Imrich Fabrici
Semigroups containing covered one-sided ideals

Mathematica Slovaca, Vol. 31 (1981), No. 3, 225–231

Persistent URL: http://dml.cz/dmlcz/130559

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz
SEMIGROUPS CONTAINING COVERED ONE-SIDED IDEALS

IMRICH FABRICI

In [3] a notion of a covered ideal was introduced. The aim of the present paper is to show some other properties and the mutual relation between covered ideals and bases of semigroups.

Definition 1. A proper left ideal \(L \) of \(S \) is called a covered left ideal (briefly a CL-ideal) if \(L \subset S(S - L) \). Analogously a covered right ideal (CR-ideal) is defined. The case of two-sided ideals will be treated later.

Clearly if \(S \) contains a zero element \(0 \) and \(\text{card } |S|^2 \), then \(0 \) is a CL-ideal. Note that by definition \(S \) itself is not a CL-ideal.

Lemma 1. If \(S \) contains two different left ideals \(L_1 \) and \(L_2 \) such that \(L_1 \cup L_2 = S \), then none of the ideals \(L_1, L_2 \) is a CL-ideal.

Proof. If \(L_1 \cup L_2 = S \), then \(S - L_2 \subset L_1 \), and \(S - L_1 \subset L_2 \). Now \(L_1 \subset S(S - L_1) \) implies \(L_1 \subset S \), \(L_2 \subset S \), \(L_2 \subset S \), \(L_1 \subset L_2 \), hence \(L_1 = L_2 \) a contradiction.

Corollary. If \(S \) contains more than one maximal left ideal, then none of them is a CL-ideal of \(S \).

If \(L \) is a left ideal of \(S \) and \(L \subseteq S_a \), then \(L \) is certainly a CL-ideal. (For, in this case we have \(a \in S - L \).) In particular if \(L = S_a \cap S_b \) is a proper subset of \(S_a \) or \(S_b \) then \(L \) is a CL-ideal of \(S \).

A semigroup in which \(a \) is not contained in \(S_a \) (i.e. \(a \in S - S_a \)) contains CL-ideals, since for the left ideal \(L = S_a \) we have \(L = S_a \subset S(S - L) \).

In a semigroup which does not contain a CL-ideal, the ideal \(S_a \) cannot contain a proper left ideal of \(S \), hence \(S_a \) is a minimal left ideal for every \(a \in S \). In such a semigroup for any \(a \neq b \) we have either \(S_a = S_b \) or \(S_a \cap S_b = \emptyset \). Moreover, \(a \in S_a \) for every \(a \in S \).

Lemma 2. A semigroup \(S \) with \(\text{card } |S| > 1 \) contains no CL-ideals iff \(S \) is a union of (disjoint) minimal left ideals.

Proof. 1. It has been just remarked that such a semigroup is necessarily of the form: \(S = \bigcup_{i \in I} S_{a_i} \), where each summand is a minimal left ideal.
2. Conversely, let be $S = \bigcup_{i \in I} L_i$, where each L_i is a minimal left ideal of S. Any left ideal of S is a union of some minimal left ideals. Write $A = \bigcup_{i \in K} L_i$, $B = \bigcup_{i \in I \setminus K} L_i$, then $S = A \cup B$. By Lemma 1 neither A nor B is a CL-ideal of S.

If S is a union of its minimal left ideals, it is known that S is simple.

In the following when speaking about CL-ideals we shall suppose that such ideals exist i.e. S is not a simple semigroup (without zero) containing a minimal left ideal.

Lemma 3. If L_1 and L_2 are two CL-ideals of S, then $L_1 \cup L_2$ is a CL-ideal of S.

Proof. We have to show that $L_1 \cup L_2 \subseteq S[S - (L_1 \cup L_2)]$. Note that by Lemma 1, $S - (L_1 \cup L_2) \neq \emptyset$. Let x be any element from L_1. $L_1 \subseteq S(S - L_1)$ implies that there is $a \in S - L_1$ such that $x \in Sa$.

