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SYMMETRIC HOMOTOPIES FOR SOLVING SYSTEMS
OF POLYNOMIAL EQUATIONS

PAVOL MERAVY
1. Introduction

During the past decade several numerical methods for the solution of the
following problem were suggested.
Problem 1. Find all isolated solution of a system of equations

P(x) =0, )

where P: C" — C" is a polynomial map of degree d = (d,, ..., d,) (i.e. the k-th
component PB.(x) of P(x) is a polynomial of degree d. > 1 for all k =1, ..., n).

The numerical methods for solving Prob.1 are based on the homotopy
approach and differ from one another mainly by the particular form of the
homotopy map used and by the techniques used to prove the convergence of the
particular method. (Under (theoretical) convergence of a homotopy method for
solving Prob. 1 we understand that each isolated solution of (1) can be ap-
proximated with arbitrary precision by a point of at least one homotopy path.)

It is known (Bezout’s theorem and its generalizations, see e.g. [8]) that the
(reachable) upper bound on the number of different isolated solutions of (1) is
given by the (Bezout) number B = d, .d, ... d,. Hence any generally applicable
homotopy for solving (1) must follow at least B homotopy paths.

In different fields of application there are problems where the system (1)
possesses a special property: it has a symmetric solution set (see Sec. 2 and 3).
We shall call such systems symmetric (this corresponds to the concept of
equivariancy from [7]). As B may be very large even for relatively few equations
and small degrees, it is desirable to have an appropriate homotopy method
which could effectively utilize the known symmetry of the system (1).

Li [3] used a homotopy map (with its zero-set symmetric with respect to all
permutations of components of solutions) in order to obtain all roots of a single
polynomial of degree r by following only one homotopy path in C’. Li,
Sauer and Yorke [4] constructed a homotopy map using a special
property of a different nature: keeping the zero-set in the hyperplane at infinity
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unchanged during the continuation they follow less than B homotopy paths in
the proper space.

By the results of Zulehner [9] it is sufficient to find a particular polyno-
mial map R: C" — C" of the given degree d such that the system R(x) = 0 has
exactly B known different solutions which are regulr (i.e. the Jacobi matrix DR
is regular at the solution). By [9] the momotopy map

H(x, 1) = (1 — f) aR(x) + tP(x) )

(0 <t<1) yields for almost all choices of the complex parameter ae C a

convergent homotopy method for Prob. 1. So the problem of the construction
of an appropriate homotopy map for solving a particular symmetric system (1)
is reduced to

Problem 2. Find a polynomial map R: C" — C" of given degree d such that R='((0)
consists of exactly B distinct points x at which DR(x) is regular and the system
R(x) = 0 is symmetric with respect to the same symmetry as the system (1) in
Prob. 1. .

In Sec. 2 we discuss a particular case of symmetry — sign-symmetry — and
we show that in general Prob. 2 need not have a solution. Sec. 3 is devoted to
the general case: we prove the main result (if Prob. 2 has a solution, then almost
every polynomial map of degree d can be used to construct a solution of Prob. 2)
and describe a probability-one procedure for the construction of homotopy
maps (2) for solving Prob. 1 based on our resulit.

2. Sign-symmetry

An arbitrary change of signs of components x, of xe C” can be expressed by
the matrix-vector product Vx, where V is a diagonal n x n matrix with +1 on
the diagonal, i.e. V = diag,(+1). Let S denote the group of all n x n matrices
V = diag,(£1) and let G = S be a subgroup of S.

Definition 1. Let P: C" — C" be a polynomial map of degree d and let G = S
be a subgroup. We say that the system (1) is G-sign-symmetric (or that the map
P is G-sign-symmetric) if for all V € G there holds

VP(x) = P(Vx) forall xeC".
Example 1. An odd polynomial map P is G-sign-symmetric, where
G = {—E, E} and E denotes the unit matrix.
From now on we assume in this section that the map P in Prob. 1 is G-sign-
symmetric for some G = §. We have the trivial
Lemma 1. The solution set P~'(0) of the G-sign-sysmmetric system (1) is a
union of orbits G[x] = {Vx|V € G}, or equivalently,
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xeP'(0)«=VVeG; VxeP~'(0).

