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Math. Slovaca 39, 1989. No. 4, 377—390 

LINEAR TRANSFORMS SUPPORTING CIRCULAR 
CONVOLUTION ON RESIDUE CLASS RINGS 

LADISLAV SKULA 

0. Introduction 

The aim of this paper is to describe all the linear transforms supporting 
circular convolution on a residue class ring Z/mZ for any integer m ^ 2. This 
question was raised in [4] (5.5). According to the results of [4] (2.9) the investiga
tions of such transforms lead to those of the matrices supporting circular con
volution — SCC-matrices (1.1). It is shown that this general case leads to the case 
of m being a prime power m = pn. 

We describe all the SCC-matrices in the residue class ring Z/pnZ in the Main 
Theorem 1.5 by means of p-adic integers discovered by K u r t Hense l at 
the beginning of this century. 

Linear transforms over a commutative ring with an identity element sup
porting circular convolution are exactly defined in [4] (2.3). The beginning of 
investigations of these questions is due to R. C. A g a r w a l and Ch. S. Bur-
rus [1]. 

The basic property of p-adic integers can be found in [2] or [3]. 

1. Introductory Paragraph 

Throughout the whole paper we shall denote by 
IV a positive integer 
p a prime 
n a positive integer 
Z the ring of rational integers 
Zp the ring of p-adic integers, hence each element aeZp has the form 

a = a0 + a,p + a2p
2 + ... 

whee 0 = at ̂  p - 1 (i = 0, 1, 2, ...) 
are rational integers, 

0n the canonical homomorphism from the ring Zp onto the quotient ring 
Zp/p

nZp = Z/pnZ (canonically), i.e. for zeZp we have ze0n(z)eZp/p
nZp. 
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N= 1 п. 
10, 

/_, akuЬkvCkw ^ 
п. 
10, * = 0 

п. 
10, 

If X = (x^ (0 ^ / ^ K - 1, 0 ^ j <£ L — 1) is a matrix over the ring Zp of size 
K/L9 we denote by 0n(X) the matrix (0n(xij))(O S i S K - 1, 0 £j S L - 1) 
over the ring Zp/p

nZp of size K/L. 
1.1. Let R be a commutative ring with an identity element 1R different from 

the zero element 0^ of R. In the paper [4] (2.8) the notion of matrices supporting 
circular convolution was introduced in the following way: 

Let A = (atj)9 B = (b,y), C = (cl7)(0 5S /, j ^ IV - 1) be square matrices of 
order IV over R (aij9 bij9 c^eR). We say that the matrices A, B, C support circular 
convolution or briefly they are SSC-matices if for each 0 ^ u9 v9 w :_ IV — 1 the 
following relation holds: 

for u + v + w = 0 (mod IV) 

otherwise. 

This notion is justified by that of linear transforms supporting circular con
volution (or having the circular convolution property) as explained in [4] (Para
graph 2) and it is connected with the notions of Circular Convolution and 
Discrete Fourier Transform. 

1.2. For the case R being a (commutative) field the following theorem was 
derived [4] (3.6): 

Theorem. Let F be a commutative field and A = (atj)9 B = (btj)9 C = (ctj) 
(0 S U j ;= 1V — 1) square matrices of order IV over F. Then the following state
ments are equivalent: 

(a) The matrices A, B, C support circular convolution. 
(b) For each 0 :_ k ^ IV — 1 there exist ak9bk9 ck9 gkeF such that 

(P) Nakbkck=\F, 
(y) the elements gk (0 ^ k ^ N — 1) are different, 
(5) 0** = gk<ik, hh = A , <** = gkCkfor each 0 ^ h ^ IV - 1. 
It was also shown in [4] (4.1) that the Theorem holds even if the field F is 

replaced by an integral domain D. 
1.3. From the definition of SCC-matrices it follows that the study of SCC-

matrices over the direct sum of rings leads to the study of SCC-matrices over 
single components. Thus the investigation of SCC-matrices over a residue class 
ring Z/mZ (m a rational integer ^ 2) is reduced to the case of m being a prime 
power. Our main result gives a description of the SCC-matrices over such a ring 
by means of p-adic integers. 

