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SYMMETRIC HOMOTOPIES FOR SOLVING SYSTEMS 
OF POLYNOMIAL EQUATIONS 

PAVOL MERAVY 

1. Introduction 

During the past decade several numerical methods for the solution of the 
following problem were suggested. 
Problem 1. Find all isolated solution of a system of equations 

P(x) = 0, (1) 

where P: Cn -* Cn is a polynomial map of degree d = (d,, ..., dn) (i.e. the k-th 
component Pk(x) of P(x) is a polynomial of degree dk > 1 for all k = 1, ..., n). 

The numerical methods for solving Prob. 1 are based on the homotopy 
approach and differ from one another mainly by the particular form of the 
homotopy map used and by the techniques used to prove the convergence of the 
particular method. (Under (theoretical) convergence of a homotopy method for 
solving Prob. 1 we understand that each isolated solution of (1) can be ap­
proximated with arbitrary precision by a point of at least one homotopy path.) 

It is known (Bezout's theorem and its generalizations, see e.g. [8]) that the 
(reachable) upper bound on the number of different isolated solutions of (1) is 
given by the (Bezout) number B = dx.d1...dn. Hence any generally applicable 
homotopy for solving (1) must follow at least B homotopy paths. 

In different fields of application there are problems where the system (1) 
possesses a special property: it has a symmetric solution set (see Sec. 2 and 3). 
We shall call such systems symmetric (this corresponds to the concept of 
equivariancy from [7]). As B may be very large even for relatively few equations 
and small degrees, it is desirable to have an appropriate homotopy method 
which could effectively utilize the known symmetry of the system (1). 

Li [3] used a homotopy map (with its zero-set symmetric with respect to all 
permutations of components of solutions) in order to obtain all roots of a single 
polynomial of degree r by following only one homotopy path in Cr. Li, 
Sauer and Yorke [4] constructed a homotopy map using a special 
property of a different nature: keeping the zero-set in the hyperplane at infinity 
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unchanged during the continuation they follow less than B homotopy paths in 
the proper space. 

By the results of Zu l ehne r [9] it is sufficient to find a particular polyno­
mial map R: Cn -• Cn of the given degree d such that the system R(x) = 0 has 
exactly B known different solutions which are regulr (i.e. the Jacobi matrix DR 
is regular at the solution). By [9] the momotopy map 

H(x, t) = (1 - 0 aR(x) + tP(x) (2) 

(0 < t < 1) yields for almost all choices of the complex parameter ae C a 
convergent homotopy method for Prob. 1. So the problem of the construction 
of an appropriate homotopy map for solving a particular symmetric system (1) 
is reduced to 
Problem 2. Find a polynomial map R: Cn -> Cn of given degree dsuch that R~]((0) 
consists of exactly B distinct points x at which DR(x) is regular and the system 
R(x) = 0 is symmetric with resp&ct to the same symmetry as the system (1) in 
Prob. I. 

In Sec. 2 we discuss a particular case of symmetry — sign-symmetry — and 
we show that in general Prob. 2 need not have a solution. Sec. 3 is devoted to 
the general case: we prove the main result (if Prob. 2 has a solution, then almost 
every polynomial map of degree dean be used to construct a solution of Prob. 2) 
and describe a probability-one procedure for the construction of homotopy 
maps (2) for solving Prob. 1 based on our result. 

2. Sign-symmetry 

An arbitrary change of signs of components xk of xe Cn can be expressed by 
the matrix-vector product Vx, where V is a diagonal n x n matrix with ± 1 on 
the diagonal, i.e. V = diag„(± 1). Let S denote the group of all n x n matrices 
V = diag„(± 1) and let 6 c S be a subgroup of S. 

Definition 1. Let P: Cn -* Cn be a polynomial map of degree d and let G a S 
be a subgroup. We say that the system (1) is G-sign-symmetric (or that the map 
P is G-sign-symmetric) if for allVeG there holds 

VP(x) = P(\/x) forallxeCn. 
Example 1. An odd polynomial map P is G-sign-symmetric, where 

G = {— £, E} and E denotes the unit matrix. 
From now on we assume in this section that the map P in Prob. 1 is G-sign-

symmetric for some G a S. We have the trivial 
Lemma 1. The solution set P~l(0) of the G-sign-sysmmetric system (1) is a 

union of orbits G[x] = {VX|VG G}, or equivalently, 
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x e P - ' C O J o V V e G ; VxeP-'CO). 