The main idea of utilizing the symmetry of the system (1) to construct a
homotopy (2) for solving Prob.1 is simple: Let us choose R to be G-sign-
symmetric. Then for each t€[0, 1] fixed the map H, = H(., t) is G-sign-symme-
tric (in x). So it is sufficient to follow numerically only one homotopy path from
those starting at points in the hyperplane 1 = 0 which belong into the same orbit.
In this way the number of homotopy paths to be numerically followed is equal
to the number of orbits of solution of R(x) = 0.

Let us now return to Prob.2. First we summarize all the properties the
desired polynomial map R: C" — C" should have to be the solution of Prob. 2
(and hence to yield a method for solving Prob. 1):

degree of Risd=(d,, ..., d,), ' 3)
[R™'(0)=B=d,.d,...d,, 4)
rgnk DR(x} =n for all xe R~'(0) )
(i.e. 0e C" is a regular value of R),

R is G-sign-symmetric (6)

where by |4| we denote the number of elements of a set A).

The following example shows that for some choices of n, d, G there is no
solution of Prob. 2.

Example 2. Letn=3,alld,beeven (k =1, 2,3)and G={V,, V,, V,, E},
where

-1 00 10 0 1 0 0
Vi=f 0 -1 0),V,=[ 01 o0}),V,={0 —1 0].
0 0 1 0 0 —1 0 0 —1

It can be easily checked for this example (by comparing the coefficients of the
corresponding monoms in VR(x) and R(Vx)) that the kth component R, of R
can contain only monoms (i.e. they appear with nonzero coefficient c € C) of the
following form

c'xlfu.xi20+l.xj2w+l,

where u, v, we{0, 1, 2, ...} and 2u + 2v + 1 + 2w + 1 < d,.. Then, however, the
system R(x)=0 has always nonisolated solutions: the subspaces
{xe C’x; = x, = 0}, {xe C*|x, = x; = 0}, {xe C*|x, = x, = 0} are contained in
R7Y(0).

Denote N~ = {ke{l, ..., n}|3V € G such that the kth diagonal entry of V is
—1}. The above exainple shows: if there is a k€ N~ such that d| is even, then
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there may be no solution of Prob. 2. In the opposite case it is a rather trivial task
to prove (by verifying (3—6))

Theorem 1. (Solution of Prob. 2 — the case of sign-symmetry.) Let the
G-sign-symmetric system (1) in Prob. 1 satisfy: for all ke N~ the degrees d, are
odd. Let a = (a,, ..., a,)" € C" be any constant vector satisfying: a, # 0 (for all
k=1,...,n)anda, # 1 (if d, = 1). Then the polynomial map R: C" — C", where

Rk(x)=x:"——ak.xk k=1, ..,n

is a solution of Prob.2.

It is clear that y = (y, ..., y,)"€e R7'(0) if and only if foreach k=1, ..., n
there holds: y, = 0 or (if d, > 2) y, = lae|"* ™" .exp (i(¢, + 27j)/d, — 1)) for
some 0 <j < d, — 1, where a, = |a,|.exp (ip,) and |a,| denotes the modulus of
a, € C. By [9] the above choice of R into (2) leads to a convergent homotopy
method for Prob. 1.

This approach was used in [5]to solve the following Prob. 1: the number of
equations is n = 6, the degrees are d, =3 (k =1, ..., 6) and G is generated by
the following three matrices

-1

All components of the map P in Prob. 1 are of the form

Pk(x) = Xy (1 - _&) + Z C(k, il’ i29 il)xi Xi, X,
A/ 1<i<h<i<s6 b

Here A, 4, c(k, i), i, i;) are fixed coefficients and x,, ..., x; the unknowns. The
G-sign-symmetry of P is implied by the zero-nonzero structure of the coef-
ficients c(k, i), i,, i;). This system was obtained by substituting a truncated
expansion of the solution (in terms of approprite eigenfunctions) into a von
Karman equation, which describes the buckling of a flat eastic plate that is
square in shape, simply supported along its edges and subjected to a constant
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compressive thrust applied normal to two of its opposite edges (modulus of the
compressive thrust is proportional to A4; 4, (k =1, ..., 6) are the six smallest
characteristic values; x, (k =1, ..., 6) are the coefficients of the truncated
expansion of the solution).