1. If $a \in S - L_1 - L_2$, then $x \in S(S - L_1 - L_2)$
2. If $a \in (S - L_1) \cap L_2$, we have $a \in L_2 \subseteq S(S - L_2)$. Hence there is $k_2 \in S - L_2$ such that $a \in Sk_2$. The element k_2 cannot be contained in L_1 since otherwise we would have $a \in Sk_2 \subseteq SL_1 \subseteq L_1$, a contradiction with $a \in S - L_1$. Hence $k_2 \in (S - L_1 \cap (S - L_2)) = S - (L_1 \cup L_2)$. Therefore, $x \in Sa \in SSk_2 \subseteq Sk_2 \subseteq S[S - (L_1 \cup L_2)]$.

We have proved $L_1 \subseteq S[S - (L_1 \cup L_2)]$ and by the same argument $L_2 \subseteq S[S - (L_1 \cup L_2)]$, so that

$$L_1 \cup L_2 \subseteq S[S - (L_1 \cup L_2)].$$

Lemma 4. If L_1, L_2 are two CL-ideals of S and $L_1 \cap L_2 \neq \emptyset$ then $L_1 \cap L_2$ is a CL-ideal of S.

Proof. $L_1 \subseteq S(S - L_1)$ implies $L_1 \cap L_2 \subseteq S(S - L_1) \subseteq S[S - (L_1 \cap L_2)]$.

If we consider the empty set \emptyset as a CL-ideal, we may state:

Theorem 1. The set of all CL-ideals of S (including \emptyset) is a sublattice of the lattice of all left ideals of S (including \emptyset).

Example 1. Let $S = \{a, b, c, d\}$ with the multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

S has the lattice of all left ideals given in fig. 1, while fig. 2 gives the lattice of all CL-ideals.
Definition 2. A left ideal L of S and $L \neq S$ is called the greatest left ideal of S if L contains any proper left ideal of S.

Example 2. Let $S_0 = \langle 0, 1 \rangle$ with the usual multiplication of real numbers and $S_1 = \{a_i, 0\}$, $a_i^2 = a_i$ and 0 having the properties of a zero. Let S be the 0-direct union of S_0 and S_1. Then S contains a unique maximal ideal, namely S_0. But S_0 is not the greatest ideal of S, since S_0 does not contain the ideal $\{0, a_1\}$.

If S contains the greatest left ideal of S, this ideal will be denoted by L^*. Clearly if S contains L^*, then L^* is a maximal left ideal of S.

If S contains the greatest left ideal of S, then L^* will be denoted by L^*. Clearly if S contains L^*, then L^* is a maximal left ideal of S.

\[\begin{array}{c}
(a, b, c, d) \\
(a, b, c) \\
(a, b) \\
(a) \\
\emptyset
\end{array} \]

Fig. 2

Fig. 1

Theorem 2. A maximal left ideal L of S is a CL-ideal of S iff S contains L^* and in this case $L = L^*$.

Proof. 1. By Lemma 1 a maximal left ideal L of S can be CL-ideal only if for any left ideal l of S we have $l \subset L$ (For otherwise $L \cup l$ would be equal to S). Since L is maximal, necessarily $L = L^*$.

2. Conversely, suppose that L^* exists. We prove that $L^* \subset S(S - L^*)$. Since $S(S - L^*)$ is a left ideal of S we have either $S(S - L^*) = S$, or $S(S - L^*) \subset L^*$. In the first case $L^* \subset S = S(S - L^*)$.

In the second case $S(S - L^*) \subset L^*$ and $L^* \subset SL^*$ imply $S^2 = S[(S - L^*) \cup L^*] \subset L^*$. If $S - S^2 = \{a, b, c, \ldots\}$, then any set $S - a, S - b, \ldots$ is a left ideal of S. Hence, since L^* exists we have $S - S^2 = \{a\}$. Denote $S - S^2 = \{a\}$. Then $L^* = S - a$ and $S = L^* \cup \{a\}$. Now $a \cup Sa$ is a left ideal of S and since it is not contained in L^*, we have $a \cup Sa = S$. The equalities $a \cup L^* = a \cup Sa = S$ (since $a \in L^*$ and $a \in Sa$) imply $L^* = Sa$, so that $L^* \subset S(S - L^*)$. This proves our statement.

We now treat the case that S contains more than one maximal left ideal.

Definition 3. A CL-ideal L is called a greatest covered left ideal of S if L contains every covered left ideal of S.