The main idea of utilizing the symmetry of the system (1) to construct a 
homotopy (2) for solving Prob. 1 is simple: Let us choose R to be G-sign-
symmetric. Then for each te[0, 1] fixed the map Ht = i/(., t) is G-sign-symme-
tric (in x). So it is sufficient to follow numerically only one homotopy path from 
those starting at points in the hyperplane t = 0 which belong into the same orbit. 
In this way the number of homotopy paths to be numerically followed is equal 
to the number of orbits of solution of R(x) = 0. 

Let us now return to Prob. 2. First we summarize all the properties the 
desired polynomial map R: Cn -+ Cn should have to be the solution of Prob. 2 
(and hence to yield a method for solving Prob. 1): 

degree of R is d = (dl9 ..., dn), (3) 

\R-l(0)\ = B = d{.d2...dn, (4) 

rank Di?(x) = n for all xeiT^O) 
(i.e. Oe Cn is a regular value of R), 

R is G-sign-symmetric (6) 

where by \A\ we denote the number of elements of a set A). 
The following example shows that for some choices of n, d, G there is no 

solution of Prob. 2. 
Example 2. Let n = 3, all dk be even (k = 1, 2, 3) and G = {V„ V2, V3, E}, 

where 

It can be easily checked for this example (by comparing the coefficients of the 
corresponding monoms in Vi?(x) and i?(Vx)) that the kth component Rk of R 
can contain only monoms (i.e. they appear with nonzero coefficient ce C) of the 
following form 

r v 2« V 2V + 1 v 2w + 1 
L . Ak . A,* . Ay , 

where u, v, We{0, 1, 2, ...} and 2u + 2v + I + 2w + I < dk. Then, however, the 
system R(x) = 0 has always nonisolated solutions: the subspaces 
{xe C3|xj = x2 = 0}, {xe C3|xj = x3 = 0}, {xe C3|x2 = x3 = 0} are contained in 
ir!(0). 

Denote IV = { k e { l , . . . , n } | 3 V e G such that the kth diagonal entry of V is 
— 1}. The above example shows: if there is a keiV~ such that dk is even, then 
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there may be no solution of Prob. 2. In the opposite case it is a rather trivial task 
to prove (by verifying (3—6)) 

Theorem 1. (Solution of Prob. 2 — the case of sign-symmetry.) Let the 
G-sign-symmetric system (1) in Prob. 1 satisfy: for all Ice TV" the degrees dk are 
odd. Let a = («,, . . . , aH)Te Cn be any constant vector satisfying: ak ^ 0 (for all 
k = 1, ..., n) andak # 1 (ifdk = 1). Then the polynomial map R: Cn -> Cn, where 

Rk(x) = xkk -Uk-Xk (k= 1, ..., n) 

is a solution of Prob. 2. 
It is clear that y = (y, ..., yn)

TeR~l(0) if and only if for each k = 1, ..., n 
there holds: yk = 0 or (if dk > 2) yk = \ak\

l/{dk~]) .exp(i(cpk + 2nf)\dk - 1)) for 
some 0 <j < dk — 1, where ak = \ak\. exp(iq>k) and \ak\ denotes the modulus of 
ake C. By [9] the above choice of R into (2) leads to a convergent homotopy 
method for Prob. 1. 

This approach was used in [5] to solve the following Prob. 1: the number of 
equations is n = 6, the degrees are dk = 3 (k = 1, ..., 6) and G is generated by 
the following three matrices 

All components of the map P in Prob. 1 are of the form 

Pk(x) = xk[ 1 - — 1 + £ c(k, /„ i2, i^xixxi2xh. 
\ A>kJ \<ix< i2 < i3 ^ 6 

Here A, A*, c(k, /,, i2 i3) are fixed coefficients and xu ..., x6 the unknowns. The 
G-sign-symmetry of P is implied by the zero-nonzero structure of the coef­
ficients c(k, i„ /2, i3). This system was obtained by substituting a truncated 
expansion of the solution (in terms of approprite eigenfunctions) into a von 
Karman equation, which describes the buckling of a flat eastic plate that is 
square in shape, simply supported along its edges and subjected to a constant 
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compressive thrust applied normal to two of its opposite edges (modulus of the 
compressive thrust is proportional to A; Xk (k = 1, ..., 6) are the six smallest 
characteristic values; xk (k = 1, ..., 6) are the coefficients of the truncated 
expansion of the solution). 