The computer program was based on the bounded homotopy numerical
algorithm [1]. We have obtained approximations of all B = 3°® = 729 isolated
solutions (all proper). The whole solution set consists of 116 orbits of solutions
(including the singleton-orbit of the trivial zero-solution). Numerically we had
to follow only 115 homotopy paths, 11 of which led to orbits of real solutions
(5 orbits per 4 solutions, 6 orbits per 2 solutions) and 104 to orbits of complex
solutions (72 orbits per 8 solutions, 28 orbits per 4 solutions, 4 orbits per 2
solutions). Using the sign-symmetry of the original system we have decreased
the amount of computations almost 8-times.

3. General symmetry

In this section we shall generalize the ideas introduced in the previous section.
Concerning the symmetry we shall follow the approach from [7] (equivariancy
from [7] corresponds to our concept of symmetry).

First let us introduce some notations. By GL(C, n) we denote the group of
all regulr square matrices with complex entries. For an arbitrary group G a
homeomorphism ¥: G — GL(C, n) will be referred to as a matrix representation
of G (or simply a C"-representation of G). Clearly V (e) = E (where e€ G is the
unit-element of G) and V(g~") = (V' (g))~' (where g~' is the inverse to ge G).
We shall write V, instead of V' (g).

Definition 2 (cf. [7, p. 94]). Let P: C" — C" be a polynomial map of degree d = (d,,
...,d,) and G a group. Let V, W be C"-representations of G. We say that P is
(G, V, W)-symmetric if for all g€ G there holds

W, P(x) = P(V,x) for all xe C".

Examples.
3. Let G = S (see Sec.2). Then P is G-sign-symmetric if and only if Pis (G, V,
W)-symmetric, where for all ge G there holds V, = g, W, = g.
4. An even polynomial map is (G, V, W)-symmetric, where G ={—E, E},
V, = g, W, = E (for all ge G). An even polynomial map is not G-sign-symme-
tric (unless identically zero).
5. The symmetry of the polynomial system considered in [3] is defined by
G = {set of all permutation matrices n x n}, the corresponding representations
are V, = g, W, = E (for all ge G).

Analogously to Lemma 1 we have the trivial
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Lemma 2. Let P: C"— C" be a (G, V, W)-symmetric polynomial map. Then
P~Y(0) is a union of orbits Gy[x] = {V,x|ge G} or, equivalently,

xeP'(0)=VgeG; V,xe P7'(0).

As we are studying methods for solving Prob. 1 (i.e. only isolated solutions
are sought), it is natural to assume the group G to be finite. Moreover, from now
on we assume that the map P in Prob. 1 is (G, V, W)-symmetric, where V, W
are known C"-representations of G.

The solution R of the corresponding Prob. 2 is characterized by (3—5) and

R is (G, V, W)-symmetric. 7

We know already from Sec. 2 that in general Prob. 2 need not have a solution.
A natural question arises: How to find a solution of Prob. 2 if a solution exists?
The answer is based on the following theorem, which is the main result of this
paper. N

Before stating the main result we briefly clarify the structure of the set of
polynomial maps. We identify any particular polynomial map P: C" — C" of
degree d = (d,, ..., d,) with its coefficient-vector ¢ = (¢, ..., ¢,)” (we suppose a
fixed correspondence between particular components c; of ¢ and coefficients of
particular monoms in components of P). Thus the set 2 (n, d) of all polynomial
maps C" — C" of degree at most d (i.e. the kth component is of degree at most
d, for each k =1, ..., n) is isomorphic to C".

Theorem 2. (Main result.) Let there be a solution of Prob.2 (i.e. there is a
polynomial map R satisfying (3, 4, 5, 7)). Then there is an open, dense subsest P*
of P (n, d) such that for all Re P* the map

Rg=—— Y W'RV, ®)
|G| geG

is a solution of prob. 2.
‘The relation (8) is a standard symmetrization as used in [7].

First we discuss some consequence of Thm.2 and prove it in the end of this
section.