227
If S contains the greatest covered left ideal of S, this ideal will be denoted by L^a. Suppose that S contains maximal left ideals and \(\{L_\alpha/\alpha \in I\} \) is the totality of all such ideals. Denote $\hat{L} = \bigcap_{\alpha \in I} L_\alpha$ and suppose $\hat{L} \neq \emptyset$ (i.e. S is not a simple semigroup containing a minimal left ideal).

If L^a exists, we have necessarily $L^a \subset \hat{L}$. For if there is at least one L_α such that L^a is not contained in L_α, then $L_\alpha \cup L^a = S$ and by Lemma 1 L^a cannot be a CL-ideal.

Unfortunately \hat{L} need not be a covered left ideal.

Example 3. Let S_0 be the multiplicative semigroup of real numbers from the half-open interval $(0, 1)$ and $S_1 = \{0, a_1\}$, $S_2 = \{0, a_2\}$, $a_1^2 = a_1$, $a_2^2 = a_2$, the element 0 having the usual properties of multiplicative zero. The 0-direct union $S = S_0 \cup S_1 \cup S_2$ contains two maximal ideals, namely $L_1 = S - \{a_1\}$, $L_2 = S - \{a_2\}$. The ideal $S_1 \cup S_2$ is not contained in a maximal ideal of S. $\hat{L} = S_0$, $S(S - \hat{L}) = \{0, a_1, a_2\}$ so $\hat{L} \neq S(S - \hat{L})$.

Example 4. Modify the foregoing example by taking for S_0 the closed interval $(0, 1)$. Then S contains a further maximal ideal, namely $L_3 = S - \{1\}$, and $\hat{L} = \langle 0, 1 \rangle$. In this case $S - \hat{L} = \{a_1, a_2, 1\}$ and $S(a_1, a_2, 1) = S$, so that $\hat{L} \subset S(S - \hat{L})$. Hence \hat{L} is a covered left ideal.

An \mathcal{L}-class (the set of all elements of S generating the same principal left ideal) containing a given element a will be denoted by L^a.

An \mathcal{L}-class L^a is a maximal one, if $\langle a \rangle_L$ is not a proper subset of any principal left ideal of S.

In [1] it is proved that a complement of a maximal left ideal is a maximal \mathcal{L}-class. We shall denote maximal left ideals by L_α and corresponding maximal \mathcal{L}-classes by L^a.

Now we introduce a partial ordering \preceq between \mathcal{L}-classes namely: $L^a \preceq L^b$ if $\langle a \rangle_L \subset \langle b \rangle_L$.

A non-empty subset A of S is a right base of S if

1. $A \cup SA = S$
2. there is no proper subset $B \subsetneq A$ such that $B \cup Sb = S$

Consider a quasi-ordering in S, namely: $a \preceq b$ means $\langle a \rangle_L \subset \langle b \rangle_L$.

Lemma 4 [6]. A non-empty subset A of S is a right base of S iff

1. for any $x \in S$ there is $a \in A$ such that $x \preceq a$,
2. for any two distinct elements $a_1, a_2 \in A$ neither $a_1 \preceq a_2$, nor $a_2 \preceq a_1$.

Remark. Lemma 4 implies that a right base A consists of elements from all maximal \mathcal{L}-classes.

Lemma 5 [5]. Let S contain maximal left ideals. Then the intersection of all maximal left ideals $\bigcap_{\alpha \in I} L_\alpha = \emptyset$ iff S is a simple semigroup (without zero) containing a minimal left ideal.
Theorem 3. A semigroup S contains L^q iff

1. S is not a simple semigroup, containing a minimal left ideal,
2. S contains a right base A.

Prof. (a) Suppose that S satisfies (1), (2). Then (see [3], Theorem 1) S contains maximal left ideals. Denote by $\hat{L} = \bigcap_{\alpha \in \lambda} L_{\alpha}$ the intersection of all maximal left ideals. $\hat{L} \neq \emptyset$ by (1). As we know from [4] $L_{\alpha} = S - L^a(\alpha \in \lambda)$ and L^a is a maximal \mathcal{L}-class of S. Then $\hat{L} = \bigcap_{\alpha \in \lambda} L_{\alpha} = \bigcap_{\alpha \in \lambda} (S - L^a) = S - \bigcup_{\alpha \in \lambda} L^a$. So, $S - \bigcup_{\alpha \in \lambda} L^a = \hat{L}$. This implies that no element from $L^a(\alpha \in \lambda)$ and therefore from the right base A belongs to \hat{L}.

