
Mathematica Slovaca

David B. Surowski
Automorphism groups of certain unstable graphs

Mathematica Slovaca, Vol. 53 (2003), No. 3, 215--232

Persistent URL: http://dml.cz/dmlcz/130474

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/130474
http://project.dml.cz


Mathematica 
Slovaca 

©2003 
... , *-• - - . //-./-./-.^\ *• -. ..*-.- «~.-. Mathematical Insti tute 
Math. SlOVaCa, 5 3 ( 2 0 0 3 ) , NO. 3 , 2 1 5 - 2 3 2 Slovák Academy of Sciences 

AUTOMORPHISM GROUPS 
OF CERTAIN UNSTABLE GRAPHS 

DAVID B. SUROWSKI 

(Communicated by Martin Skoviera ) 

ABSTRACT. The automorphism groups of the canonical double covers of the 
unstable graphs in two infinite families are considered. These graphs are important 
from the point of view of algebraic map theory as they can be embedded into 
regular oriented maps. 

0. Introduction 

For a simple graph Y = (V, E), the canonical double cover Y of V (as in­
troduced by D. M a r u s i c in [4]) is the graph Y = Y(Vx{±l},E), where 
{>,C),K,C')} G-E if and only if {v,v'} eE and C'= ~C, C = ±1- Note that 
when T is connected, Y is disconnected if and only if Y is bipartite. In any case, 
T is bipartite and so it is of little interest to iterate the r **> Y construction. 

The automorphism group Aut(r) acts as a group of automorphisms of Y in 
the obvious way, stabilizing the partite classes F x { l } and Vx{—1}. Also there 
is the involutory "deck transformation" (v,l) <-» (v, - 1 ) , which together with 
Aut(r) gives an embedding of Z2 x Aut(r) into Aut(f). When this subgroup is 
the full automorphism of T, we call the graph stable. The property of stability is 
interesting only in the case when Y is vertex-determining, i.e., when every vertex 
is uniquely determined by its set of neighbours (see [4; (4.1)]). As Z2 x Aut(T) 
embeds into Aut(r) with equality if and only if Y is stable, it is reasonable 
to call the group index [Aut(r) : Z2 x Aut(r)] the index of instability of the 
graph T. Thus, index of instability 1 is tantamount to stability. 

In [5], N e d e 1 a and S k o v i e r a showed that if all embeddings of a stable 
graph into an orientable regular map are known, then all embeddings of the 
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canonical double cover of this graph into orientable regular maps are also known. 
At the time of the writing of their paper, the only known unstable (vertex-
determining) arc-transitive graph was the underlying graph of the dodecahedron. 
In [7], however, I gave three infinite families of arc-transitive, vertex-determining 
unstable graphs. By the results of [2], not all of the graphs considered in [7] can 
admit embeddings into regular maps; a necessary condition is that a vertex 
stabilizer has a cyclic subgroup acting regularly on the vertex neighbours. It 
is for the canonical double covers of these graphs that the full automorphism 
groups are computed; the remaining cases shall be considered elsewhere. 

Thus, in Section 1, I compute the automorphism group of T where T is the 
"Shult-Taylor" double of the Paley graph QR(q), where q is a prime power 
congruent to 1 modulo 4. The result is that the automorphism group has the 
structure of PTL2(q) acting on a Klein four-group, with resulting index of insta­
bility 2. In Section 2, I compute Aut(f), where T is the graph whose vertices 
comprise a conjugacy class of elements of order p in PSL2(p), where p is prime 
and p = 5, 7 (mod 12), and adjacency is where the product of the elements has 
order 3. In this case, Aut(T) has the structure of PGL2(P) acting on a dihedral 
group of order p — 1, giving index of instability (p — l ) /2 . Thus, in this case we 
see that the graphs in question become increasingly unstable as p -» oo. 

1. Graphs related to the Paley graphs 

Let F = F be the finite field of q elements, where q = 1 (mod 4). The Paley 
graph, QR(q) is the graph whose vertices are the elements of F, and whose edges 
are of the form {a, b}, where a - b is a non-zero square in F. 

The following is, of course, well known: 

LEMMA 1.1. QR(q) is a strongly regular graph with parameters A = (q — 5)/4 
and n = (q — l ) /4 . 

P r o o f . Let S and NS denote the non-zero squares and non-squares in F, 
respectively, and note that the stabilizer of 0 in Aut (QR(q)) acts regularly on 
the sets S and NS via x H> ax, where a G S, x G F. Thus it follows that 
QR(q) is strongly regular. Next, note that the mapping x i-> 1/x interchanges 
the edges and non-edges between vertices of S and vertices of NS. Since there 
are (q — l)/2 vertices in each of 5 , NS, we infer that there are altogether 
(q — l)2 /8 edges joining vertices of S to vertices of NS. Using the transitivity 
mentioned above, this already implies that \x = (q —1)/4. By the same token, for 
each vertex x G S, we infer that x is adjacent to exactly (q—1)/4 vertices of NS, 
from which it follows immediately that A = ( g - l)/2 — (q— l ) /4 — 1 = (q — 5)/4. 

• 
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From [7; Proposition 2] it follows immediately that: 

COROLLARY 1.2. The Paley graphs QR(q) are stable. 