The computer program was based on the bounded homotopy numerical 
algorithm [1]. We have obtained approximations of all B = 36 = 729 isolated 
solutions (all proper). The whole solution set consists of 116 orbits of solutions 
(including the singleton-orbit of the trivial zero-solution). Numerically we had 
to follow only 115 homotopy paths, 11 of which led to orbits of real solutions 
(5 orbits per 4 solutions, 6 orbits per 2 solutions) and 104 to orbits of complex 
solutions (72 orbits per 8 solutions, 28 orbits per 4 solutions, 4 orbits per 2 
solutions). Using the sign-symmetry of the original system we have decreased 
the amount of computations almost 8-times. 

3. General symmetry 

In this section we shall generalize the ideas introduced in the previous section. 
Concerning the symmetry we shall follow the approach from [7] (equivariancy 
from [7] corresponds to our concept of symmetry). 

First let us introduce some notations. By GL(C, n) we denote the group of 
all regulr square matrices with complex entries. For an arbitrary group G a 
homeomorphism V: G -» GL(C, n) will be referred to as a matrix representation 
of G (or simply a C"-representation of G). Clearly V(e) = E (where ee G is the 
unit-element of G) and V(g~]) = (V(g))~l (where g~] is the inverse to ge G). 
We shall write Vg instead of V(g). 
Definition 2 (cf [7, p. 94]). Let P: Cn -> Cn be a polynomial map of degree d = (du 

..., d„) and G a group. Let K, W be Cn-representations of G. We say that P is 
(G, V, Wysymmetric if for all geG there holds 

\NgP(x) = P(\/gx) for all xeCn. 

Examples. 
3. Let G c= S (see See. 2). Then P is G-sign-symmetric if and only if P is (G, V, 
W)-symmetric, where for all ge G there holds Vg = g, \Ng = g. 
4. An even polynomial map is (G, V, WO-symmetric, where G = {—E, E}, 
Vg = g, \Ng = E (for all ge G). An even polynomial map is not G-sign-symme­
tric (unless identically zero). 
5. The symmetry of the polynomial system considered in [3] is defined by 
G = {set of all permutation matrices n x n}, the corresponding representations 
are Vg = g, \Ng = E (for all ge G). 

Analogously to Lemma 1 we have the trivial 
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Lemma 2. Let P: Cn -> Cnbea(G, V, W)-symmetric polynomial map. Then 
P~](0) is a union of orbits Gv[x] = {\/gx\ge G} or, equivalently, 

xeP-](0)oVg£G; VgxeP~](0). 

As we are studying methods for solving Prob. 1 (i.e. only isolated solutions 
are sought), it is natural to assume the group G to be finite. Moreover, from now 
on we assume that the map P in Prob. 1 is (G, V, W)-symmetric, where V, W 
are known ^-representations of G. 

The solution R of the corresponding Prob. 2 is characterized by (3—5) and 

R is (G, V, WO-symmetric. (7) 

We know already from Sec. 2 that in general Prob. 2 need not have a solution. 
A natural question arises: How to find a solution of Prob. 2 if a solution exists? 
The answer is based on the following theorem, which is the main result of this 
paper. 

Before stating the main result we briefly clarify the structure of the set of 
polynomial maps. We identify any particular polynomial map P: Cn -> Cn of 
degree d = (dx, ..., dn) with its coefficient-vector c = (cb ..., cr)

T (we suppose a 
fixed correspondence between particular components c, of c and coefficients of 
particular monoms in components of P). Thus the set 0(n, d) of all polynomial 
maps Cn -> Cn of degree at most d (i.e. the kth component is of degree at most 
dk for each k = 1, ..., n) is isomorphic to Cr. 

Theorem 2. (Main result.) Let there be a solution of Prob. 2 (i.e. there is a 
polynomial map R satisfying (3, 4, 5, 7)). Then there is an open, dense subsest 0* 
of 0(n, d) such that for all Re 0* the map 

^ = ̂ w ; ^ (8) 
\G\ geG 

is a solution of prob. 2. 
The relation (8) is a standard symmetrization as used in [7]. 
First we discuss some consequence of Thm. 2 and prove it in the end of this 

section. 
Theorem 2 has a constructive character: If there is a solution of Prob. 2 (and 

we do not know any particular solution of it), then for almost every Re0(n, d) 
we obtain by (8) a solution of Prob. 2. (Note that the right-hand site of (8) can 
be evaluated for any x e C a s G is finite and Vg and \Ng are known.) 