From the definition of SCC-matrices we immediately obtain. 
1.4. Theorem. Let A, B, C be SCC-matrices over the ring Zp. Then the 

matrices <Pn(A)9 &n(B)9 <Pn(C) over the ring Z/pnZ (Zp/p
nZp) support circular 

convolution. 
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We shall give a proof of the main result of this paper — the converse of 1.4 
— in Paragraph 3: 

1.5. Main Theorem. Let s£9 0b9 <€ be SCC-matrices over the ring Z/pnZ. Then 
there exist SCC-matrices A, B, C over the ring Zp such that srf = #„(A), 
® = *,(B), <€ = 0n(C). 

1.6. Remark . For order IV = 1 or IV = 2 of the matrices si9 Sft, *€ the 
proof was given in [4] (5.4). 

1.7. The question of SCC-matrices over the residue class ring Z/pnZ is 
transferred in this way to the question of SCC-matrices over the ring Zp of p-adic 
integers. The existence of these matrices is solved by theorem [4] (5.1): 

Theorem. Ther exist SSC-matrices A, B, C of order IV over the ring Zp if and 
only if N divides p — 1. 

The description of these matrices is then given by Theorem 1.2 for the integral 
domain D = Zp. 

2. The Rank of Special Matrix 51 

We shall suppose in this paragraph that 

IV = 2, N/p - 1 

and g will mean a rational integer of order IV mod p. 
The congruence mod IV on Z will be denoted only by = . 
The Galois field GF(p) = Z/pZ will be denoted by P and the rational integers 

will often be considered as the eements of the field P as well as the number g_1. 
In this paragraph a special matrix 51 of size IV3/3IV2 over P is defined and it 

is shown (2.9) that the rank of 51 (over P) is equal to 3 IV2 — 21V. 
2.1. Notation. For u9 v9 w9 teZ, u # 0, v ?£ 0 let c = c([u9 v9 w]9 t)eP be 

defined in the following way: 
a) for u 9-= v9 u ^ —v 

c = 

b) for u = —v9uфv 

c = 

•f 
1 

-1 
-1 

1 
0 

for t = w, 
for t = V + w, 
for t = u + w, 
for t = U + V + 
otherwise, 

vv, 

2 
- 1 
- 1 

0 

for t = w, 
for t = V + w = — 
for t = u + w, 
otherwise, 

u+w, 
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c) for u = v, u Џ 

c = 

1 for t = w, 
- 2 for t = w + w, 

1 for t = w + 2w, 
0 otherwise, 

d) for N even, u = v = — 
2 

2 for t = W, 

- 2 for t = —, 
2 

0 otherwise. 

Put for w, i?, A, t G Z, w # 0, v ^ 0 

c(A)([w, i>], t) = c([w, i;, A - (u + i;)], t) 

and for 0 _i A _̂  IV — 1 denote by <£(A) the matrix 

<£(A) = (c(A)([«, r], 0 ) 0 _i«, t? = / V - l , 0 = t^/V-~l) 
of size (N — 1 )2/N oiw P, where [u, v] is an index for the row and t means a column 
index. 

2.2. Lemma. The rank of the matrix (£ (0) {over P) is N — 1. 
Proof. I. For 1 ̂  v :f_ N — 1 let rv be the row of matrix (£(0) with index 

[TV- v, N- 1]. Put 

1 , 
5i = 7;(r* + ••• + r " - ' ) ' 

TV 
( v - N ) ѕ , + #•„_, + ... + r„ f o r 2 ^ v ^ N - l 

and 
s v = (s^, svl, ..., svN_]) for 1 = v ^ IV- 1. 

Then for 0 _i j <S iV — 1 and 1 ^ v _S TV — 1 we have 

forj = 0, 
f o r j = v , 
otherwise. 

It follows that the vectors s„ ..., sN_ , are linearly independent (over P) and 
are elements of the vector space generated by the rows of the matrix <£(0). 