Next, we review the so-called Shult-Taylor construction (see, e.g. [6]). If T is 
a graph, form the new graph T* as follows. First let T' be an isomorphic copy 

of the graph T with isomorphism T -> T'. If V, V are the vertices of T, T' 
respectively, then T* has vertices {oo,oo'} U V U V . The edge relations in T* 
are as follows: 

(i) oo is adjacent to every element of V; 
(ii) oo' is adjacent to every element of V ; 

(iii) the subgraphs induced by the vertices V, V give T, T' as subgraphs 
of T*; 

(iv) if v G V, wl G V , then {v, w1} is an edge of Y* if and only if {i>, w} is 
not an edge of T. 

As proved in [7; Sec. 3], if T -= QR(q), q=l (mod 4), then T* is unstable. 
Let A = Aut(r), A* = Aut(T*), and set A* = Au t ( f* ) . If A is the involution 
on T* given by (v*,5)A = (v*,-5), v* G V*, S = ± 1 , then we have that 
(A) x A* is embedded as a subgroup of A. For convenience we shall write the 
vertices of T* as ±v*, v* G V*; thus the "deck transformation" is given by 
A: ± v* <r* +v* , v* G V*. 

For each positive integer i, denote by T* the vertices in T* at distance i 
from the vertex +oo. One easily checks that 

f* = - V , f* = +V U + V , f* = - V U {-oo, -oo'} , f* = {+oo'} . 

Furthermore, since —oo is joined to every vertex in +V, and since —ooMs joined 
to every vertex of + V , we conclude that if A*^^ is the stabilizer in A* of the 

vertex +oo, then -4*^ must act imprimitively on the set T*> = + V U + V , with 
+V and + V being sets of imprimitivity. 

Next, note that the subgraph of T* induced by the vertices —V U +V is 
precisely the canonical double cover T jof T. As noted above, T is stable where 
T = QR(q), and so the stabilizer H < A*+0O of the set + V maps into the group 

Z2 x Aut(r). However, since A*+00 cannot interchange the sets +V and —V, 
we conclude that, in fact, H must map into the group Aut(r). If h G H is 
in the kernel of this map, then h fixes pointwise the sets ±V. By assumption 
h acts on the subgraph of T* induced by the vertex set —V U + V . However, 
this subgraph is the canonical double cover of the complementary graph T of T. 
Since T is self-complementary, we infer that T is stable and so it follows that h 
must induce the identity on — V U + V , as well. Finally, the subgraph induced by 
+V'U— V is the canonical double cover of T' = V and so h induces the identity 
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on —V, as well and hence h induces the identity on all of r*. Therefore H 
embeds into Aut(r), and so 

| A ; o o | < 2 x | i f | < 2 x | A u t ( r ) | , 

from which we infer that 

| ^ | < 2 x | A u t ( r ) | x 2 x | V * | . 

Since we may identify Aut(r) with the stabilizer in A* = Aut(r*) of oo, we 
conclude that | Aut(r)| x \V*\ = \A*\ = | Aut(r*)|; therefore, 

\A*\ < 2 x 2 x \A*\. 

Since the reverse inequality is the point of the graph T* not being stable, we 
conclude that equality obtains: 

|2*| = 2 x 2 x |,4*|. 

Therefore, the canonical double cover T* of the Shult-Taylor double of the Paley 
graph QR(q), q = 1 (mod 4), has index of instability 2, as claimed. 

Having established the automorphism group order, it remains to give the 
group explicitly. First of all, note that the Paley graph T admits automorphisms 
of the form x i-> ax+f3, where x, f3 G F = F^ , and where a G S = F x 2 . When F 
is not a prime field, there are more automorphisms: if q = pn, where p is prime, 
and if G = Gal(F/Fp), then mappings of the form x »-» axG + /?, x,/3 G F, 
a G S, a G G, all determine automorphisms of T. 

The following is an immediate consequence of the work in [1]: 

PROPOSITION 1.3. Aut(T) consists precisely of the above automorphisms. 

Next, we proceed to compute the automorphism group of the Shult-Taylor 
graph T* associated with the Paley graph T. First of all, if A*^ is the stabilizer 
of oo in A* = Aut(P*), then A*^ ^ A, where A = Aut(r). Therefore, the 
task remains to find a group of order 2(q — 1)|.A| acting on T*. Such a group 
is at hand: we shall show that, in fact, A* = Z2 x PSL2(g), where PEL2(g) = 
G x PSL2(g) (G = Gal(F/Fp), as above) by giving an action of Z2 x PSL2(g) 
on T*. We note here that PEL2(g) is a normal subgroup of the larger group 
PrL2(g) = G x PGL2(</). This larger group will appear in Theorem 1.5 below. 

In order to obtain an action of PSL2(g) on T*, it is convenient to alter 
some of the notation. To this end, we first identify the set F U {oo} with the 
"projective line" FP1 over F: 

FP1 = {[a, 6] : a, b G F, not both zero} , 
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where, as usual, [a, b] = [aa, ab] for all 0 ^ a G F. In this way, we identify 
elements of F with corresponding elements of FP 1 via a «-* [a, 1] and identify 
oo with the point [1,0]. Finally, we identify the vertex set of T* with the set 
FP 1 x {±1}. 