Theorem 2 has a constructive character: If there is a solution of Prob. 2 (and
we do not know any particular solution of it), then for almost every Re 2 (n, d)
we obtain by (8) a solution of Prob. 2. (Note that the right-hand site of (8) can
be evaluated for any xe C" as G is finite and V, and W, are known.)

An immediate consequence of Theorem 2 is

Procedure (for solving Prob.2):

Step 1. Choose at random Re P (n, d).
Step 2. Construct Rg according to (8).

282



Step 3. Solve Prob. 1, where P = Rg, using any numerical method (e.g. [1], [9]).
Step 4. a) If (3, 4, 5) are not satisfied for Rg, then with probability one there is
no solution of Prob. 2.
b) If (3, 4, 5) are satisfied for Rg, then Rg can be used in (2) instead of
R to define a (G, V, W)-symmetric homotopy for solving Prob. 1
(starting points for homotopy paths are chosen from the solutions
obtained in Step 3).

Note that there is no need to check the assumption of Thm. 2 before starting
our procedure. The termination in Step 4a expresses the fact that either Prob. 2
has no solution (and Procedure surely terminates at Step 4a) or Prob. 2 has a
solution (and in this case Procedure terminates with probability zero at Step 4a).

Remarks.

1. Let us suppose that we have to solve several Problems 1 with the same #n, d
and the same symmetry (e.g. a parametrized sytem, where the symmetry is
retained for any value of the parameter). In this case our procedure is very
efficient, as we have to solve one Prob. 1 using a general homotopy (following
all B paths) and subsequently several symmetric Problems 1 (following due to
the symmetry each time less than B paths). Of course, in case we have to solve
one particular symmetric Prob. 1 and we can not find an approprite symmetric
map R into (2) without our procedure, it is more effective to apply a general
homotopy method directly to the original Prob. 1.

2. The computational expense of Step 3 and of the subsequent applications of
the symmetric homotopy to symmetric Probs. 1 consists not only in the large
number of homotopy paths but also in the complicated computation of Rgz(x).
(The random choice of R in Step 1 leads to a map with a large number of
monoms.) Hence, although we have a generally applicable and generically
succesful procedure for solving Prob. 2, it may be effective in case of a simple
symmetry to try to construct a simple solution of Prob.2 “by hand”. Such
simple solutions of Prob.2 are given particularly in the case of sign-symmetry
in Thm. 1.

Suppose we used the bounded homotopy numerical method [1] for solving
Prob. 1. Then we solve instead of the system (1) in C" a corresponding homoge-
neous system

P(xy, x)=0 (1)
in C"*!, where the homogenization P of P is defined by

B(xg, xpy ooy X,) = xgk,pk(ﬁ, x-) k=1, .., n).
X, X,
The zero set P~'(0) = C"* ' is homogeneous (i.e. (x,, x)€ P~'(0) <>V 0 # Ae C;
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A(x,, x)e P “(O)j, hence we can project it to the complex projective space CP”"
by the natural projection

Qus1: C"*\{0} > CP",

where g, ., ;(x,, x) is the equivalence class of vectors differing from (x,, x) only
by a complex scalar multiple. A proper solution x of (1) corresponds to a
solution (1, x) of (1"). If (0, x) = 0, then we call x an improper solution of (1)
(corresponding to the solution (0, x) of (1)). We say that a (proper or improper)
solution of (1) is isolated if it corresponds to a solution (x,, x) of (1) projected
on an isolated point g, , ,(x,, x) of g, ;(Z~'(0)) (cf. [1]).

In the bounded homotopy method we do not distinguish proper and im-
proper solutions, so it is sufficient to require instead of (4) and (5)

10,41 (R7'(0)| = B “)
and .
rank D.,O,xﬁ(xo, x)=n, 5)

respectively.

Let us denote by Problem 1'the Prob. 1 with the above introduced concept of
an isolated solution of (1) and by Problem 2’ the problem of finding a polyno-
mial map R: C" — C" satisfying (3,4’,5",7). For these modified problems we
have

Theorem 3. (Main result for the bounded homotopy.) Let there be a polyomial
map R satisfying (3,4',5",7). Then there is an open, dense subset P* of P (n, d) such
that for all Re P* the map Rg given by (8) satisfies (3,4',5'7).