II. It is enough to show that each row of the matrix (£(0) is a linear combina
tion of th vectors s„ ..., s^_,. 

Let 1 f_ w, v S N — 1 and consider the row r = (r0, r„ ..., r#_,) with index 
[n,t;] and let 0 ^ t^ IV- 1. 
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a) Let u =£ v9 u # —v. Then 

Hence r=s„ 
b) Let w .^ — v9u£v. Then 

for t = — (w + v), 
for t = — u9 

for t = — t;, 
for t = 0, 
otherwise. 

s,, where 1 = / = IV - 1, / = - (u + v). 

r, = 

Hence r= su + sv. 
c) Let u == v, u # — i;. Then 

r,= 

for t = 0, 
for t = u, 
for t = w, 
otherwise. 

for t = — 2w, 
for t = — w, 
for t = 0, 
otherwise. 

Hence r = 2sN_u — sl9 where 1 = / = IV — 1, / = — 2w. 
IV 

d) Let IV be even and u = v = —. Then 
2 

Г, = < -

for t = 0, 

for t = —, 
2 

otherwise. 

Hence r = 2sN. 

We get from 2.1 immediately: 
2.3. Lemma. We have for u9v9 w9 t, xeZ, u # 0, v ^ 0: 

c([w, t;, vv + x], t + x) = c([w, r, vv], t). 
2.4. Proposition. There exist rational integers 1 = ui9 i;, = IV — 1 (1 = i = 

= IV — 1) swch that for each 0 _̂  A = IV — 1 the rows of the matrix (£(A) with 
indices [ui9 vt] (1 ^ i = IV— I) form a maximal linearly independent system of 
rows of the matrix <£(A) (oyer P). The pairs [ui9 vt] are mutually different. 

Proof. The Proposition follows from 2.2, because according to 2.3 we 
have 
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c(A)(k v], t) = c(0)([w, v]9 r) 

for 1 = w, t; = TV - 1, 0 S A, t, r ^ 1V - 1 and r = t + A. 
2.5. Notation. Put ~~~ 

d= rf([«, i;, vv], [k, t]) = c([w, v9 w)9 t).g(u + v + w-')keP 

for w, v9 w9 k9 teZ, u ^ 0, t; ^ 0. 
Further let 

© = (d([w, i>, vv], [k, t]))(l £u9 v^N-\90^w^N-\90^k9 t = IV - 1) 

be a matr ix of size 7V(1V — 1)2//V2 over P9 where the triples [«, t;, vv] denote row 
indices and the pairs [k9 t] co lumn indices. 

Then we have : 
2.6. Proposition. There holds 

a) for u =£ v9 u ^ —v 
u + v)k 

b) for u 

for t = w9 

for t = t; + vv, 
for t = « + vv, 
for t = w + v + w, 
otherwise, 

for t = vv, 
for t = t; + w = — w + vv, 
for t = w + vv, 
otherwise, 

for t = vv, 
for t = vv + w, 
for t = vv + 2w, 
otherwise, 

d) for N even and u = v = — 
2 

d = -2g2 = ( - 1 ) 

0 

л + i 

for t = vv, 

for t = vv H — 
2 

otherwise. 

2.7. Proposition. 77te rank of the matrix T> (over P) is equal to N(N — 1). 
P r o o f . According to 2.4 there exist mutual ly different pairs [ui9 vt] 
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(1 = / = TV - 1, 1 = w„ i;, = IV - 1) such that for each 0 = A = IV - 1 the rows 
of the matrix <£(A) with indices [ui9 vf] form a maximal linearly independent 
system of rows of <£(A). 