Next, let rj: F x -> {±1} be the homomorphism having kernel F x 2 : 
, x f 1 if x e F x 2 , 

^ H - l if **!*'. 
Note that since q = 1 (mod 4), 7/(x) = T/(-X) = 77(2; ) for all x G F x . Next, 
we define 7/(0) = 1 and extend r) to a mapping 7/: FP 1 -» {±1} via 

ř 17(0/6) if&y-O, 
, M 1 = ( # ) i f o # 0 . 

Thus, it is clear that for all [a, b] G F P 1 , 7?[a, 6] = rj[b, a]; furthermore, if 
a, 6, c, d 7-: 0, then 7/[a, b]r)[c, d] = 77[ab, cd], which implies in particular that 
7/[a, C]T?[C, 6] = 7/[a, 6] (a, 6, c 56 0). 

In terms of 77, we now can describe the edges of T* as those pairs 

{([a,b],e),([a',b'],e')} 

where 
T/fa&'-a'b, &&']==££'. 

It is routine to check that this gives the Shult-Taylor construction T* of the 
Paley graph T. 

The action of PSL2(g) on T* is as follows (in the sequel, all matrices are to 
be regarded modulo scalar matrices): 

(M.O(-.[: 1}) 
([acx + baz, a°y + b°w], er\[aay + b"w, bay]r][y, 1]) if y # 0 

([affx + 6CTz, 6CTH' £v[w, 1]) if y = 0. 
(*) 

Note that in the first coordinate we have the usual action of PSL2(g) on the 
projective line FP1 by semilinear transformations. 

One must show that (*) 

(1) defines an automorphism of the graph T* for each (a,T) G P£L2(<7), 
and 

(2) defines an action of the group PEL2(<?) on the vertices FP1 x {±1} of T*. 

We first show (1), viz., that the above defines a graph automorphism. Thus, 
assume that {([a, 6], e), ([a', &'], e')} is an edge of T*, and that 

• { 

(<т,T)ЄPĽL2(q), T = x y 
z w 
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Therefore, 
r)[ab'-a'b,bb'] = ee'\ 

we shall consider first the case in which y = 0. To show that ([a,6],e)(a,T) ~ 
([a',b'],e)(cr,T), one must show that 

r)[(aax + baz)b'°w - (a'°x + b'°z)baw, b°b'°w2] = ee' . 

Since xw = 1, this reduces to showing that 

r)[aab'°-a'°ba,bab'°w2] = ee'. 

However, it is clear that r)[aab'°- a'°ba, bab'°w2] = 77[a6' - a'b, bb'], and so we 
are finished in this case. 

Next assume that y ^ 0; we need to conclude that 

V[(aax + baz)(a'°y + b'°w) - (a'°x + b'°z)(aay + baw), 

(aay + baw)(a'°y + b'°w)] 

= ee'r)[aay + baw, bay]r)[a'°y + b'°w, b'°y]. 

Since xw — ya = 1, the above condition reduces to checking that 

r)[aab'°- a'°ba, (aay + baw)(a'°y + b'°w)] 

= ee'r,[aay + baw, bay]r)[a'°y + b'°w, b'°y]. 

If 66', (aay + baw)(a'°y + b'°w) ^ 0, then by what was noted above, 

r)[aab'°- a'°ba, (aay + baw)(a'°y + b'°w)] 
= r)[aab'°- a'°ba, bab'°]r)[bab'°, (aay + baw)(a'°y + b'°w)] . 

Since r?[oCT6/or- a"T6<J, bab'°] = ry[ab'-a'b, bb']a = r)[ab'-a'b, 66'] = ee', we are 
reduced (modulo the assumption 66' ^ 0 ) to checking that 

r)[bab'°, (aay + b°w)(a'°y + b'°w)] = r)[aay + baw, bay]r)[a'°y + b'°w, b'°y] . 

But then 

V[b°b'°, (aay + baw)(a'°y + 6,cr«;)] .= ^[6", (aay + 6ffty)]»7[6
,a, (a,<Ty + b'°w)] 

= r)[bay, (aay + baw)]r,[b'°y, (a'°y + 6,<Tt(;)] 

= 77[a'y + baw, bay]r)[a'°y + b'°w, b'°y], 

as required. The excluded cases are also easily handled. Therefore the permuta­
tion given in (*) defines an automorphism of T*. 

We turn next to the verification that (*) defines an action of PEL2(?) on 
the vertices of T*. 
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Thus, let 

9= f o-, 

Therefore, 

x y 
Z W 

(a,T),g'= [v, V 
w' 

= (v,T')£FY.L2(q). 

99" (av,TvҐ)= [av, 
xvx' + yvz' 
zvx' + wvz' 

xvy' + yvw' 
zvy' + wvw' 

) • 

In order to show that for every vertex v* G V*, v*(TS) = (v*T)S, there are 
five cases to consider: 

1. yyy' = 0 (and so xvy' + yvw' = 0); 
2. y = 0, y' T-- 0 (and so xvy' + yvw' ^ 0); 
3. y / 0, y' = 0 (and so xvy' + yvw' ^ 0); 
4. y,y'?0, xvy'+yvw' = 0 ; 
5. y,y'Jx»y'+y''w'j:0. 

