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ON FORCED FIRST ORDER NEUTRAL 
DIFFERENTIAL EQUATIONS W I T H 

POSITIVE AND NEGATIVE COEFFICIENTS 

N. P A R H I — S. CHAND 

(Communicated by Milan Medvěd7) 

A B S T R A C T . In this paper, sufficient conditions have been obtained for the os­
cillation of bounded (unbounded) solutions of a class of forced first order neutral 
differential equations with positive and negative coefficients. The techniques used 
here are different from those used to be employed for such equations earlier. 

In recent years, some authors (see [1] - [7]) have studied oscillatory behaviour 
of solutions of first order homogeneous neutral differential equations with posi­
tive and negative coefficients. These coefficients may be constants (see [3]) or 
functions of t (see [1], [4], [6], [7]). Some of the works with variable coeffi­
cients hold for constant coefficients ([1], [7]). In all these papers the problem 
has been reduced to the existence of a positive solution of certain first order 
delay-differential inequality. The assumptions are made conveniently so that the 
inequality does not admit a positive solution and hence a contradiction is ob­
tained. It seems that no work has been done on oscillation of forced first order 
neutral differential equations with positive and negative coefficients. The present 
note is concerned with this problem for equations of the type 

i 

*(*) + У> i (ť)ж( í-т i ) 
z_/ 
i = l 

+ YVj(t)x(t - a3) - Y <fc(*M* " "*) = /(*), (!) 
3=1 k=l 

where p.,qh <E C([t0, oo), [0, oo)), c- G C([t0, oo), R) , t0 G R, r- > 0, aj > 0 
and ak > 0, 1 < i < I, l < i < ^ ^ , l < k < n . The method adopted in earlier 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 34K15, 34K40. 
K e y w o r d s : oscillation, nonoscillation, neutral differential equations. 
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papers for homogeneous equations does not work for (1). In this paper we have 
developed different techniques to study oscillation of (1). All the theorems in 
this paper hold for homogeneous equations. However, Theorems 5 7 hold for 
equations with constant coefficients. 

In [3], F a r r e 11 et al considered first order homogeneous neutral differential 
equation with positive and negative coefficients of the form 

[x(t) + cx(t - r)]f + px(t -o)- qx(t - a) = 0 , (2) 

where p , q, c are constants. They proved that every solution of (2) is oscillatory 
or tends to zero a s t — > o o i f — l < c < 0 , 1 + c — q(o — a) > 0, p > g > 0, r > 0, 
o > 0 and a > 0. To some extent this result is comparable to Theorem 5 of 
this paper. We may note that we deal with several delays (see equation (1)). In 
the process we are able to show that every bounded solution of (1) is oscillatory 
or tends to zero as t —> oo. The conditions in other theorems in [3] are not 
comparable to our conditions in Theorems 5 - 7. 

Y u and W a n g [6] obtained the following result for 

[x(t) + c(t)x(t - r)]' + p(t)x(t -o)- q(t)x(t - a) = 0 . (3) 

If p,q, —c G C([t 0 ,oo), [0,co)), T > 0 , O~ > 0, a > 0, o > a, p(t) — q(t-\-a — o) 
> 0 but 7-: 0 and there hold 

t 

1 + c(t) - / q(s) ds > 0 for large t, 

and either 

or 

t-(o-a) 

л > ì 
Є 

A<^ and M > l - ^ ( l - A - \A - 2A - A2 \ 

then every solution of (3) oscillates, where 

t s 

A = lim inf / (p(s) — q(s + a — o)) I 1 — c(s — o) + / q(u — o) du ] ds 

t—o s—o+a 

and 

t s 

M = lim sup / (p(s) — q(s + a — o)) f 1 — c(s — o) + / q(u — o) du) ds . 

t — o s — o-\-a. 

Although the coefficients in (3) are functions of t, the delays invoked are single 
unlike in (1). These conditions are very complicated for \erification tine u^l 
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examples. On the other hand, our conditions in all the theorems are easy to 
verify. Section 2 deals with these results. By a solution x of (1) on [tx,oo), 
tx>t0, we mean a real-valued continuous function x on [tx — T0, 00) such that 

1 

x(t) + J2 ci(t)x(t — r{) is once continuously differentiable for t > tx and (1) is 
i=l 

satisfied identically for t > tx, where T0 = max{ri,a-,ak : 1 < i < / , 1 < 
j < m, 1 < k < n}. A solution of (1) is said to be oscillatory if and only if it 
has arbitrarily large zeros; otherwise, it is said to be nonosdilatory. 