We show that the rows with indices [ui9 vi9 s] (1 = / = IV — 1, 0 = 8 = N — 1) 
of the matrix I) form a maximal linearly independent system of rows of I>. 

a) Let 1 = u9 v = TV - 1, 0 = w = IV - 1 and let 0 = A = N - 1, A = u + 
+ i; + w. There exist c,eP (1 = / = IV — 1) such that 

ciX)([u9v]9t) = NYJ
]cic^([ui9vi]9t) 

/ = 1 

for each 0 = t = ,, Let 0 = W, = IV - 1, w, == A - (w, + i;,) for each 1 = / = 

= / V - 1. 
We have for each 0 = k, t = TV - 1: 

/ V - I / V - I 

X c,d(w„ vi9 w]9 [k9 t]) = X C,C([K/, »/. A - (w, + i;,)], t) .#<*-'>* = 
/ = i i = i 

= g«-')k I Clc
w'([ut, V,], t) = 

/ = 1 

= g(X-')kcw([u,v],t) = 

= C([U, V, W], , ) g ( « + » + «-"') = rf([«, », M,], [fc, , ] . 

b) Let x(/, s)e P for 1 = i ^ N — \,0 ^s ^ N — 1 such that we have for each 
0 = it, t =- N - 1: 

N- 1 JV- I 

^ £ *(/, *M[i/„ »,, J] , [k, t]) = 0. 
1 = 1 .5 = 0 

Put jt(/, a) = x(i, s) fox a, seZ, 0 £ s ^ N — \, s = a. Then 

X' l ' x(i, A - («,. + v$c«\[Ui, Vi], t)g«-»k = 0. 
/ = 1 A = 0 

Hence 

Z *"* I x{i9 A - (W/ + v())c^([ui9 Vi]9 t) = 0 
A = 0 i = 1 

for each 0 ^ k9 t = 1V - 1. Since det(£**)(0 = A, k = 1V - 1) is the Vande r -
monde , it differs from 0 and we have 

N- 1 

I 
/ = 1 

X x ( i , A - ( и / + ť,))cW([И/,i,/],/)=-0 
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0 for ю = x, t Џ u, 
p(v + »)* for (Û = JC, t = u, 
0 for (o = j , t Џ v, 

(u + w)k for Ű) = y, t = V, 
0 for (Ù = z, t ф w, 
„(u + v)k for CO = z, t = w. 

for each 0 ^ A, t ^ 1V - 1. According to 2.4 we have 

x(i9 X - (uf + v{)) = 0 for each l = i = 1V-l,0 = A = jV-l. 

2.8. Notation. For u9 v9w9k9teZ and tOG{x, y, z} (x, ^, Z are any different 
symbols) we define an element from P: 

a([u9 v9 w]9 [co9 k9 t]) 

Further let 

21 = (a([u9 v9 w]9 [co9 k9 t])) (0 = u9 v9 w = IV - 1, coe{x9 y9 z}9 

0 = k9 t = 1V - 1) 

be the matrix of size 1V3/31V2 over the field P9 where [u9 v9 w] ar indices for rows 
and [co9 k9 t] are indices for columns. 

2.9. Theorem. The rank of the matrix 21 (over P) is equal to 31V2 — 21V. 
Proof. Let 0 = w, W = 1V- 1, 1 = i , = 1V- 1, 0 = a ^ I V - 1, a=w + w. 

We subtract from the row of 21 with index [u9 v9 w] the row with index [u9 0, a]. 
In this matrix we subtract from the row with index [w, v9 w] the row with index 
[0, v9 fJ]9 where 1 = w, t; = 1V - 1, 0 = vv = 1V-l, 0 = £ = 7 V - 1 and /? = 
= u + w. 

Then we get the matrix 93 = (b([u9 v9 w]9 [co9 k9 t]) (0 = u9 v9 w = 1V — 1, 
a>e{x,y, z}, 0 = k, t = 1V- 1). Let T = [x9 k9 t]9 0 = k9 t = 1V- 1 and let 0 = 

= w, t;, w = 1V — 1. We have 

{2wk for t = w, 
b([W, 0, w], 7) = a([W, 0, vv], T) = J J ^ , # w ; 

For » # 0, « = 0 we have 

Z>((0, i>, w], T) = a([0, », W ] , Y) - a([0, 0, v + w], T) = 0. 

For » # 0, « # 0 we have 

b([u, v, w], T) = a([u, v, w], T) - a([u, 0, v + w], T) -

- a([0, v,u + w], T) + a([0, 0, u + v + w], T) = 0. 