We shall be content to investigate case 1 (the easiest) and case 5 (the generic). 
Thus, assume that y,y' = 0; we have 

(([a,b],e)g)g' = ([a° ,b°]T,er,[w,l])(v,T') 

= ([a°v,b°v)TvT',erl[w,l)r}[w',l]) 

= ([a°v,b°v}TvT',eri[wv,l}r,[w',l]) 

= ([a°v,b°v]TvT',er)[wvw',l]) 

= ([a,b],e)(av,TvT') 

= ([a,b],e)(gg'). 

We turn now to case 5. In this case, we have 

(([a,b],e)g)g' 

= ([a°,b°]T, er,[a°y + b°w, b°y}ri[y, l])g' 

= ([a°v, b°v]TvT', eri[a°y + b°w, b'yMy, 1] 

x V[(a°vxv + b°vzv)y' + (a°vyv + b°vwv)w', (a°vyv + b°vwv)y']ri[y', 1}). 

On the other hand, 

([a,b],e)(a,T)(v,T') 

= ([a,b],e)(av,TvT') 

= ([a°v, b°v]TvT', eri[a°v(xvy' + yvw') + b°v(zvy' + wvw'), 

b°v(xvy' + yvw')]ri[xvy' + yvw', 1}). 
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There are two subcases here: 6 = 0 and b 7-= 0. If b = 0, then ba = bau = 0 and 
auv 7-- 0. In this case the above computation affords 

{{[a,b],e)g)g' = (([l,0],e)g)g' 

= ([l,ti]TvT',sr][y,l]r1[x
vy,+yvw', yVMy' ,1]) 

= ([l,0]TvT',erl[y
v,l]V[xvy'+yvw', yVMy' ,1]) 

= ([l,0]T"T ' ,e7?[a ;y+y"U;M]) 

= ([1,0],£)V 

= ( [ a , * ] , ^ . 
If 6 --: 0, there are two further subcases within this case to consider, viz., aay + 
baw = 0 and aay + baw ^ 0. In the first case we also must have aavyv + 
bavwv = 0, and so it follows easily that 

{{[a,b],e)g)g' = ([aav,bav]TvT',er,[y, l]V[y', 1]). 

On the other hand, one computes 

{[a,b],e)(gg') 

= ([aav,bav], erl[a
avxvy' + bavzvy', bav(xvy' + yvw')]r,[xvy' + yvw', 1]) 

= ([aav ,bav]TvT', er)[aavxvy' + bavzvy', bav]) 

= ([aav, bav]TvT', er\[aavxv + bavzv, bav]r)[y', 1]) 

= ([aav, bav]TvT', er,[aax + baz, ba]r,[y', 1]). 

However, from aay + baw = 0 and 6" ^ 0 we obtain aa/ba = —w/y and so 

[aax + baz, ba] = [-xw + zy, y] = [-1, y] e FP1 . 

Therefore, 

{[a,b],e)(gg') = ([aav,bav]TvT', eV[aax + baz,ba]r,[y',l]) 

= ([aav,bav]TvT',eV[-l,y]ri[y',l]) 

= ([aav, bav]TvT', eri[y, l]r)[y', 1]) (since - 1 e F*2 ) 

= (([a,b],e)g)g', 
proving the result in this case. Finally, we consider the case aay + baw ^ 0. 
Noting that r/[cT, d*1] = r/[c, d] for any a, 6 e F, r, ft e G, we easily obtain that 

{{[a,b],e)g)g' 

= ([aav,bav]TvT', er1[(a
avxv + bavzv)y' + (aavyv + bavwv)w', V]) 

= ([o'"f b
av]TvT', erj[aav(xvy' + yvw') + bav(zvy' + w"w'), 6CT"]) 

= ([aav, bav]TvT', eri[aav(xvy' + yvw') + 6<T"(̂ "y' + u;"«;'), bav(xvy' + y"w')] 

x 7?[x"y' + yvw', 1]) 

= ([a, 6], e)(a, T)(u, T') = ([a, 6], £ ) ( 9 5 ' ) , 

222 



AUTOMORPHISM GROUPS OF CERTAIN UNSTABLE GRAPHS 

proving that (*) does indeed define an action of PEL2(g) on V*. 
Finally, note that we have the involutory automorphism A* of T* inter­

changing antipodal vertices: ([a, &],£.) A* = ([a, 6],— e). Note that A* is clearly 
centralized by PEL2(g), and so we have an action of Z2 x PSL2(g) on T*, 
proving that 

A* = Aut(r*) = Z2 x PEL2(g). 

Having computed A* = Aut(r*), where T is the Paley graph, it remains to 
compute the structure of A* = Aut(T*). The above work already shows that 
| A* | = 8 x |PEL2(<7)| = 4nq(q2 — 1), where q = pn, and where p is prime. Thus, 
the canonical double cover T* has vertices FP1 x {±1} x {±1} and incidence 
given by ([a, &],£,<*) - ([a', &'],£', 5') if and only if ([o,6],e) - ([a',6'],e') in T* 
and 66'= -1. 