An immediate consequence of Theorem 2 is 
Procedure (for solving Prob. 2): 

Step 1. Choose at random Re0(n, d). 
Step 2. Construct RG according to (8). 
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Step 3. Solve Prob. 1, where P = I?G, using any numerical method (e.g. [1], [9]). 
Step 4. a) If (3, 4, 5) are not satisfied for IvG, then with probability one there is 

no solution of Prob. 2. 
b) If(3, 4, 5) are satisfied for I?G, then RG can be used in (2) instead of 

R to define a (G, V, W)-symmetric homotopy for solving Prob. 1 
(starting points for homotopy paths are chosen from the solutions 
obtained in Step 3). 

Note that there is no need to check the assumption of Thm. 2 before starting 
our procedure. The termination in Step 4a expresses the fact that either Prob. 2 
has no solution (and Procedure surely terminates at Step 4a) or Prob. 2 has a 
solution (and in this case Procedure terminates with probability zero at Step 4a). 

R e m a r k s . 
1. Let us suppose that we have to solve several Problems 1 with the same n, d 
and the same symmetry (e.g. a parametrized sytem, where the symmetry is 
retained for any value of the parameter). In this case our procedure is very 
efficient, as we have to solve one Prob. 1 using a general homotopy (following 
all B paths) and subsequently several symmetric Problems 1 (following due to 
the symmetry each time less than B paths). Of course, in case we have to solve 
one particular symmetric Prob. 1 and we can not find an approprite symmetric 
map R into (2) without our procedure, it is more effective to apply a general 
homotopy method directly to the original Prob. 1. 
2. The computational expense of Step 3 and of the subsequent applications of 
the symmetric homotopy to symmetric Probs. 1 consists not only in the large 
number of homotopy paths but also in the complicated computation of RG(x). 
(The random choice of R in Step 1 leads to a map with a large number of 
monoms.) Hence, although we have a generally applicable and generically 
succesful procedure for solving Prob. 2, it may be effective in case of a simple 
symmetry to try to construct a simple solution of Prob. 2 "by hand". Such 
simple solutions of Prob. 2 are given particularly in the case of sign-symmetry 
in Thm. 1. 

Suppose we used the bounded homotopy numerical method [1] for solving 
Prob. 1. Then we solve instead of the system (1) in Cn a corresponding homoge­
neous system 

P(x0,x) = 0 (1') 

in Cn + \ where the homogenization P of P is defined by 

Pk(x0, xl9 ..., xn) = xtk.Pk(^, ..., ^) (k = 1, ..., n). 

Yx0 X0/ 

The zero set P_1(0) c C + 1 is homogeneous (i.e. (x0,x)ep-\0)oV0 # XeC; 
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A(x0, x)eP ](0)), hence we can project it to the complex projective space CPn 

by the natural projection 

a + i : C " + , \ { 0 } - C P - , 

where Qn +} (x0, x) is the equivalence class of vectors differing from (x0, x) only 
by a complex scalar multiple. A proper solution x of (1) corresponds to a 
solution (1, x) of (1'). If F(0, x) — 0, then we call x an improper solution of (1) 
(corresponding to the solution (0, x) of (1')). We say that a (proper or improper) 
solution of (1) is isolated if it corresponds to a solution (x0, x) of (1') projected 
on an isolated point Q„ + \(x0, x) of Qn + \(P~l(0)) (cf. [1]). 

In the bounded homotopy method we do not distinguish proper and im­
proper solutions, so it is sufficient to require instead of (4) and (5) 

\Qn+l(R~](0))\ = B (4') 
and 

rankDXoXR(x0, x) = n, (5') 

respectively. 

Let us denote by Problem l'the Prob. 1 with the above introduced concept of 
an isolated solution of (1) and by Problem 2' the problem of finding a polyno­
mial map R: Cn -> Cn satisfying (3,4',5',7). For these modified problems we 
have 

Theorem 3. (Main result for the bounded homotopy.) Let there be a polyomial 
map R satisfying (3,4',5',7). Then there is an open, dense subset 0>* of£P(n, d) such 
that for all Re&>* the map RG given by (8) satisfies (3,4',5'7). 