We assume that there exists F G C"([£0, 00), M) such that F'(t) — f(t). 

In this section we study oscillatory behaviour of solutions of (1) under certain 
conditions on coefficient functions. It may be noted that some of our results are 
not satisfactory for constant coefficients. However, all the results are true for 
homogeneous equations. 

T H E O R E M 1. Suppose that 
1 

(Aa) c- < c{(t) < 0 such that £ ^ > - 1 , 
i=l 

(A2) there exists a j * G { 1 , . . . , m} such that a •* > max{a^. : 1 < k < n). 
and 

n 

.MO >£?*(*-*;.+<**) for t>t0 + T0, 
k=i 

00 , n \ 

(A3) / ( E ? f c ( 0 ) d t < o o , 
t 0

 Xk=l ' 

(A4) F(t) is bounded. 

Then every unbounded solution of (1) oscillates. 

P r o o f . Let x(t) be an unbounded nonoscillatory solution of (1) on [tx, 00), 
tx >t0. Suppose that x(t) > 0 for t > tr > tx. For t > tx + T0, we set 

l n l
r 

z(t) = x(t) + 52ci(t)x(t - r{) - J2 / Qk(s)x{s - ak) ds - F(t). (4) 
i=1 k=1 t-*;*+ak 

Thus, for t > t2 > tx + T0 

z'(t) < vAt)~Yl(ìk{t-(jj' + ak) 
k = l 

x(t-a,)<0. (5) 
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Hence lim z(t) = Lt, —oo < /i < oo. Since x(t) is unbounded, there exists a 
t—>oo 

sequence (t ) C [ L o o ) such that lim £ = oo, lim x(t ) = oo and x(t ) = 
W—»00 ^ - > 0 0 

max{x(£) : t2 < t < tw}. Thus (4) yields 

Z n * - * * 

z(t) > x(t) + J ] C iz(t - r.) - ^ / ^ ( 5 + ak)x(s) ds - (5 , 

* = 1 * = 1 t - a , * 

where we assume that \F(t)\ < /?, t G [£0,oo), that is, 
z 

z ( t ) > x ( / ) + ^ c . x ( t - r - ) - / 3 

( X ! / qk(s + ak) d s ] max{x(s) : t - a •, < s < t} 

From (A3) it follows that 

t-ock 

tlîîäjE Чk(s + ak)ds = 0-

Hence, for 0 < £ < 1 + ^ c^, we may find t3 > t2 such that 
i=l 

Yl / ?*(* + <**) d 5 < ^ 
k=u-ir 

for t >t3. Choosing Hj sufficiently large such that tw > t3 + TQ, we obtain 
z 

* ( * J > x ( ^ ) + J ^ c . x ( ^ - r . ) - / 3 - £ m a x { x ( 5 ) : tw - a^ < s < tw] 
i=l 

> i + 2>.-< 
ѓ = l 

x{tj-ß. 

Thus lim z(£ ) = +00 a contradiction. 
^ - ^ • 0 0 

If x(t) < 0 for £ > tx > tx, then we put H(£) = —x(t) to obtain ?/(£) > 0 for 
t > t1 and 

п / m 

\y(t) + 2 > i ( % ( * - ^ i + 2>,-<*M* - ay> - E 9fc(*)y(* - <*k) = -/(*) • 
L i = l -I j = l fc = l 

Setting G(t) = —F(t) and proceeding as above we get a contradiction. Hence 
the theorem is proved. 
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EXAMPLE 1. Consider 

2t (6) 

( 1 + ^ ) S Í n í + Z L 2 J L C O S Í 

for t > An. Here 
„ , N (1 + 4 T T ) TT- 1 . 
F(t) = - ^ — J-cost + s i n / . 

4TT 2 

As all the condi t ions of T h e o r e m 1 are satisfied, t hen it follows t h a t all un­
bounded solutions of (6) are oscillatory. In particular, x(t) = ts'mt is an un­
bounded oscillatory solution of (6). 

It is interesting to note that equation (1) admits an unbounded nonoscillatory 
solution if F(t) is unbounded notwithstanding the conditions (A :) (A3) . 