CLAIM. Let t € Fx \ F x 2 be a non-square. Then the permutation ct: V* -> V* 
given by 

( [ l , 0 ] , e l % = ( [ l , 0 ] , - r f , -* ) ; 
(jo, 1], e, <J)ct = (jot, 1], e<5, -5) 

determines an automorphism of T*. In terms of the mapping 77: FP1 —> {±1} 
this can be written as 

([o, 6], e, % t = ([at, 6], -e<fy[i, % [ 1 , 6], - 5 ) . 

We proceed to verify that ct determines an automorphism of T*. Thus, let 
([a, 6], e, (5) - ([a', 6'], e', 5'). Therefore, a6' - o'& ^ 0 and 

rj[ab' - o'6,66'] = ee', and <W' = - 1 . 

We must show that 

r)[ab't - a'&i, 66'] = es'66'r)[t, &]r?[l, %[i , 6']r/[l, 6']. 

If 66' 7-= 0, we have 

ftfa&'t - o'&t, 66'] = 7/[o6' - o'&, 66']r/[t, 1] 

= -7?[o6'-o'6,66'] 

= -ee' 

= -£6 ,7?[t,6Ml,6Mt,6'Ml,6'] 

= e e ' M ' i r t t , 6 ] ^ 

as required. The remaining cases are easier (note that we cannot have both 
6,6'= 0). 
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If (a,T) e PSL2(g), let gc>T e Aut(f>) be the action of f* induced by the 
action of PSL2(g) on T* as given in (*). Therefore, if T = [* * ] , then 

([a,b],e,8)gaT 

([aax + baz, aay + baw], er)[aay + 6<Tw, bay]r)[y, 1], 5) if y ^ 0, 

([a^x + baz, baw], erj[w, 1], 5) if y = 0. 

Therefore, from the above discussion, we conclude that if t is a fixed non-square 
in F, then 

Aut(G*) = (A, A\ct,g^T | (a,T) e PEL2(?)) • 

The following are easy calculations: 

LEMMA 1.4. Let t is a fixed non-square in F, and set gT = g1T G PSL2(g). 

(i) ctgTct
l = gT,, where 

T' = 

(ii) ctAct
l = AA*. 

Prom the above, we can elucidate the structure of Aut(T*), as follows. 

THEOREM 1.5. The automorphism group of the canonical double cover T* of 
the Shult-Taylor double T* of the Paley graph V has structure 

Aut(F) .= (Z2xZ2)xPrL2(g) , 

where PEL2(g) centralizes Z2 x Z2 and where any element in PTL2(q)\PT,L2(q) 
acts as a non-trivial involutory automorphism on Z2x Z2. 

P r o o f . Indeed, using Lemma 1.4, part (i), one concludes easily that for a 
fixed non-square i, the mapping (cvgT \ T G PSL2(c/)) -> PGL2(q) given by 

"í 0 ' 
T 

" Г 1 0' 
0 Г 1 T 

0 t 

gT^T, ctgT H4 t 0 
0 1 

T, TєPSL2(ç), 

defines an isomorphism. The rest of the proof follows from above Lemma 1.4, 
part (ii). • 

2. Graphs related to PSL2(q) 

In [7; Sec. 4], I gave another infinite family of unstable graphs T = T(g), 
where q is a power of the prime p and q = 5,7 (mod 12). Recall that the group 
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PSL2(r/) has two conjugacy classes C, C of elements of order p, and a unique 
class T of elements of order 3. Assume that the class C contains the (residue 

of the) matrix * H . The graph T has vertex set C and edge relation x ~ y if 

and only if xy G T . We have already shown in [7] that this graph is acted on 
edge transitively by G = TSL2(q). 

We shall investigate the automorphism group of T when p is prime. Indeed, 
from the point of view of regular map embeddings, this is the only relevant case 
as the case of non-trivial prime powers does not admit dihedral vertex stabilizers. 
In what follows, we denote F = F , the field of p elements. 

THEOREM. If q = p is prime, we have 

A u t f n ^ p 2 x P S L 2 ( p ) if p = 5 (mod 12), 
U l ] \ PGL2(p) ifp = 7 (mod 12). 

P r o o f . Define the elements 

a = 

where t generates F x . Note that NG((a)) = (a) x (r) . By Burnside fusion (see 
[3; p. 240, Theorem 1.1]) it follows that there are (p - l)/2 conjugates of a 
contained in (a), and are of the form T^aT"^ , j = 0,1, . . . , (p — 3)/2. In [7] it 
is proved that T(p) has valency p and that the vertices adjacent to a are the p 
conjugates of b by powers of a. For any conjugate a; of a, let T(x) denote the 
vertices of T adjacent to x. 

The following simple lemma shall prove useful. 

LEMMA 2.1. For any odd prime power q not divisible by 3, the matrix A G 
SL2(r/) satisfies A3 = ±1 if and only if trace .4 = -fl. 

P r o o f . If trace A = £ = ± 1 , and if Xx, A2 are the eigenvalues of A (which 
might be in a quadratic extension field of ¥q ), then Ax + A2 = e, Xx A2 = 1 jointly 
imply that Af = A2 = — e. Since q is not divisible by 3, A must be diagonalizable 
(over a quadratic extension of F ) and so it follows that A3 = — el, e = ± 1 . 
The converse is equally simple. D 

We resume the proof of the above theorem; a few useful facts are singled out 
below. 