R e m a r k 3. Note that each solution of Prob.2 is also a solution of 
Prob. 2' (the converse is in general not true). However, already a solution of 
Prob. 2' can be used to construct a bounded homotopy method (with H based 
on (2)) for solving Prob. Y and hence Prob. 1 too. 

P roo f of Thm. 3. Let us denote the set of all (G, V, WO-symmetric poly­
nomial maps from SP(n, d) by 0*G(n, d). This set is clearly a linear subspace of 
0>(n, d). The map 

a: 0>(n, d)-*0>G(n, d) 

defined by 

G(R) = RG (where RG is given by (8)) 

is a linear projection onto £PG(n, d). So£P(n, d) is the direct sum of 0>G(n, d) and 
Ker or and there holds dim^G(n, d) + dimKer cr= dim^(n , d) = r. Suppose 
now that we have an open, dense set &>§ in 0?G(n, d), then the set 
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gp* = ^>* + Ker (j is also open and dense in 0>(n, d). Hence it is sufficient to 
prove 

Lemma 3. Let there be a map R*eSPG(n, d) such that (3,4',5') are satisfied. 
Then the set 0>% of all maps from 0>G(n, d) which satisfy (3,4', 5') is open and dense 
in 0>G(n, d). 

Let us first introduce some useful notations and recall some basic facts from 
algebraic geometry. We denote dim£PG(n, d) = 8, i.e. 2PG(n, d) is isomorphic to 
Cs. Like in the algebraic geometry we shall also use the Zariski topology in a 
complex projective space besides the classical topology. Open sets in the classical 
topology in CPmX are the sets Qm(N), where 1V is a homogeneous (i.e. 
xe1V<->VAeC; AxeIV), open subset of Cm. The Zariski topology is defined by 
specifying all closed sets (Zariski-closed); open sets in this topology (Zariski-
open) are hence complements of Zariski-closed sets. Zariski-closed sets are the 
sets Qm(N), where 1V = {xe Cm\pt(x) = 0(i = 1, ...,mN)} for some homogeneous 
polynomials p, in x{, ..., xm. A basic result in algebraic geometry (see, e.g., [6; 
pp. 21—24]) is that each Zariski-closed sets is a finite union of varieties T )̂ such 
that y{ 9- Vf for all i /J. Moreover, varieties y) in this union are determined 
uniquely up to the order of their appearence in the union (A variety is a 
Zariski-closed set which is not a union of two proper Zariski-closed subsets). 

P r o o f of Lemma 3. Denote M = {(x0, x, c)eC"+1 x Cv|iJ(x0, x) = 0, 
Re£PG(n, d)}, where ce Cs denotes the coordinate-vector of R as an element of 
the space 8?G(n, d) (i.e. the coefficients of R are linear functions of ce Cs. We 
shall analyse the set M using arguments analogous to [9; Lemma 2]. Clearly 
R(x0, x) is homogeneous separately in (x0, xx, ..., x„) and in (c,, ..., cs). So by 
[6; Def. 2.9] we can consider the set M = {(Q„ + \(X0, X), QS(C))\(X0, X, c)eM} as 
a subset of CPn x CPsX. Let us denote Q(X0, *> c) = (Qn+ \(xo> x) Qs(

c))-
Assumption (3) is equivalent to: in each component Rk not all coefficients of 

the monoms of highest degree are zero; i.e. R does not satisfy (3) if it is from 
a Zariski-closed set and hence the set 0>G of all Re0*G(n, d) satisfying (3) is 
Zariski-open. 

Let ;<:, be the natural projection of M to CPn and n2 be the natural projection 
of M to CPsl. Let us assume the following decomposition of M to varieties 

,mx \ ,my \ 

M = ^ U / j j ^ ( y Yt), (9) 

where by Y( (i = 1, ..., mv) we denote varieties for which 7r2(Y() = CPS" \ by Xj 
(j = 1, ..., mx) varieties for which 7C2(Xj) g CPS~X. 

For each Re0*(n, d) the set i?-1(0) is an intersection of zero-sets of n 
polynomials ^ ( x 0 , x) so by [2; Cor. IV.3.2] dim£>„ + i(^_1(0)) > 0 and hence 
^"'(O) is nonempty. This implies that n2(M) = CPsX and my > 1. 