EXAMPLE 2. The equation 

x(t) - \x(t - 2TT)1 + tx(t - TT) + tx(t - 2TT) - \x(t) - \x(t - TT) 
2" t2 УJ ŕ' 

= ( 7 r + I) c o s t + {k ~Kt\smt- ^ s i n t + l + 4t 2 + - ^ -6nt- | 

for l > 37r, admits an unbounded nonoscillatory solution x(t) = £(sinl; + 2). 
Clearly, the assumptions (AX)-(A3) hold and 

t 
, , t 4 / 3 o 9TT f sin 6 , ^ 

F (£ ) = | - s i n / + 7r6Cosi + I+ ^ - - 3 7 r £ 2 - 4 1 o g £ - - y - - TT / - ^ - d<9 
37T 

is unbounded. 

The following example demonstrates that the assumptions (Ax) (A4) are 
not enough for the oscillation of all bounded solutions of (1). 

EXAMPLE 3. Consider 

x(t) - ^x(t - 2TT) + ^x(t - 2TT) - -^x(t - TT) = - ^ 3 — ~ 

for / > 37T. In this case 

F « ) = ( 2 . 

Although all the conditions of Theorem 1 are satisfied, the above equation admits 
a bounded nonoscillatory solution x(t) = 2. 

ГJ *ÅJ l ť ЉшU i \ I o чAJ \ V i \ i o 

t2 У > t3 V ) t3 

l-2t 
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THEOREM 2. Suppose that the assumptions (AX)-(A3) hold and 

(A7.) Urn F(t) == (3, - o o < /? < oo . 
t ->00 
OO 

(A5) Jp. . ( t )di = +oo 

are satisfied. Then every bounded solution of (1) oscillates or tends to zero as 
t —> oo . 

P r o o f . Let x(t) be a bounded nonoscillatory solution of (1) on [tx,oo), 
tx>t0. Let x(t) > 0 for t > tx > tx. The case x(t) < 0 for t > tx may similarly 
be dealt with. For t > tx + T 0 , we set z(t) as in (4) to obtain (5). Since x(t) is 
bounded, then z(t) is bounded and hence lim z(t) = /L, where - o o < \i < oo. 

t—>oo 
We consider three cases, viz, 

(i) fi + P<0, 
(ii) n + P = Q, 

(iii) /_ + /?>0. 
Since „(£) is bounded, from (A3) it follows that 

t 
n ;. 

& = 1 * _ T .^ -L™, í -o *-fafc 

Thus fj, + /3 < 0 implies that 

0 > lim [z(t) + F(t)} 

> lim 
t—юo 

l П p 

(t) + Y ciX(t -TІ)-Y / qk(s)x(s - ak) ds 

í = i * = - , _ - : : , „ , _ 

> lim 
t—>oo 

ѓ = l 

/ 

t—CГJ* +afc 

x(t) + YciX{t-Ti) 
i=l 

l 

> lim x(t) + lim >^ c-x(í — T.) 

_ _ > ) J*™*W>o, 
Í = I ' °° n i + 

a contradiction. From (5) we obtain, for t>t2 > tx + TQ, 

x(t - O^*) dt < oo. 
г n 

/ L fc=l 

(7) 
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B u t ( A 3 ) and ( A 5 ) imply that 

ľг dt — oo . 

Hence lim x(t) = 0. On the other hand, /i + /3 > 0 and (4) yield 
í—>oo 

0 < fi + P = lim [z(t) + F(t)] < lim x(t), 
t-+oo £—>-oo 

a contradiction. Thus fi + /3 = 0. Consequently, 

0 = lim [z(t) + F(t)] 

> lim 
t—юo 

x(t) + J2cAt~ГІ)] > f1 + È C І ) Д 
i=l J ^ i=l ' 

im x ( í ) . 

Hence lim x(t) = 0. This completes the proof of the theorem. 
t—>oo 

EXAMPLE 4. From Theorem 2 it follows that all bounded solutions of 

D 

[x(t) - \x(t - 1) + ÍZT*(* - 1 } ~ (5ÍЗIJ2 
2 2 16 

* ( ' - . ) 

(ť - l ) 3 í 3 (2í - l ) 4 ' 
ř > 2. 

oscillate or tend to zero as t —> oo. In particular, x(^) = -^ is such a solution of 
the equation. It may be noted that (A^) fails for Example 1 and (A5) fails for 
Example 3. 

COROLLARY. Suppose that the conditions ( A 1 ) - ( A 3 ) ; (A^) and (A5) hold. 
Then every solution of (1) oscillates or tends to zero as t -> oo. 

The proof follows from Theorems 1 and 2. 

THEOREM 3. Le£ (A 2) , (A3) and (A5) hold. Suppose that 

(A'l) limF(t) = 0, 
t->oo 

(A6) 0 < c{(t) < c- such that J2 ci<1-
i=l 

Then every bounded solution of (1) oscillates or tends to zero as t —> oo. 