Hence we obtain for 0 _̂  u, v, w S N — 1, 0 _̂  k, t ^ N — 1 

•"* for t = «, » = 0, ft?" (*) *([«, v, w], [x, k, t]) = IJ otherw.se 
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Let T= [y, k, t], 0 _ k, t _ N - 1, 0 _ u, v, w _ N - 1, v # O.Then 

W , v, w], T) - a([0, v, w], T) - a([0, 0, v + w], T) = 

.£<» + »)* f o r * - 0 , 
gnk for t = v, 
0 otherwise. 

For u # 0 we get 

b([u, v, w], T) = a([u, v, w], T) - a([u, 0,v + w], T) -

- a([0, v,u + w], T) + a([0, 0, u + v + w], T) = 0, 

so for 0 _ u, v, w _ N - 1, v # 0 and 0 _ k, t _ N - 1 there holds 

r_g(" + »>* foru = 0,t = 0, 
(**) b([u, v, w], [y, k, t]) = <J gnk for u = 0, t = v, 

( 0 otherwise. 

For 1 _ u, v _ N - 1, 0 _ w _ N - 1, 0 _ k, t _ N - 1, T= [z, k, t] we get 

b([u, v, w], T) = a([u, v, w], T) - a([u, 0, v + w], T) -

- a([0, v,u + w], T) + a([0, 0, u + v + w], T) = 

g(u + v)k for t = w9 u Џ —v9 

g(u + v)k _̂_ J = 2 for t = w9 u = — v9 

-guk for t = V + w9 u ф v9 

-guk-guk = -2guk 
for t = V + W9 U = V, 

-gvk for t = V + w9 u Ф v9 

1 for t = u + v + w9uЏ —v9 

0 otherwise. 

Then we obtain according to 2.6 for 1 __u9v __ N — 1,0 __ w __ N — 1,0 __ k9 

t__N- 1. 

(***) b([u9 v9 w]9 [z, k9 t]) = d([u9 v9 w]9 [k9 t]). 

If we delete from the matrix 35 the rows with indices [w, 0, w] (0 __ u9 

w __ N — 1) and [0, v9 w] (0 __ v9 w __ N — 1, v j - 0) and the columns with indices 
[JC, k91] and [y, k9 t] (0 __ k91 __ N — 1), we get according to (***) the matri D. 
If we denote by r(2I), r(95), r(D) the ranks of matrices 21, 93, 3), then we get 
according to (*), (**) and 2.7 th equality: 

r(2l) = r(5B) = r(£>) + IV2 + IV(IV - 1) = 3IV2 - 2IV. 
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ð(u- - t)gІL + n)k for 0) = X 
ð(v- - t)g{lt{ ")A for co = y 
ð(w — t)giu + ì)k for co = z 

2.10. Remark, a) We can also define the matrix 31 for IV = 1. Then 

W = ( l , 1, 1) 

and the rank of 91 is 1, so Theorem 2.9 is valid also in the case of IV = 1. 
b) As a colleague of mine Mr. R. Kucera told me, it is aslso possible to 

use here the following function 8 defined for zeZ: 

_ JO forz^O 
S(z) = \l forz = 0. 

Then for u, v, W, k, / eZ , and coe{x, y, z} we have 

c = c([w, i\ M'], /) = £(ir - /) - <S(vr + v - t) - S(w + u- t) + 

+ S(w + u + v - t) 

(for u jk 0, v # 0) and 

a([w, Is U'], [&>, k, /]) = 

Thus function £ c a n be used in 2.2, 2.5 and 2.9. 

3. Proof of the Main Theorem 

3.1. Definition. LetX = (x,,), Y = (yl7) (0 = / = K - 1,0 = j = L - 1) be ma
trices of size K/L over thering Z^ ofp-adic integers and let m be a positive integer. 

Put X = Y (modm) if x,7 = y/;.(mod/w) for each 0 = / ^ K - 1,0 ^ j ^ L - 1. 
In the opposite case X ^ Y(modm). If T = (X, Y, Z), T = (X', Y', Z') are 
triples of matrices over Zp, put T == T(modm) in the case of X = X'(modra), 
Y = Y'(modra), Z = Z' (modm). Otherwise put T # T(modra). 

