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ON TOTALLY BOUNDED GAMES

RYSZARD KRETKOWSKI—RASTISLAV TELGARSKY

The aim of this paper is to establish a closer connection between totally bounded
games and compact-continuous ones (cf. the definitions below). It is known that
each compact-continuous game is totally bounded. Here we show that each
zero-sum two-person game of strategy with bounded payoff function is a dense
subgame of a complete game, and thus, in particular, each totally bounded game is
a dense subgame of a compact-continuous game.

For the background in game theory the reader is refered to [7], and in topology
to [1] or [3].

Let (X, Y, P) be a game of strategy ([7], p. 114), i.e., X and Y are the sets of
strategies of Player I and Player II, respectively, and P: X X Y—R is the real--I
valued payoff function. Player I and Player II independently choose x in X and y in
Y, respectively. If P(x, y)=0, then Player I receives from Player II the amount
P(x, y); if P(x, y)<O0, then Player II receives from Player I the amount |P(x, y)|.
Player I (Player II) tries to maximize (minimize, resp.) the value of P(x, y). The
game (X, Y, P) is said to be determined if

sup infP(x, y) =inf sup P(x, y).
x y y x
In the sequel we assume that the payoff function P is bounded.

The natural (intrinsic) pseudometric px for X and py for Y is defined by the
formula

px(x1, x3) =sup |P(xi, y) = P(x2, y)|

and
pv(y1, y2) =sup |P(x, y:) = P(x, )|

respectively [2, 7, 9, 10]. Let us notice that one can convert the pseudometrics into

metrics by identifying points which are not distinguished by the corresponding

pseudometrics ; the conversion has no influence on strategic properties of the game.
It is easy to check that

|[P(x1, y1) = P(x2, y2)| = px(x1, X2) + py (31, ¥2)-
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Hence it follows that P is uniformly continuous with respect to the product
pseudometric pxxy defined by the formula

Pxxy((x1, Y1), (X2, y2)) = px(x1, X2) + py(y1, y2).

A game (A, B, Q) is said to be a subgame of a game (X, Y, P)if AcX,BcY
and Q =P|(A X B).

From the definition of the natural pseudometrics it follows immediately that for
any subgame (A, B, Q) of (X, Y, P) we have

Pa=px|(AXA) and ps=py|(BXB).

A game (A, B, Q) is said to be a dense subgame of a game (X, Y, P)if A and B
are dense subsets of the pseudometric spaces (X, px) and (Y, py) respectively, and
Q=P|(A X B).

Let us notice that for any dense subgame (A, B, Q) of (X, Y, P) we have

pa=px|(AXA) and ps=py|(BxB).

Furthermore, one can easily prove that

sup irgf Q(a, b)=sup inf P(x, y)

a x y

and

ir’}f supQ(a, b)=inf sup P(x, y).

a y x
We say that a game (X, Y, P) is complete if the pseudometric spaces (X, px)

and (Y, py) are complete (cf. [3], Chapter 6).

Theorem 1. Each game (X, Y, P) is a dense subgame of a complete game
(X, Y, P), i.e., each game has a completion.

Proof. Let (X, px) and (Y, py) be the completions of (X, px) and (Y, py)
respectively. Then setting

Pxxy((X1, §1), (X2, ¥2)) = Px(X1, X2) + Py (¥, ¥2)
we get a complete pseudometric for X X Y so that
ﬁx,(yl(x X Y X XX Y) =px)<y

and X X Y is dense in (X X Y, pxxvy). Since P is uniformly continuous with respect
to pxxy, there is a function P: XX Y—R such that P|(XX Y)=P and P is
uniformly continuous with respect to pxxy. Since (X, Y, P) is a subgame of
(X, Y, P), it suffices to prove that px = px and py = py. We shall show that px = px
only, because the other equality can be shown similarly. So, let x, 7 € X. To prove
that px(x, Z) = px(x, Z), let us take any £ >0 and Cauchy sequences (x,, x,, ...) and
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(21, 22, -..) in (X, px) so that px(x, x,)— 0 and px(Z, z.)—0 as n— . Then we
have

px(%, 2)=sup |P(%, y) - P(2, y)| =sup |P(%, y) - P(Z, y)I,
y
because Y is dense in (Y, py) and |P(%, -)— P(Z, -)| is continuous on (Y, py).
Hence
px(%, 2)<|P(%, y)— P(Z, y)| + ¢
for some y € Y. However,