P r o o f . Let x(t) be a bounded nonoscillatory solution of (1) on [tx,oo), 
tx>t0, such that x(t) > 0 for t > tx > tx. Setting z(t) as in (4) for t>t1+TQ, 
we obtain (5). Boundedness of x(t) implies that z(t) is bounded and hence 
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- c o < \i < oo, where lim z(i) = /i. Further, (A3) and boundedness of x(t) 

yield (7). Consequently, from (4) we get 

џ = lim 
t—>oo <*)+ YáФ)<t - < 

i=l 
>o. 

Since z(t) is monotonic decreasing and /1 > 0, then z(f) > 0 for large f. 
Proceeding as in Theorem 2 one may obtain lim x(t) = 0. Since 

^rø-X>г(ф(í-r. 
г = l 

< x(t) + ^ cť(*) 5 3 J qk(s)x(s - a f c) ds + ] Г c ť ( í )^(* ~ O " ^ ) 

* - Г ť 

ѓ = l & = ! t — CTj* + CXk — Г i ѓ = l 

and 

lim 
i—>oo 

then 

^ - É ^ r ø ^ - r , ) ] > Иm U ) _ ^ c г z ( í - r г ) l = ( l - É c
; ) 

.=1 J '^001- І = I J v І=I ' 
Џ: 

'-£ 
ѓ = l 

Cг• Д 

< lim 
i—юo 

t n 

#)+£ 
= 1 k = l i - f f j . + a j 

qk(s)x(s - afc) ds + £ c ť |E( í - r ť ) | + | E ( ŕ ) | 
ѓ = l 

< lim oľ(f) + lim 
, , ^ t—>oo 

Kfc—r, 

I^ c iIZ / Q k ( 3 ) x ( s - a k ) ás 

A — 1 7 1 ^ г'=l k = l t — Gj* +CXк—Ti 

l 

+ lim 
t—>oo 

V^ C г |F( í-r г ) | + |F(í)| 
ť = i 

< 0 . 

Hence /i = 0. Consequently, x(t) < x(t) + J2 c{(t)x(t - T ?) implies that 
2 = 1 

lim .x(f) = 0. If x(t) < 0 for f > f, , then we set ?/(f) x(f) and pro-
t ->oo 
ceed as above to obtain lim y(t) = 0, that is, lim x(t) = 0. Thus the theorem 

/—>oo t-^-oo 

is proved. • 



ON FORCED FIRST ORDER NEUTRAL DIFFERENTIAL EQUATIONS 

THEOREM 4. Suppose that (A 2 ) , (A3) and (A 4) hold. Let 

(A7) l < c x ( t ) < c 1 ; 

(A8) Pj*(t) is monotonic increasing and Qk(t) is monotonic decreasing 
for k <E { l , . . . , n } . 

oo 
(A9) / [pj.(t)/cl(t + T1-aj.)]dt = oo. 

to+<Jj* 

Then every bounded solution of (1) with I — 1 oscillates or tends to zero as 
t —r oo. 

P r o o f . Let x(t) be a bounded nonoscillatory solution of (1) (with / = 1) 
on [tT, oo), tx > t 0 , such that x(t) > 0 for t > t 1 > t x . Setting z(t) as in (4) for 
t >tY +T0, (5) is obtained. Since cx(t) < cx, then proceeding as in Theorem 3, 
we obtain 

oo > џ - lim [x(t) + cľ(t)x(t - r j ] > 0 
ť->co 

and hence z(t) > 0 for t > t 9 > t, + T n , where lim z(t) = lx. If possible, let 
t—>-oo 

/L > 0. Then, for 0 < £ < ji there exists t3 > t2 such that x(t) + cx(t)x(t — rx) > 
/A — e for t > t3 . However, for t > t4 > t3 + T0 , 

^rø + гчt-r,: 

< $ ^ 9 f c ( t - < V +û. f c)-p i . ( t ) 
_/c = l 

+ 

a:(t-<T,.: 

X] «fei* - v + afe - TI) - Pj* (* - ri) 
fc=i 

x ( t - O > -т-J 

< ^ gfc(t - O> + ak-тг)- Pj. (t - тг) 
k=i 

(x(t-ajm)+x(t-ajm - т j ) 

< 
c^t-O--.) 