3.2. Lemma. Let T = (a, /?, y) be a matrix of size 1/3 ver Zp such that 
Nafiy= 1. Then there exist matrices T,, T2, ..., Tpi of size 1/3 over Zp with the 
following properties: 

1° Tt = T(modpn) for each 1 ̂  i^p\ 
2° T^T^modp^') for each 1 = i,j^p2, i#j, 
3° ljT' = (a', /?', / ) /s a matrix of size 1/3 

ofer Z, swc/l //la/ Nap'y' = 1 andT = T(mod/I"), then there exists 1 - i = p2 

swch / h a / T ^ X C m o d p ^ 1 ) , 
4° for 1 = / = p\ T: = (a/, A, ft) We hafe IVa,/?,}',) = 1. 
P r o o f For the integers 0 = x, y=P- 1 put a= a + xp\ 0= p + yp". 

Since Nafiy = 1 and a, p are units in Z,, there exists zeZp such that 
1 - IVa/7/ = Nzpnap. Put f = / + zp". Then IVa/?f = 1. The matrix (a, # f) is 
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denoted by T(x , y). The number of these matrices is equal to p2 and obviously 
they have properties 1°, 2° and 4°. 

Let T' = (a'9 /?', / ) be a matrix of size 1/3 over Zp such that Na'P'y' = 1 and 
T' = T(modp"). Then there exist £, t]9 £eZp such that a' = a+ %p\ 
P' = B+ t]np\ y' = y+ £p". Let x9 yeZ, 0 ^ x, y ^ p — 1 with the property 
x = £(modp) and y = ?7(modp). We have for the matrix T(x, y) = (a, ft, y) 
obviously a = a' (modp*+ ') and /7 = P' (modp* + ' ) . Hence Nafiy' = 1 
(modp" + 1) and IVy' = a~x .p-1 = IVf (modpw + 1), thus f = y'(modpw + 1). It 
follows immediately T(x,y) = T'(modpAI + ! ) . The Lemma is proved. 

3,3. Proposition. Let J be a triple of SCC-matrices of order N over Zp. Then 
there exist p2N triples {X: 1 ^ / ^ p2N} of SCC-matrices of order N over Zp with 
the following properties: 

1° X = T(modpw)for each 1 = i ^ p2", 
2° X # TJ(modp,,+ !)for each 1 ̂  i,j ^ p2", / ^ f 
3° lf T' is a triple of SCC-matrices of order N over Zp such that 

T ' = T(modp"), then there exists 1 _ i ^ p2N with the property J' = X 
(modp" + 1). 

Proof. Suppose T = (A, B, C), A = (akh\ B = (bkh\ C = (c,,)(0 = k, 
h ^ IV — 1) is a triple of SCC-matrices of order IV over Zp. According to 1.2 (for 
integral domain Zp) there exist ak9 pk9 yk9 QkeZp for each 0 ^ k ^ IV — 1 such 
that Nakpkyk = 1, {ft, ft, ..., QN_ ,} is the TV-element set of all the IVth roots of 
unity in Zp and 

Qkh = £>>* , bhh = ft*A, cA./? = Ql!yk 

(0 ^ k, h ^ IV - 1). For 0 ^ k < IV - 1 and the matrix J{k) = (aA, ft, yk) let 
X(A) = (%, A/, Tit,-) be matrices of size 1/3 over Zp (1 ^ i^p2) with the properties 
from 3.2. For a mapping 0 from the set {0, 1, ..., IV — 1} into the set {1, 2, ..., 
P2} put 

A0 = (ftV^*)), B^ = (Qh
kpmk)), C^ = (ftV***)) (0 = k, /1 ̂  IV ~ 1). 

According to 1.2 the triple T0 = (A^, B 0 , C^) forms .SCC-matrices of order JV 
over Z,. Clearly, T^ = T(modp"). 