(1) For any pair of distinct elements x,y G (a), T(x) n T(y) = 0. As 
a result, the vertex set C can be represented as 

C = (C H (a)) U | J T(x). 
xecn{a) 
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Indeed, it is sufficient to prove that T(a) n T(rkar k) = 0, where 1 < k < 

(P - 3)/2. In turn, since a typical element of T(a) has the form ajba~j = 

^ / . L and since rkar~k = * H for some v G F x , one shows, using the 

above lemma, that the product 

i - j 
- i 

Ґ 
1 + j 

has order 3 in G if and only if v = 1,3 G F. However, since f/ = 5,7 (mod 12), 
an easy application of quadratic reciprocity show that 3 ^ F x 2 , which precludes 
the possibility that 

k -k "1 3' 
т aт 0 1 

for any power k. Therefore, we must have v = 1, i.e., that rkar k = a, which 
proves (1). 

(2) If x,y G (a) n C, there are exactly two edges from a given vertex 
in F(x) to vertices in T(y). 

Here, it suffices to assume that x = a, that 

У = 

for some v G F x , and to prove that there are exactly two vertices in T(y) 
adjacent to b (G T(a)). As a result, the vertices in T(y) are of the form 

V 0 'v-1 0" "1 V2' 

0 v~\ a 0 V 0 1 

0 
, - 1 a3ba 3 

0 
l - j 

1 + j 

Such an element can be checked to be adjacent to x = b if and only if 
(vj)2 = 1,3. As already observed, 3 ^ F x 2 and so vj = ± 1 , affording the 
required two vertices. 

Note that as a result of (1) and (2) we conclude that F is connected, has 
diameter 3, and that vertices x, y have distance 3 if and only if x and y 
commute. Therefore the p+1 conjugates of Cn(a) form a system of imprimitivity 
in C for the group Aut(T). 

(3) The subgraph of V induced by T(x), where x is a conjugate of a, 
is an ordinary p-gon. 

Note that by (2) above, together with the fact that T has valency p, we 
see that the subgraph induced by T(a) must have valency 2. Next, an easy 
calculation shows that aba~l and b are adjacent in Y. This is clearly enough. 

Next a routine calculation reveals the following: 
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(4) The distance between the vertices c{ = alba~l, c_i = a~lbal as 
measured within the subgraph induced by T(a) is 

[ 1% 
d-st г ( в )(c i łc_ i) = | _ 

i f г < [ ^ l ] , 
2i if [£=1] < i < E=l. 

Now assume that v, v' 7- 1 and assume that v 7- ±v'. Set 

1 V / '1 v> 
0 1 - = 0 1 

X = 

As a result of (4) and the calculations in (2) we infer that if 6_, b2 G T(x), 
6_,b2 G r(x') are the vertices adjacent to 6, then the distance between b_ and 
b2 as measured from within T(x) is different from the distance between 6'_ and 
b'2 as measured from within T(x'). Put slightly differently: 

(5) Let x 7- x' G Cn(a) and assume that x,x' 7- a. Let 6_,62 G T(a;); 

6'_, 62 G T(x') be the unique vertices in T(x), T(x'), respectively, adja­
cent to b. Then the distance between 6_, b2 as measured within T(x) 
is different from the distance between b'_, b'2 as measured within T(x'). 

Note that (5) implies the following: 

(6) Let a 7- x G C D (a), let b G T(x), and let 6_, 62 G T(a) the two 
vertices in T(a) adjacent to b. Then T(b_) f)T(b2) == {a,b}, i.e., the 
only vertices in T adjacent to both 6_ and b2 are a and b. 

(7) | A u t ( r ) | < p ( p 2 - l ) . 

Since G (and hence Aut(r)) acts transitively by conjugation on the directed 
edges of T, and since there are \p(p2 — 1) directed edges in T, it suffices to prove 
that the stabilizer of a directed edge is cyclic of order at most two. Thus, let 
g G Aut(r) fix the directed edge (a, b). Since g fixes a, and since the conjugates 
of C n (a) is a system of imprimitivity for Aut(_T), we conclude that g must fix 
(setwise) the set C n (a). Since T(a) induces a p-gon, we conclude immediately 
that either g induces the identity on T(a), or g induces an involutory involution 
on T(a), fixing only the vertex b. Assume that g induces the identity on T(a). 
We shall argue that, in fact, j = l 6 Aut(r). To accomplish this, it suffices to 
show that 

(i) g fixes C D (a) elementwise, 
(ii) g fixes T(x) elementwise for each x G C C\ (a). 

For each a 7- x G C D (a), there are, by (2) above, exactly two elements, 
6_,62 G r(a;) adjacent to b. As already noticed above, g must map the ver­
tex x to another vertex x' G C D (a), x' 7- a. As a result, g maps the vertices 
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bx, b2 to the two unique vertices &j, b2 G T(x') adjacent to b. By (5), if x' ^ rr, 
this is impossible; therefore we infer already that g fixes C D (a) elementwise. 