< 
џ — є 

c^t-a^) 

YsQkit- V +ak~ T i ) ~Pj-(* - T i) 

• (s-(ť - ov.) + Cj(ť - aj.)x{t - a.. - TX)) 
n 

*}Tqk{t- a^ +ak-Tl) -pjt(ť - T J 
L f c = l 

Integrating the above inequality from t 4 to t we obtain 
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0 < z(ť) + z(t - тг) 

<X + (џ 

г 

- " / 

n 

Qк(s ~ °І* + aк ~ тi)-PjЛs ~ TÌ) fc^s-o^) ås 

<X + (џ-є) (Jj, + aк 
тx) às 

í - т i 

I PjЛsì/c^s + т^-aj,) ás 

U—Ti 

where A = z(t4) + z(t4 - r j . Thus 0 < z(F) + z(* - r j < 0 for large t, 
a contradiction due to (A3) and (A9). Hence fi = 0. Consequently, x(i) < 
x(t)+cJt)x(t-T.) implies that lim x(t) = 0. Thus lim x(t) = 0. If x(i) < 0 for 

t-rOO t-^OO 

t>U, then we put y(t) = — x(t) and proceed as above to obtain lim x(t) = 0. 
t—>00 

Hence the theorem is proved. • 

Following examples illustrate above theorems. 

EXAMPLE 5. Consider [x(t) + -x(t — ҡ) + ЫM<-§) 
1 1 1 2 

+ - x(t — 2TT) + -x(t — 7r) — ̂ ^ ( í - 7r) = — (sint - tcost) , Í - 7 Г Í - 7 Г í2' í2 

í > 7Г+ 1. 

Here F(£) = — js'mt. As all the conditions of Theorem 3 are satisfied, then 
every bounded solution of the equation oscillates or tends to zero as t —•> oo. In 
particular, x(t) = sint: is a bounded oscillatory solution of the equation. 

E X A M P L E 6. From Theorem 4 it follows that all bounded solutions of 
4 

[x(t) + 2x(t - ! ) ] ' + ( * - l)x(t - 1) -
(2í - 1) 

1 
тpĄ-ï) 

32 3_ 
( f - 1 ) 2 (2t - l ) 5 t4 (t-1)4' 

t > 1 oscillate or tend to zero as t -> oo. In particular, x(t) = p- is a bounded 
nonoscillatory solution of the equation which —> 0 as t - ) o o . 

In the following we develop another technique to study oscillatory asymp­
totic) behaviour of solutions of (1). This technique is found to be suitable foi 
the study of similar problem for second older equation of t i e form 1 T I sc 
results will be di cussed in a different paper 

00 
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THEOREM 5. Suppose that (A x) ; (A4) hold and 

(HJ m>n, pk(t) > qk(t) and ak> ak, 1 < k < n, such that pk(t) > qk(t) 
for some k G {/,..., n} . 

(H2) p-(t) is monotonic increasing and qk(t) is monotonic decreasing for 1 < 
j < m and 1 < k < n. 

Then every bounded solution 0/(1) oscillates or tends to zero as t —> 00. 

P r o o f . Let x(t) be a bounded nonoscillatory solution of (1) on [tx,oo), 
tx>t0. Let x(t) > 0 for t > tx > tx. Setting 

/ n * - a * 

z(t)=x(t) + Y,ci(t)x(t-ri)-Y, / qk(s)x(s) As - F(t) 
i=1 k=1 t-ik 

for t > t1 + T0, we obtain, due to (H x), that 

7n n 

z'(t) < -J2Pj(t)x(t - a•) + £ 9 f c(t - ak)x(t - ak) 
j=i k=i 

n 

< - 5>*(* - a*) - **(* - "*)]*(* - ^) < 0 • 

(8) 

(9) 

/ e = l 

Since x(f) is bounded, then (Aj), (A^) and (H2) imply that z(t) is bounded. 
Hence —00 < /i < 00 where lim z(t) = /i. From (9) it follows, due to (H 2), 

t—s>00 

that x G ^ ( [ ^ o o ^ R ) and hence qkx G L1 ([*-_, oo),R) , 1 < /c < n. Thus 

lim 
£—>-oo 

*(l) + J > . ( t > ( l - ^ ) 
i = l 

Ał + /3. (10) 

We consider three cases, viz., /JL + /3 > 0, fi + fi < 0 and /i + /? = 0. Let /L + /3 > 0. 
Then, for 0 < e < 11 + /?, there exists a £2 > ^ + T0 such that 

x(t) > x(t) + ] T ct(t)x(t -T.)>(ii + P)-e 
i=i 

for TJ > t2 and hence x <£ L1 ([tx, 00), R) , a contradiction. If /i + /? < 0, then, for 
0 < e < -(fi + P), we can find a t 3 > t 1 + T 0 such that 