Let <f>9 y/be different mappings from {0,1, ...,IV' — 1} into {1,2, .. . ,p2}. Then 
there exists 0 ^ k = IV - 1 such that 0(k) # y/(k). Hence T$> # T$> 
(modp" + ' ) , which follows T0 # T^modp"* '). 

Let T' = (A', B' , C') be a triple of SCC-matrices of order IV over Zp with the 
property T' = T(modpw). According to 1.2 we have A' = (a'kh\ B' = (b'kh)9 

C = (c'kh) and 

a'kh = o£a'k9 b'kh = allp'k9 c'kh = ofr; (0 = k, h ^ IV - 1), 

where{cr0, al9..., cr̂ _ J = {Q09 ft,..., £>„_,}, a'k9 p'k, y'keZpmd Na'kP'ky
f
k = 1 for 

each OSk^N- 1. Further 
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a'kh = akh(modpn)9 b'kh = bkh(modpn)9 c'kh = ckh(modpn) 

(0 = k9 h = IV - 1). For h = 0 we obtain (a'k9 p'k9 y'k) = (ak9 pk9 yk) (modpn). 
Hence there exists a mapping 0 from {0, 1,..., IV — 1} into (1, 2, . . . , p2) such that 
« > P'k, Yd = («**(*). /W)> 7*#*)) (modpw+1). 

For h = 1 we get o* = & (mod/?"), hence ok = ft for each 0 = k = N— 1. It 
follows that T' = T0 (modpw + J) and the Proposition is proved. 

3.4. Notation. Let T = (A, B, C), T' = (A', B', C ) be triples of square 
matrices of order N over Zp9 A = (akt)9 B = (b^), C = (c*,), A' = (a'kt)9 

B' = (b'kt)9 C = (c'kt) (0 = k9 t = N - 1). If T' = T (modpn)9 then there exists 
xkt9ykt9zkteZpsuch that 

<*'kt = <*kt + *ktP" > 

b'kt = bkt + yktp
n 

ckt~ ckt + zktP 

0 = k9t = N-\). Put 

0"(T, T ) = (xoo, x01, ..., x0N_ i, ..., xN_ 1N_ ]9 yoo? •••? ZN- \N- l) • 

Then <r(T, T') is a matrix of size 1/3IV2 (a vector of dimension 37V2 over Zp. 
Further we shall consider the following system -9^(T) of TV3 linear congruences 
modp with 37V2 unknowns Xkt9 Ykt9 Zkt (0 —^ k9 t 5S IV — 1). 

N- 1 

^(T): X (Xkubkvckw + Ykvakuckw + Zkwakubkv) = 0 (modp) 
* = o 

(O^w, v, w = N- 1). 

3.5. Proposition. Let T be a triple of SCC-matrices of order IV over Zp. Then 
the rank of the matrix of the system 6^(7) (modp) equals 3IV2 — 2IV, so the 
number of solutions (mod/?) of the system ^(T) modp) is p2N. 

Proof. The Proposition follows immediately from the form of the p-adic 
integers akt9 bkt9 ckt defined by 1.2 and from Theorem 2.9. 

3.6. Definition. A triple T = (A', B' , C ) of square matrices of order IV over 
Zp is said to be a triple of SCC-matrices modpn+] if 0„+1(A'), 0„+ 1(B') , 
</>„+ i(C') are SCC-matrices over the ring Zp/p

n+lZp. 
3.7. Proposition. Let T, T' be triples of square matrices or order IV over Zp9 T 

be a triple of SCC-matrices (in Zp) and T = T' (modp"). Then T' is a triple of 
SCC-matrices mod/)"*1 if and only if the vector cr(T, T') is a solution of the 
system Sf(T). 

Proof. Let A = (akt)9 B = (bkt)9 C = (ckt), A' = (a'kt)9 B' = (b'kt)9 

C = (c'kt), 

a'kt = <*kt + xktP\ 
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bk, = bkt + yktp", 

c'kt = ckl + zk,p
n, 

xkl, ykl, zkleZp and 0 ^ k, t ^ N- 1. Then for 0 ^ u, v, w ^ N — 1 we have 

N-\ N-\ 

Z akub'kvc'kw = J] akubkvckH.+ 
* = 0 <r = 0 

+ />" Z (XkuhvCk* + .Kto**..-*..- + zkwakubke) (mod/7"+ '). 