Next, as g fixes the vertices 6, x, it is clear that 5 stabilizes the set {bx^b2}. 
Using (2) again, we infer that there is a second vertex b' G T(a) adjacent to bx. 
Thus, b' is adjacent to vertices bl,b'l € T(x); we shall show that b'x 7-= b2. Note 
that b' is a conjugate of b by some power aJ of a; if it were the case that 
b[ = 62, then we would infer that {a^bxa~^a^b2a~^} = {b1? 62}. However, since 
a-7 has order p and centralizes neither of bL, 62, we see that this is impossible. 
Therefore, using the fact that g fixes 6, 6', we may infer that g also fixes bx 

(and hence also b2). 
Finally, since T(x) induces a P-gon, it follows that g fixes T(x) elementwise, 

and so g = 1. It follows, therefore, that the action of an arbitrary element in the 
stabilizer of the directed edge (a, b) is uniquely determined by its effect on T(a). 
As already noted, this stabilizer has order at most 2, and the result follows. 

The proof of the above theorem is concluded by separately considering the 
two relevant cases. 

Case 1: p = 5 (mod 12). 
In this case, if x G C, so is x~l, and the mapping x i-> x~l defines an involu­
tory automorphism of T(p). Since this mapping clearly commutes with conju­
gation by elements of PSL2(p), it follows that we have a group isomorphic with 
Z2 x PSL2(p) acting on T(p). Since this has the maximum allowable order, it is 
the full automorphism group. 

Case 2: p = 7 (mod 12). 
In this case, if x G C, then x~l £ Q. We have a surjective homomorphism 
e: PGL2(p) -> {±1} whose kernel is PSL2(p). Using this define, for each ele­
ment g G PGL2(p), the mapping 7 : C -> C by 7 (x) = gx£^g~x. It is routine 
to verify that g i-» 7 defines an injective homomorphism of PGL2(p) into 
Aut(r), and hence PGL2(p) must be the full automorphism group of T(p). 

The proof is concluded. • 

The next task is to determine the full automorphism group of the canonical 
double cover T. As in [7], identify T with the bipartite graph T* having partite 
classes C, C with jncidence x ~ x' if and only if xx' G T, x G C, x' G C. 
The isomorphism r -> TMs given by (x,() *-* x2~^; as a result, the deck 
transformation (x, 1) «-> (#,—1) corresponds to the "polarity" T* -> T^ where 

x H-> a;3 , rr' H> a:7 , x G C, x' G C where 3A; = 1 (mod p). 

Furthermore, Aut(T) acts on T*, stabilizing the partite classes and commuting 
with the above polarity. 

We proceed to define two more involutory automorphisms on T*, as follows. 
Let r be a generator of ¥x . If rs = 1 (mod p), define the involutory mapping 
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A: rt ->rt by setting 

(x)A-= x r , (x')A = x's, xeC, x'eC. 

We show that A is an automorphism r t . Indeed, if x G C, x' G C with xx' G T , 
then since PSL2(p) acts transitively on directed edges of the form (x, x1), x G C, 
X ' G C , we may assume that 

æ = 
1 1 
0 1 x = 

1 0 
- 3 1 

V "l г" /« 1 0' 
X = 

0 1 æ = -Зs 1 

Therefore, 

an easy calculation shows that xrx's has trace —1 and so represents an element 
of T . Therefore, (x)A and (xf)A are adjacent in r t . 

It is clear that PGL2(p) acts on r t by conjugation. If we let c de­
note conjugation by g G PGL2(p), then the element A* := c~lAc , g G 
PGL2(p) \ PSL2(p), does not depend on the particular choice of element g G 
PGL2(p) \ PSL2(p). Note that 

(*)Д' 
•{ 

if z Є C , 

ir if z e C . 

Therefore, A* is a second involutory automorphism of T*, and 

(г)ДД' 
•{ 

if z Є C, 

if z Є C . 

It follows, therefore, that the dihedral group (A, A*) has order equal to the order 
of the element r in the cyclic group F x . Since r was chosen to be a generator, 
this order is p — 1. 

Prom this we see that the automorphism group of r t has a subgroup of the 
form (A, A*) x PGL2(p), where the action of PGL2(P) on the dihedral group 
(A, A*) has PSL2(p) in the kernel. As a result of the above, (since | Aut(r)| = 
|PGL 2(p)|), we have 

| A u t ( r t ) | > ( p - l ) x | A u t ( r ) | , 

We contend that the above inequality is an equality: 
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THEOREM 2.2. Let p be a prime congruent to 5 or 7 modulo 12, and let 
T = T(p). Let T be the canonical double cover of T. Then | A u t ( r ) | = (p — 1) 
x | Aut(r) | . Furthermore, the structure of Aut(T) is that of PGL2(P) acting 
on a dihedral group of order p — 1. 

P r o o f . For any element // G F x 2 , let 

% = 
1 Џ 
0 1 

as above, we set a = a x . As usual, let T(afl) be the vertices in the graph T 

adjacent to a . If T^a, 1) is the set of vertices in T at distance i from the 

vertex (a, 1) of f, then it follows easily that 

f 1 (a , l ) = r ( a ) x { - l } , 

f 2 ( a , l ) = | J r ( a ^ ) x { l } , 

f ,(a, 1) = {(a„f -1) : p € F x 2 } U | J T(aM) x {-1} , 
M/ieF*2 

f 4 (a , l ) = {(aM , l ) : 1 ^ 6 F x 2 } . 