/ / 
fi + P + e>x(t) + ^2ci(t)x(t-Ti) > - ^ x ( t - r 2 ) . 

i 1 i=l 
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Hence x £ Ll ([£-_, co), R) , a contradiction. Thus ji + (3 = 0. From (8) we get 

0 = џ + ß - lim 
t—>oo 

> lim 
t—>oo 

ѓ = l 

/ 

ѓ = l 

t - * o o 

t 

^ 0 0 г = l 

> lim x(t) + lim V^ c-x(í - т{ 

i 

> lim x(t) + > c- lim x(t — T) 
~~ /.-->co V J *-— г/.-4oo Ч г / 

i=\ 

г i + E c„ | lim x(ŕ) . 
ż—>oo i = l 

Thus lim x(t) -= 0. For x(t) < 0, £ > t, , the proof is similar and hence is 
t—>oo 

omitted. This completes the proof of the theorem. D 

R e m a r k . The assumption (H-J means that out of m functions pAt) it is 
possible to choose n functions pk(t) satisfying pk(t) > qk(t), 1 < k < n , and 
the corresponding delays satisfying ak > ak, 1 < k < n. It is always possible 

777, 

to rearrange Pj(t)'s in ~^ Pj(t)x(t ~ aj) a n d rename them so that the first n 
.7 = 1 

number of Pj(t) satisfy the condition. 

THEOREM 6. Let (A'A), (Ha) and (H2) ftoW. 7/ 0 < c{(t) < cx, 1 < i < I, 
then every bounded solution of (1) oscillates or tends to zero as t —> oo. 

P r o o f . Let x(t) be a bounded nonoscillatory solution of (1) on [tx ,co) , 
tx _ t0, such that x(t) > 0 for t > tl > tx. Proceeding as in Theorem 5 

we obtain (10). Since c-(t) > 0, then lim \x(t) + J_ c2(£)x(/; — T-) 
t—>oo l ѓ = l 

> 0. Thus 

we consider two cases, viz., /i + / 3 > 0 o r / x + /? = 0. However, // + / ? > 0 
implies that x ^ L 1 ([t l 5 oo),R) , a contradiction. Hence fi + (3 = 0. As x(7:) < 

/ 
T W + zC ci(t)x(t ~ Ti) > then lim x(t) = 0. The proof for the case x(t) < 0 for 

i=\ t ^ ° ° 

t>tx is similar and is omitted. Thus the theorem is proved. D 

E X A M P L E 7. Consider 

x(t) ~x(t-l)\ + (t-l)x(t~l —f^-ï) (2í - 1) 
1 3 3 16 

(t-1)2 + 2 ( ť - l ) 4 ~ í " ~ ( 2 Í - 1 ) 4 ť > 3, 
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Hence F(t) = p- + 3(21-1)3 ~" 2U-1)3 ~~ (t-i) * From Theorem 5 it follows that every 

bounded solution of the equation oscillates or tends to zero. Clearly, x(t) = -j 

is a bounded solution of the equation which tends to zero as t —> 00. 

E X A M P L E 8. From Theorem 6 it follows that all bounded solutions of 

[x(t) + 2x(t- 1)]' + 2x(t - 1) - e-* + 1 / 2 x (t - | ) = - e-< - e " 2 t + 1 , t > 1, 

oscillate or tend to zero as t —> 00. In particular, x(t) = e - t is such a solution. 

R e m a r k . We may note that Theorem 2 cannot be applied to Example 7 as (A3) 
fails to hold. On the other hand, Theorem 5 cannot be applied to Example 4 
as (H 2) does not hold. Further, Theorem 6 cannot be applied to Example 5 as 
(H2) fails to hold. Theorem 3 cannot be applied to Example 8 since (A6) does 
not hold. 

THEOREM 7. Let (A'4), (H x ) and (H 2) hold. Let -00 < c- < c{(t) < - 1 . 
Then every bounded solution x(t) of (1) oscillates or lim \x(t)\ = 0. 

t—>oo 

P r o o f . One may proceed as in the proof of Theorem 5 to obtain x G 
^ ( [ ^ o o ) , ^ ) . Hence lim \x(t)\ = 0. • 

t—>-oo 

Remark. Theorems 5 - 7 hold for equations with constant coefficients. 
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