) |P(x, y) - P(z, y)| = )
=|P(%, y) = P(xu, V)| + |P(xn, y) = P(za, )| + |P(za, y) — P(Z, y)I,

where |P(%, y)— P(x., y)|=0 and |P(z., y)—P(Z, y)| >0 as n—, because
P(-, y) is continuous on (X, px). Hence there is an m € N such that for each n = m
we have

px(%, 2) <|P(Xa; ¥) = P(2., y)| + 3 = px(xa, 2.) + 3¢.
However,

px(x,., Zn)=px(xm Zn)éﬁx(xm i)'i'ﬁx(x_, Z—)+I§x(z-, Zn)
and
Px(x, X)<e and px(z, 2)<e

for some k= m. Therefore
. px(%, Z)<px(x, Z)+ Se.
Finally, we prove the inequality px(x, z) = px(x, 7). Clearly
Px(X, 2)=Px(X, %) + px(¥as 2.) + Px (2, 2)
and hence
Px(X, 2) < px(xn, 2,) + 2€
for some n e N. However

Px(Xn; 22) = Px(Xn, 2.) = px(xa, 2,) = ps(xa, X) +
+ px(X, 2) + px(Z, 2.) = Ppx(xa, X) + px(%, 7) + px(Z, z.) <px(X, )+ 2¢
and hence
Px(%, 2)<px(x, 7) +4e.

The proof is complete.
Remark 1. The families {P(-, y): ye Y} and {P(x, -): x € X} of functions
induce the natural uniformities %x and %y on X and Y respectively. Then
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obviously P is separately uniformly continuous on the product of the uniformities
(X, %x) and (Y, %y). The following result, analogous to Theorem 1, was obtained
by N.J. Young ([11], Theorem 7): P admits a separately uniformly continuous
extension P onto the product of completions (X, %x) and (Y, %y) iff P satisfies
the repeated limit condition, i.e.,

lim lim P(%,., y.)=1lim lim P(x,., y.)

provided that both iterated limits exist.

We say that a game (X, Y, P) is totally bounded if the pseudometric spaces
(X, px) and (Y, py) are totally bounded (cf. [1], p. 332).

Let us notice that a game (X, Y, P) is totally bounded iff at least one of the
spaces (X, px) and (Y, py) is totally bounded (A. Wald [10], 2.1.3). Furthermore,
each subgame of a totally bounded game is also totally bounded, because each
subspace of a totally bounded pseudometric space is totally bounded.

Totally bounded games constitute a natural generalization of matrix games
because for each £ >0 there is a finite subgame which is €-close to the given game
(cf. [10], Theorem 2.3).

A game (X, Y, P) is said to be compact-continuous (J. E. Fenstad [2]) if X and
Y are compact and P is continuous on X X Y.

Since the completion of a totally bounded pseudometric space is totally bounded,
and each totally bounded complete pseudometric space is compact, by Theorem 1
we get

Corollary. Each totally bounded game (X, Y, P) is a dense subgame of the
compact-continuous game (X, Y, P).

Remark 2. It is well known that the mixed extension of a compact-continuous
game constituted by countably additive probability Borel measures is again
a compact-continuous game, where both players have optimal strategies. On the
other hand, there are several types of mixed extensions of totally bounded games
that are determined (cf. J. Kindler [4, 5]), and moreover, the players have
optimal mixed strategies which are finitely additive probability Borel measures
(J. E. Fenstad [2]). However, countably additive optimal mixed strategies need
not exist in general (cf. [2]). Now, according to Corollary, if (X, Y, P) is totally
bounded, then the players have optimal strategies which are countably additive
probability measures defined on Borel o-fields of the completions X and Y. (Note
that the values of the mixed extensions of (X, Y, P) and (X, Y, P) coincide.)

It is easy to show that each compact-continuous game is totally bounded and
complete. Hence, by Corollary, we get

Theorem 2. A game (X, Y, P) is totally bounded iff it is a (dense) subgame of
a compact-continuous game.