Since each element (a^, -1) is adjacent to every vertex in T(a ) x {1}, we 
infer easily that the sets T(a^) x {1}, /z G F x 2 , form a system of imprimitivity 
for the stabilizer G(a>1) of (a, 1) in G = A u t ( f ) . Let H < <3 ( a l ) be the 
stabilizer in G ( a l ) of the set T(a) x {1}. Therefore, H acts on the subgraph 
induced by the vertices in T(a) x {±1}, which clearly induces the canonical 
double cover of the ordinary p-gon. Since p is odd, this p-gon is not bipartite 
and it follows that its canonical double cover is the ordinary 2p-gon. It is clear 
that H must fix the partite classes of vertices of this ordinary 2p-gon, from 
which we infer that H must map into the dihedral group D2 of order 2p. We 
claim that the homomorphism H -» D2 is injective. Thus, let h fix pointwise 
the set T(a) x {±1}; we shall show that, in fact, h must induce the identity on 
all of f. 

We first show that h must fix pointwise each of the sets T(afJ) x {1}, where 
1 -jt fi 6 F x 2 . If (b^ 1) € T(a^) x {1}, then by (2) above there are exactly two 
vertices (61,—1), (62, —1) G T(a) x {—1} adjacent to (6^,1). By (6), the pair 
b-^,^ axe adjacent to exactly a and b in T; therefore, (61} —1), (62,—1) are 
adjacent to exactly (a, 1) and (6 ,1). From this, it follows that h fixes (b^ 1), 
proving that h fixes pointwise each of the sets T(afl) x {1}. 

From the above, it is clear that h fixes each of the points (aM, — 1), /JL G F X 2 . 
Finally, arguments similar to those above show also that h must fix each of the 
sets T(a^) x {-1}, 1 ^ / / G F x 2 . 
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Therefore, we conclude that \ti\ < 2p, from which it follows that 

| G ( f l f l ) | < | J 5 T | x | ( p - l ) < p ( p - l ) . 

Since the graph f has 2 x \{p2 - l) = p2 - 1 vertices, and since G acts vertex-

transitively on T, we infer that 

|Aut(f ) | = | G{aJ X (p2 - 1) < P ( P - 1)2(P + 1) 

= ( p - l ) x | P G L 2 ( p ) | ( = | G L 2 ( p ) | ) . 

Since the reverse inequality has already been established, we are finished. D 

Concluding remarks. Since the graphs T(p), p = 5 (mod 12), considered 
above admit a central involutory automorphism (t: x \-> x'1) one might wonder 
(as did the referee!) whether the corresponding halved quotients^(p) := T(p)/(i) 
are also unstable. In fact, excluding only the case p = 5 (T(5) is complete 
on 6 vertices, and is hence stable), these graphs are, in fact, unstable. This 
is easily demonstrated, as follows. Set T = T(p), p = 5 (mod 12), and set 
T = r /(^) , the halved quotient of T by the involution i. Then i also defines 
an automorphism of the graph Tt via x H-> X" 1 ; from this one can identify 
the canonical double cover of the halved quotient T with Tt := T*/(i). Next, 
if A, A* are the involutory automorphisms of Tt given above, then (since 
p > 13) we have (i) = Z((A, A*)), the center of (A, A*), (one checks that 
i = (AA*)^""1)), and so the dihedral group (A, A*) of order p - 1 determines 
a dihedral group of automorphisms (of order ( p - l ) / 2 ) of D . Finally, let r G Fx 

be the generator in the definition of A; then as (3) is not a quadratic residue 
modulo p, we may write 3 = r2l+1 for some integer I. One then computes 
that the deck transformation 8 on Tt (# n-> X 3 , X G C, X1 H-> X1 , x' G C;, 
3fc = 1 (mod p)) is given by 8 = (AA*)'A*. This implies that the image of 8 in 
(A,A*)/Z((A, A*)) is not central, and so Aut(Tt) contains automorphisms 
not commuting with the deck transformation of Tt. Thus, T, p = 1 (mod p), 
p > 13 is not stable. It is conceivable, if not likely, that the full automorphism 
group of Tt is (A, A*)/(t) x PGL2(p); we shall leave the details for a separate 
investigation. 

In addition to the automorphism groups of the halved quotients Tt considered 
in the above paragraph, it would be of interest also to compute the automorphism 
groups of the canonical double covers of the graphs in [7] not considered herein. 
These are the unstable graphs based on the space f.}+(2n,2) and the graphs 
based on PSL2(g), where q = pn, p prime and n > 1. The automorphism groups 
of the canonical double covers of these graphs will be considered elsewhere. 
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Finally, with the automorphism groups of the graphs in this investigation 
having been determined, it would be of considerable interest to determine the 
regular embeddings of these graphs (and their canonical double covers; keeping 
in mind that the results of [5] no longer apply) into orientable surfaces (or for 
the above halved quotients, into nonorientable surfaces); again, this is best left 
to a separate project. 
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