Remark 3. Note that each solution of Prob.2 is also a solution of
Prob. 2’ (the converse is in general not true). However, already a solution of
Prob. 2’ can be used to construct a bounded homotopy method (with H based
on (2)) for solving Prob. 1” and hence Prob. 1 too.

- Proof of Thm. 3. Let us denote the set of all (G, V, W)-symmetric poly-
nomial maps from 2 (n, d) by 24(n, d). This set is clearly a linear subspace of
2P(n, d). The map

c: P(n,d)—> Pgn, d)
defined by
o(R) = Rg (where Rg is given by (8))
is a linear projection onto 2 ;(n, d). So 2 (n, d) is the direct sum of 2 ;(n, d) and

Ker o and there holds dim 2 4(n, d) + dimKer o = dim 2 (n, d) = r. Suppose
now that we have an open, dense set 2% in Pg(n, d), then the set
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P* = 2%+ Kerais also open and dense in 2 (n, d). Hence it is sufficient to
prove

Lemma 3. Let there be a map R* e P 5(n, d) such that (3,4',5") are satisfied.
Then the set 2§ of all maps from P g(n, d) which satisfy (3,4, 5") is open and dense
in 24(n, d).

Let us first introduce some useful notations and recall some basic facts from
algebraic geometry. We denote dim 24(n, d) = s, i.e. Z5(n, d) is isomorphic to
C’. Like in the algebraic geometry we shall also use the Zariski topology in a
complex projective space besides the classical topology. Open sets in the classical
topology in CP™~' are the sets 9,(N), where N is a homogeneous (i.e.
xe N<>VY Ae C; Axe N), open subset of C™. The Zariski topology is defined by
specifying all closed sets (Zariski-closed); open sets in this topology (Zariski-
open) are hence complements of Zariski-closed sets. Zariski-closed sets are the
sets 9,,(N), where N = {xe C"|p,(x) =0( = 1, ..., my)} for some homogeneous
polynomials p; in x,, ..., X,,. A basic result in algebraic geometry (see, e.g., [6;
pp. 21—24)) is that each Zariski-closed sets is a finite union of varieties 77 such
that ¥ & ¥/ for all i # j. Moreover, varieties ¥ in this union are determined
uniquely up to the order of their appearence in the union (A variety is a
Zariski-closed set which is not a union of two proper Zariski-closed subsets).

Proof of Lemma 3. Denote M = {(x,, x, c)e C"*' x C*|R(x,, x) =0,
Re 2 4(n, d)}, where ce C° denotes the coordinate-vector of R as an element of
the space 24(n, d) (i.e. the coefficients of R are linear functions of ce C°. We
shall analyse the set M using arguments analogous to [9; Lemma 2]. Clearly
R(x,, x) is homogeneous separately in (xy, x,, ..., x,) and in (c,, ..., ¢,). So by
[6; Def. 2.9] we can consider the set M = {(@, , 1 (X, X), 0,(¢))|(xo, X, )€ M} as
a subset of CP" x CP*~'. Let us denote o(xy, x, ¢) = (0, + (X0, X) 0,(c)).

Assumption (3) is equivalent to: in each component R, not all coefficients of
the monoms of highest degree are zero; i.e. R does not satisfy (3) if it is from
a Zariski-closed set and hence the set 2§ of all Re Z;(n, d) satisfying (3) is
Zariski-open.

Let 7, be the natural projection of M to CP” and =, be the natural projection
of M to CP*~'. Let us assume the following decomposition of M to varieties

i1=(0 )0 7). g
=1 i=1
where by ¥, (i = 1, ..., m,) we denote varieties for which r,(¥) = CP*~', by X
(j=1, ..., m,) varieties for which m,(X;) ¢ CP*~".

For each Re ?(n, d) the set R~'(0) is an intersection of zero-sets of n
polynomials &, (x,, x) so by [2; Cor. IV.3.2] dim @, ;(R~'(0)) > 0 and hence
R~'(0) is nonempty. This implies that 7,(M) = CP*~ ' and m, > 1.

By [6; Thm.2.23] the projection =,(X;) is a Zariski-closed proper subset of
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CP:~!'foreach j=1, ..., m, hence so is X = U m,(X;), where the union goes
through all ;.

