

mXTmG-^>LBr
mN, §(/o/> Jo<p) = 

7*O|B(/, (f), where LmXTmG denotes the semi-direct product of the groups, 
(a, A)(b, B) = (ab, (Ab)B). Then the group of all fibre r-jets jo\B<P of all 
G-isomorphisms <P can be identified with LmX TmG iff the action e is effective. 

Lemma 5 implies 

Assertion. The map r\ is injective iffH°y={e}, i. e. iff the action e is free atyeN, 
i.e. iff gl(y) = g2(y) => gx = g2. 

Corollaries: 1. If the action e is free atyeN, then the group of r-jets j[o,y)<P of 
local G-isomorphisms <P = (/, q>) such that 0(0, y) = (0, y) can be identified with 
Lr

mX TmGe, where jr
0cp e TmGe<*cp(0) = e. 

2. Let LBmNG be the set of all fibre r-jets / O I B ^ of all local trivial G-isomorphi
sms of RmxN. The map £: LBr

mNG-+GLr
m9N, Z(Jo\B<Pq>) = j[o,y)<I>q> is injective iff 

the action e is free. In this case the manifold GLr
m9N is the Lie group which can be 

identified with TmG and with LBr
mNG. 

Let JT: P-->X be a principal fibre bundle. Its structure group G acts transitively 
and freely on itself by the right translation a(g) = ga. Therefore the group LmBG 
of fibre r-jets jo\B<& of all local G-isomorphisms <& ol RmxG is identified with 
Lr

mXTmG. Let F: Rm x G^>P be a local isomorphism of fibre bundles. Then 
f(z) = Jt-F(z, e) or oF(x) = F(f~1(x), e) is a local isomorphism from Rm to X or 
a local cross-section of P, respectively, so that F(z, g) = [o(f(z))]g and j{o.0)F = 
]r°Ff(o)g' jrno)0F - jof, where g denotes the diffeomorphism of P determined by g e G. 
It yields 

Lemma 7. Local isomorphisms Ft = (fy, oFl), F2 = (f2, oF2) of principal fibre 
bundles RmxG, P belong to the seme fibre r-jet jo\BFi iff 70/1 = 7o/2, 7/I(O)OF, = 
7/2(0)OF2. 

Corollaries: 1. The space WrP of fibre r-jets JS\B of all local isomorphisms from 
RmxG to P can be identified with the Whitney sum HrXxxJ

rP, which is the 
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principal fibre bundle with the structure group Lmx TmG, see [1]. Hence WrP is 
a reduction of the space FHr

BPofall basic r-frames on P to the group Lm x TmG. 
2. Let p: Q—>X be a fibre bundle associative to P with a fibre type N on which 

the group G acts effectively on the left-hand side. Quite analogously to the above it 
can be shown that WrP = HrXxxJ

rP is the reduction of the space FHr
BQ of all 

basic r-frames on Q to the group LmX TmG. 
Remark 4. It is known (see [3]) that the space HrXxJrP—>P is a principal 

Lmx TmGe-bundle. It is clear that it is the reduction both of the space FHrP of all 
point r-frames on P and of the space FHr

eQ (where Q is a fibre space associated to 
P) to the group Lr

mxTmGe. 
4. Natural fibre functor. Let FB be the category of fibre bundles, Bm be the 

category of manifolds M(m = dimM) whose morphisms are diffeomorphisms, FBm 

be the category whose objects (morphisms) are m-dimensional manifolds (fibre 
morphisms over diffeomorphisms of bases). 

A natural functor F restricted to the category FBm will be called fibre, i.e. if (JT: 
Y_>X)eObj(FBm) ancj (/: Yl-^Y2)eMor(FBm), then (xF: FY-* Y)eobj(FB) 
and the morphism Ef: FYi-+FY2 is over /. 

Remark 5. If F is a natural fibre functor, then the rule Fm(Y) = (jrjrF: 
FY-^X) determines a functor Fm from FBm to FBm. 

Let us recall that a natural fibre functor F is of order r if jyf = jyQ implies 
Ff\(FY)v = Fg\(FY)y for any fibre morphisms (/, g: Y-> Y)eMor(FBm). 

Examp le . The prolongation functor Jr from FBm to FB(JrY is the r-jet 
prolongation of Y) is a natural fibre functor of order r. 

Remark 6. Let F be a natural fibre functor of order r. Then every jet 
A=jr

yfeJr
y(Y, Y)y defines a map A: (FY)y^>(FY)y, A = Ff\FYy. 

A small modification of the well-known assertions in the theory of natural 
bundles gives 

Proposition 3. Let Fbea natural fibre functor of order r. Letjz: Y—> Xbea fibre 
bundle, m = d i m X , rz + m = d i m Y . Let NF be the fibre of F(Rm x Rn) over 
(0,0)eRmxRn. Then nF: FY^Y is associated to the principal fibre bundle 
FHrY of all point r-frames on Y with the type fibre NF. 

Let P(X)—>X be a reduction of the space FHBY of all basic r-frames on Y to 
a Lie group K c LBmRn of fibre jets jr

0\B<& of all local isomorphisms of Rm x Rn. 

Proposition 4. Let F be natural fibre functor of order r. Let NFm be the fibre of 
Fm(Rm x R n)-> Rm over OeRm. Then the space njzF: FY^X with fibre type 
NFm is associated to P(K). 

Remark 7. Let P—>Xor Q - > X b e a principal fibre bundle with a structure 
group G or a space associated to P with a fibre type N on which the group G acts 
effectively. Then WrP = HrXxJrP is the reduction of FHBY to the group 
Lm x TmG. It is well known that if 1// is a natural functor of order k, then the space 
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xpX-*X is associated to HkX. Therefore fi//X->X is associated to Wr(HkX) = 
HrX x xJ

rHkX. Since Ft// is a natural functor of order k + r, then FxpX is 
associated to the principal fibre bundle H fc+rX, which is a reduction of Wr(HkX) to 
the group Lr

m
+kczLr

mXTr
mLk

m. 
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ПРОДОЛЖЕНИЕ НАТУРАЛЬНЫХ РАССЛОЕННЫХ ПРОСТРАНСТВ 

Апиэп Оекгё* 

Р е з ю м е 

В статье исследованы некоторые специальные аспекты теории натуральных функторов 
в случае расслоенных пространств. 
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