384



Remark 3. Theorem 2 reaches beyond the scope of the game theory. E.g., its
topological version reads as follows: a function P: X X Y— R, where X and Y are
sets, can be extended to a continuous function P;: X; X Y;— R, where X, and Y,
are compact spaces, iff P is bounded and the pseudometric space (X, px) is totally
bounded. In view of that interpretation, Theorem 2 is analogous to the following
result of V. Ptak [8]: a function P: X X Y— R, where X and Y are sets, can be
extended to a separately continuous function P,: X, X Y.— R, where X, and Y,
are compact spaces, iff P is separately bounded and satisfies the repeated limit
condition (cf. Remark 1 above).

Remark 4. Denote by (X*, Y*, P*) the mixed extension of (X, Y, P) consist-
ing of finite mixtures of pure strategies (i.e., X* is the set of all x*€[0, 1]* such

that x*(x)=0 for all but finitely many x € X, x*(x)=0 for all xe X, > x*(x)=1,

etc.). If (X, Y, P) is a totally bounded game, then

(*) for each subgame (A, B, Q) of (X, Y, P) the games (A*, B*, Q*) and
(A*, B*, —Q*) are determined.

However, (x) holds iff P satisfies the repeated limit condition (J. Kindler [4, 5, 6]
and N.J. Young [11]). Next, the repeated limit condition is equivalent to the

following:
jfpdnmg:ffpdgdn
xXJy Y JX

for each pair of finitely additive probability measures & and n defined for all
subsets of X and Y respectively (cf. [S] and [12]). The assumption of the total
boundedness of (X, Y, P) is therefore too strong, even for getting (x); it
incorporates, however, a reasonable condition ensuring the equality of repeated
integrals of P with respect to countably additive probability measures on X and Y.
On the other hand, so far there is no topological characterization of those functions
P: XX Y—R for whose the analogue of (x) holds with the mixed extensions
constituted by the countably additive probability measures on X and Y.

Remark 5. The above definitions and theorems can be extended to
non-cooperative games (Xj, ..., X,, Py, ..., P,) of n players, where all P;: x; X ... X
X.— R are bounded. To be more specific, let

pl(xi, x))=sup |Pi(xX1, ..oy Xu) = Pi(X1, ..y Xioty Xy Xinty oo Xn)]

where the supremum is taken over all (xi, ..., Xi_1, Xis1, .., X»), and
pi(x;, xi)= z:lpf:(x-‘, xi).
b=
Then p; is a pseudometric on X; and it is easy to check that for each k=n

|Pk(x1, ceey x")—Pk(x;, ceey x,'.)Iéz;p.-(xn x;)'
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Thus each Py is uniformly continuous with respect to the product pseudometric

p((x1, ...y x0), (x4, ..., x,’,))=§lp,-(x,-, x). -

Assuming that all (X;, p!) are totally bounded it is easy to show that also all (X;, p;)
are totally bounded. Hence the completions (X;, p:) of (X;, p:) are compact and the

n
extensions P, of P, are continuous on (X1 X...XX,, E i)i> . Let us note, moreover,
i=1

that in the case of n =2, it is sufficient to assume that (X, pi) and (X;, p3) are
totally bounded, since then (X;, p?) and (X, p3) are totally bounded by a theorem
of A. Wald ([9], 2.1.3). For n =3, however, the assumption of the total bounded-
ness of all (Xi, p!) cannot be weakened in general, as the following example shows :
Xi=X,=X;={1,2,...,n,...}, Pi(xi, x2, Xx3) =sgn (x2— x5), and P,=P;=0.
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O BIIOJIHE OTPAHUYEHHBIX UI'PAX
Ryszard Kretkowski—Rastislav Telgarsky
Pe3iome
B pa6oTte noka3sbIBaeTcs, YTO KaXAas CTpaTerMyeckasi Mrpa C OrpaHHYeHHOM (yHKUHMe#H BHIMIphIa

SIBJISETCA IUIOTHOW MOAMIPO# MoaHOM Urpbl. OTCIORA NONMyYaeTcs, YTO KaXpas BIONHE OrpaHHYEHHas
Hrpa sIBlSETCH TUIOTHOM NMOAUIpOH KOMIAKTHO-HENPEPHIBHOH HIPbL.
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