Let $x \in \hat{L}$ by any element. By (1) of Lemma 4 there is $a \in A$ such that $x \leq a$, i.e. $(x)_L \subset (a)_L$, or in another form:

$$\bigcup_{x \in L} [x \cup Sx] \subset \bigcup_{a \in A} [a \cup Sa] = S.$$

Hence, we have $\hat{L} \subset SA \subset S(S - \hat{L})$, so \hat{L} is a \mathcal{C}-ideal of S. It remains to show that any \mathcal{C}-ideal is contained in \hat{L}. Let L be any left ideal of S, which is not contained in \hat{L}, so $L \cap (\bigcup_{\alpha \in \lambda} L^a) \neq \emptyset$, i.e. $L^a \subset L$ at least for one $\alpha \in \lambda$. Let $L^b \subset L$ (L^b is a maximal \mathcal{L}-class of S). We shall show that L is not a \mathcal{C}-ideal of S. Let $b \in L^b \subset L$, so $(b)_L \subset L$. In $S - L$ are \mathcal{L}-classes either from \hat{L}, or from $S - \hat{L}$, except L^a. Therefore, there is no \mathcal{L}-class L^a in $S - L$ such that $L^b < L^a$. So we have proved that any left ideal which is not contained in \hat{L} cannot be a \mathcal{C}-ideal of S. Since \hat{L} is a \mathcal{C}-ideal, we conclude that L^a exists and $\hat{L} = L^a$.

(b) Now suppose that S contains L^a. We show that (1) and (2) are satisfied.

It is known that any left ideal of S is a union of certain \mathcal{L}-classes of S, so its complement must be a union of the remaining \mathcal{L}-classes. Let us construct a subset A in the following way: exactly one element is chosen into A from each \mathcal{L}-class in $S - L^a$. We show that A satisfies (1) and (2) of Lemma 4.

Let $x \in S$ be any element. Then either $x \in L^a$, or $x \in S - L^a$. If $x \in L^a$, then $L^a \subset S(S - L^a)$ implies that there is $a \in S - L^a$ such that $x \in Sb$ and $b \in L^a$. From $x \in Sb$ we have $(x)_L \subset (b)_L = (a)_L$, so $x \leq a$. If $x \in S - L^a$, then $x \in L^b$ and $x \leq b$. Therefore, (1) is satisfied in both cases.

Let $a, b \in A$, $a \neq b$. We shall show that neither $a \leq b$ nor $b \leq a$ holds. If $a \leq b$, then $a \cup Sa \subset b \cup Sb$. Since $a \neq b$, we have $a \in Sb$. This implies $(a)_L \subset Sb (b \in (a)_L)$, therefore $(a)_L$ is a \mathcal{C}-ideal of S. Then $L^a \cup (a)_L$ is a \mathcal{C}-ideal of S, properly containing L^a, which is a contradiction. Similarly we can prove that $b \leq a$ does not hold. Hence A satisfies the condition (2) of Lemma 4. We have proved that S contains a right base.
It remains to show that \(S \) is not simple, containing a minimal left ideal. According to Lemma 5 it suffices to show that the intersection of all maximal left ideals is non-empty. This follows from our assumption that \(S \) contains \(L^q \) and from the fact that we always have \(L^a \subseteq \bar{L} \).

Corollary. If \(S \) contains \(L^q \), then \(L^q \) is of the form: \(L^q = \bigcap_{a \in \lambda} L_a \), i.e. \(L^q \) is the intersection of all maximal left ideals of \(S \).

Theorem 4. Every left ideal of a semigroup \(S \) is covered if and only if either there is a chain of principal left ideals such that the union of its elements is \(S^* \), or \(S \) contains \(L^* \).