Let o(x¥ x*, c¢*) be a point where the coordinate-vector ¢* corresponds to
R* and (x¥ x*)e(R*)~(0).

From 7,(Y;) = CP* it follows that each Y; contains at least one point o(x;
x*, c¥).

For all varieties Y, there obviously holds that dim ¥, > s — 1. From the
definition of the dimension of a projective variety [6; Def. 2.7] and from (5') it
follows

dimY = min dimT7,

o(xg v O ¥, o) i S AM T v o =5 —1,
.Yo, X, i

where T, .. Y is the Zariski tangent space to ¥ at o(x, x, ¢)€ ¥,. Hence, we

have dim ¥, = s — 1 for all i =.1, ..., m, and, moreover, o(x§, x*, c*)e Y is a
smooth point of ¥, (i.e. dim ¥; = dim Tys v o+ 1)

The set NoReg Y, = {0(x,, x, ¢)€ Y|rank DXO,KRM(xO, x) < n; i.e. the relation
(5’) is not satisfied} is a Zariski-closed subset of Y;and NoReg Y, & Y (as by (5")
o(x¥, x*, c*)¢NoReg Y)). By [6; Prop. 1.14) dimNoReg ¥, < s — 1 and then
also dim 7, (NoReg Y)) < s — 1. Finally, the set

PL = CP~ l\[Xu (C) m,(NoReg X))]

i=1

is Zariski-open and nonempty (as it is a complement of a proper Zariski-closed
set).

We show now that o(c*)e 2%. To do so, it suffices to prove that none of the
points o(x§, x*, ¢*) lies in any X; (j = 1, ..., m,). Let us suppose the contrary,
i.e. o(xg, x*, c*)e X;. Then (analogous as for Y;) we have dim X; = s — 1. By the
implicit function theorem it follows from (5’) that near o(x§, x*, c*) the variety
X, is parametizable by o,(c) from a neighbourhood of g,(c*) so there holds
dim m,(X;) = s — 1. The last is, however, a contradiction to m,(X;) ¢ CP°~".

The set 2% = P Pg is Zariski-open in CP*~ " and by [6; Thm. 2.33] also
open and dense in the classical topology in CP*~'. Moreover, the set 2% is the
set of all maps R (coordinate-vectors) with are of degree d, with all solutions of
R(x,, x) = 0 regular in the sense of (5').

It is clear that from (5') it follows that g, , ,(R~'(0) is a set of isolated points
in CP" and hence it is finite (by compactness of CP"). From [4; Thm. 2.1] it
follows that the multiplicity of each pointin g, , , (R='(0)) is exactly one and the
total number of them is B=4d,.d,...d,.

We conclude this section with the
Proof of Theorem 2. This proof is fully analogous to the proof of Thm. 3.
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An analogous auxiliary lemma to Lemma 3 is used (it differs only in the change
of (4',5") to (4,5)), which can be proved almost step-by-step like Lemma 3. The
only differences are the use of (4), (5) instead of (4'), (5'), respectively, and a
modified definition of

NOReg ),1 = {Q(x07 X, C)E Y;ldet DxR(x05 x) = O, Xo = 0}

(which is a Zariski-closed proper subset of Y, too).
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CUMMETPUYECKHUE I'OMOTOIIUN AJIsA PEHIEHUA
CUCTEM MHOIOUYJIEHHBIX YPABHEHUM

Pavol Meravy
Pe3omMme
B craTbe u3naraercs OAMH TOAXOX K KOHCTPDYKIMH TOMOTONHMYECKHX OTOOpaceHHi,
ABJIAIOILNXCS OCHOBOM BBIYMCIIMTENILHBIX METOAOB U1l OTHICKAHMS BCEX U30JIMPOBAHHBIX PELICHUIA
CHCTEM CUMMETPHYECKMX MHOXO4JICHHBIX ypaBHeHHiA. O6CyxaaeTcs BO3MOXHOCTb 3TOM KOHCTPYK-

UMM B oO1eM cJIyyae. ILTIS[ 3HAaKO-CUMMETPHYECKUX CUCTEM OIMHCAHO OOHO IPOCTOC MOAXOAAILEC
TOMOTOIMHYECKOC 0T06pa7|<eHne.
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