The result follows. 
Similarly we can prove: 
3.8. Proposition. Let T, T', T" be tnpes of square matrices of order IV over Zp 

and let T = T (modp„), T" = T (modp„). Then T = T" (modp" + ' ) if and only 
ifcr(JT) = (j(JT)(modp). 

3.9. Remark. We obtain from 3.3, 3.7 and 3.8 that the system -9^(T) for each 
triple T of SCC-matrices of order N over Zp has at least p1N solutions. Then the 
following inequality holds for the rank r of the matrix of Sf<J)\ r = 3IV2 — 2IV. 
But for the rank r(9I), r(-t>) of the matrices 91, © defined in Paragrph 2 there 
holds r = r(9l) = r(£>) + IV2 + IV(IV - 1) (s. proof of 2.9), hence r(D) = IV2 -
— N. It means it is enough to prove only the inequality N1 — N = r(I)) in 2.7. 

3.10. Theorem. Let T, T' be triples of square matrices of order N over Zp9 T 
be a triple of SCC-matrices (in Zp) and T' = T (modp"). If Tr is a triple of 
SCC-matrices modp" + *, then there exists a triple T* of SCC-matrices of order 
N over Zp such that 

T' = T*(modpn+l). 

Proof. We obtain the Theorem directly from 3.3, 3.5, 3.7 and 3.8. 

3.11. Proof of Main Theorem 1.5. 

We shall prove this Theorem by mathematical induction with regard to n. 
I. Suppose n = 1 and let st = (Akt)9 M = (Bkt)9 <$ = (Ckt) (0 = k9 

t = N - 1) be SCC-matrices over the ring P = Z/pZ. According to 1.2 there 
exist ak9 bk9 ck9 gkeZ such that g ^ = l (modp), Nakbkck=\ (modp) 
(0 = k = N - 1), the rational integers g0, gl9...9gJf_l are incongruent modp and 
gl

aakeAkt9 g{bkeBkt9 glckeCkt for each 0 = k9 t = IV- 1. 
There exist p-adic integers p0, 6u ..., QNX s u c h that ^ = 1 and 

Qk = gk(modp). Then {Q09 QX9 ..., QN_ ,} is t h e set of all the IVth roots of unity 
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in Z„. Put a, = a,, (5k = bk for 0 ^ A: ^ !V - 1. Since a„ A. -V are units in Z,, 
there exist /,eZ, such that Nor* Aft = -• T h e n X* = c* (modp) and the matrices 
A = {Q'kak), B -= (^A), C = (<?*/*) (0 ^ *, / :g N - 1) have the requiered 
properties according to 1.2. 

II. Let the Main Theorem hold for n ^ 1. Let si, m, <$ be SCC-matrices of 
order Nover the ring Z/p"+lZ = Zp/p"+ 'Zp (canonically). There exist matrices 
A', B', C over the ring Zp such that & + ,(A') = si, 0„+,(B') = ®, 
0(I + 1(C') = <». The triple T ' = (A', B', C ) is a triple of SCC-matrices 
modp"+l. 

By the induction assumption there exists a triple T of SCC-matrices over the 
ring Zp such that T = T' (mod/?")- According to Theorem 3.10 there exists a 
triple T* of SCC-matrices of order N over Zp such that T' = T* (mod/>" + ' ) . 

The Main Theorem is proved. 
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ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СО СВОЙСТВОМ КОНВОПЮЦИИ 

В КОЛЬЦЕ КЛАССОВ ВЫЧЕТОВ 

ЕаоЫау 8ки1а 

Резюме 

Описаны все линейные преобразования со свойством конволюции в кольце класов 
вычетов 2/рп2, где р — простое и п — целое положительные числа. Задача сводится к 
отысканию всех линейных преобразований со свойством конволюции в кольце целых /?-ади-
ческих чисел. Матрицы соответствующих друг другу линейных преобразований «конгруент-
ны» по тоё/Л 
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