Proof. (a) Let every left ideal of \(S \) be covered. Let \(L \) be any left ideal of \(S \), and \(a \in L \). Since every left ideal is covered, we have \((a)_L \subseteq S(S(a)_L) \). It implies \(a \in Sb_L \), for \(b \in S(a)_L \), hence \((a)_L \subseteq (b)_L \). So, we can construct a chain of principal left ideals. By Hausdorff Theorem any chain is contained in a maximal one. Denote by \(U_l \) \((a_i)_L \) (\(i \in I \)) a maximal chain of proper principal left ideals of \(S \) and \(\bigcup_{i \in I} (a_i)_L = L_1 \). If \(L_1 = S \) there is nothing to prove more. \(L_1 \subseteq S \) we shall show that \(S \) contains \(L^* \). If \(L_1 \subseteq S \) holds, then \(S - L_1 \neq \emptyset \). \(L_1 \) is a left ideal of \(S \) and therefore (by supposition) a covered one, so \(L_1 \subseteq S(S - L_1) \). For every \(i \in I \), \((a_i)_L \subseteq S(S - L_1) \). There is an element \(c \in S - L_1 \) such that \(a_i \in S c \), therefore \((a_i)_L \subseteq (c)_L \). We shall show that \((c)_L = S \). If this were not true, then \((c)_L \subseteq S \) and since \((a_i)_L \subseteq (c)_L \), then \((c)_L \) would belong to the chain \(U \). But it is a contradiction with our assumption that \(U \) is a maximal chain. Hence \(c \cup S c = S \). The \(L \)-class containing \(c \) is a maximal one. Denote it by \(L^a \). Then \(S - L^a = L_{a1} \) is a maximal left ideal. Every left ideal \(T \) which is not contained in \(L_{a1} \) meets \(L^a \), hence \(T \cap L^a \neq \emptyset \), so that \(T = S \). It means that \(L_{a1} \) is such a maximal left ideal that every proper left ideal of \(S \) is contained in \(L \), hence \(L_{a1} = L^* \).

(b) If \(S \) contains \(L^* \), then \(L^* \) is a CL-ideal and for any proper left ideal \(L \) we have:

\[
L \subseteq L^* \subseteq S(S - L^*) \subseteq S(S - L).
\]

Hence \(L \) is a CL-ideal.

Let \(S \) contain a chain \(U \) of principal left ideals \((a_i)_L \) \(j \in I \), and \(\bigcup_{j \in I} (a_i)_L = S \). Let \(L \) be any left ideal of \(S \). Recall that every left ideal is a union of principal left ideals generated by its elements. Let \(b \in S - L \). Since \(\bigcup_{j \in I} (a_i)_L = S \), then there exists an index \(i \in I \) such that \(b \in (a_i)_L \) and \((b)_L \subseteq (a_i)_L \). The element \(a_i \in L \), since \(a \in L \) would imply \((a_i)_L \subseteq L \) and \((b)_L \subseteq (a_i)_L \subseteq L \) implies \(b \in L \), what is a contradiction with a choice of \(b \). Denote by \(K \) the set of indices of all elements of \(U \) that are
contained in \((a_i)_L\). Clearly \(\bigcup_{j \in I-K} (a_i)_L = S\). All elements \(a_i, j \in I - K\), belong to \(S - L\) and \(\bigcup_{j \in I-K} (a_i \cup S_a_i) = S\).

Now \(L \subseteq \bigcup_{j \in I-K} (a_i \cup S_a_i)\). But \(a_i \in S - L\) for \(j \in I - K\), hence \(L \subseteq \bigcup_{j \in I-K} S_a_i \subseteq S(S - L)\), so that \(L\) is a CL-ideal of \(S\). This proves Theorem 4.

REFERENCES

Received May 11, 1977

Katedra matematiky
Chemickotechnologickej fakulty SVŠT
Gorkého 9
801 00 Bratislava

ПОЛУГРУППЫ СОДЕРЖАНИЕ ЗАКРЫТЫЕ ОДНОСТОРОННИЕ ИДЕАЛЫ

Имрих Фабрици

Резюме

Левый (правый) идеал \(L (R)\) называется закрытым, если

\[L \subseteq S(S - L), \quad (R \subseteq (S - R)R). \]

В настоящей работе доказаны утверждения, касающиеся строения полугрупп, имеющих односторонние закрытые идеалы. Следующие утверждения являются главными:

1. Множество всех закрытых левых (правых) идеалов (включая 0) является подструктурой структуры всех левых (правых) идеалов (включая 0).
2. Приведено необходимое и достаточное условие для того, что бы:
 а) полугруппа содержала самый большой закрытый левый (правый) идеал
 б) всякий левый (правый) идеал полугруппы был закрытым.