By [6; Thm.2.23] the projection x2(Xj) is a Zariski-closed proper subset of 
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CPS] for eachj = 1, ..., mx, hence so is X = u n2(Xj), where the union goes 
through all j . 

Let Q(X*, x*, c*) be a point where the coordinate-vector c* corresponds to 
i?*and(x* x*)e(R*)~](0). 

From K2(Yi) = CPS~ ] it follows that each ^contains at least one point Q(X*, 
x*, c*). 

For all varieties Yf there obviously holds that dim Y{> s — 1. From the 
definition of the dimension of a projective variety [6; Def. 2.7] and from (5') it 
follows 

dim Yf = min dim TQ{ <c) % < dim T^*^^ Y( = s - 1, 

w h e r e TQ{X x c) Y{ is the Zariski tangent space to Yt at ip(x0, x, c)e Yf. Hence, we 

have dim Yf = s — 1 for all / =.1, ..., mv and, moreover, Q(X*, X * , c*)e Yt is a 
smooth point of Yf (i.e. dim Yf = dim TQ(x* x* c*} Y{). 

The set NoReg Yf = {Q(X0, X, c)e Yi\rankDXoXR(x0, x) < n; i.e. the relation 
(5') is not satisfied} is a Zariski-closed subset of }, and NoReg Yt~\ )^(as by (5') 
Q(X*, x*, c*)<£NoReg X)- By [6; Prop. 1.14) dimNoReg Yt< s — 1 and then 
also dim ;r2(NoReg Yf) < s — 1. Finally, the set 

&l = CPS~]\ Xu Q ^2(NoReg Yi) 

is Zariski-open and nonempty (as it is a complement of a proper Zariski-closed 
set). 

We show now that Q(C*)SSP2
G. TO do so, it suffices to prove that none of the 

points Q(X*, x*, c*) lies in any Xj (j = 1, ..., mx). Let us suppose the contrary, 
i.e. Q(X*, x*, c*)eXj. Then (analogous as for Yt) we have dimX} = s — 1. By the 
implicit function theorem it follows from (5r) that near Q(X*, x*, c*) the variety 
Xj is parametizable by QS(C) from a neighbourhood of Qs(c*) so there holds 
dim n2(Xj) = s — 1. The last is, however, a contradiction to n2(Xj) ~\ CPS]. 

The set 0% =0>]
Gr\0>2

G is Zariski-open in CPs] and by [6; Thm. 2.33] also 
open and dense in the classical topology in CPS~]. Moreover, the set 0% is the 
set of all maps R (coordinate-vectors) with are of degree d, with all solutions of 
$(x0, x) = 0 regular in the sense of (5'). 

It is clear that from (5r) it follows that Q„ + } (R~](0) is a set of isolated points 
in CPn and hence it is finite (by compactness of CPn). From [4; Thm. 2.1] it 
follows that the multiplicity of each point in Qn + , (i?~ *(())) is exactly one and the 
total number of them is B = d,. d2... dn. 

We conclude this section with the 
P roo f of Theorem 2. This proof is fully analogous to the proof of Thm. 3. 
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An analogous auxiliary lemma to Lemma 3 is used (it differs only in the change 
of (4',5') to (4,5)), which can be proved almost step-by-step like Lemma 3. The 
only differences are the use of (4), (5) instead of (4'), (5'), respectively, and a 
modified definition of 

NoReg Yt = {Q(X0, x, c)e Yi\dctDxR(x0, x) = 0, x0 = 0} 

(which is a Zariski-closed proper subset of Yf too). 
Acknowledgement. The author would like to thank Milan Ham a la, Pavol 
B r u n o v s k y and Andre V a n d e r b a u w h e d e for many useful discussions 
about this subject. 
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СИММЕТРИЧЕСКИЕ ГОМОТОПИИ ДЛЯ РЕШЕНИЯ 
СИСТЕМ МНОГОЧЛЕННЫХ УРАВНЕНИЙ 

Рауо1 Мегауу 

Р е з ю м е 

В статье излагается один подход к конструкции гомотопических отображений, 
являющихся основой вычислительных методов для отыскания всех изолированных решений 
систем симметрических мнохочленных уравнений. Обсуждается возможность этой конструк­
ции в общем случае. Для знако-симметрических систем описано одно простое подходящее 
гомотопическое отображение. 
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