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BASES IN r-SPASES

IGOR ZUZCAK

In [5] a new class of spaces, called r-spaces, was introduced and studied as
a generalization of topological spaces. In the present paper som other properties of
r-space are investigated.

1. INTRODUCTION

Throughout this paper we shall use the notations from [2] and 2* will denote the
class of all subsets of X.

Let X be a nonempty set and @ be a classes of subsets of X satisfying the
following conditions:

Q]I ﬂ, XedD
Q,: for each AcX and B e 9 such thai B< A there is a maximal
element C of (M€ @: Mc A} such that Bc Cc A.

The pair (X, D) is called an r-space and @ the class of open subsets of this r-space.
The class 9 define uniquely a relation o on 2* by: AoB iff A is a maximal
element of the class {M € @: M c B}. The relation ¢ is called a relation of the
interior and if AoB, then A is called an interior of B. A subset A of X is said to be
closed if (X — A) is open. We say that B is a closure of A if (X — B)o(X — A).

A subset of X of the form {x}UA, where xe X and A is open is said to be
a preneighbourhood of x. By a neighbourhood of a point x € X we mean any open
subset containing x.

In some sense the paper is a continuation of [S] and some results from [5] will be
used essentially in the sequel.

In the second section we introduce the notion of an adherent point relative to an
open set and the notions of semiopen and semiclosed sets. In terms of this notions
closed sets, closures of the sets and some of their properties are characterized.

The third section is devoted to the questions of bases in r-spaces.

If (X, @) denotes an r-space, then 9 always means the class of all open subsets
of this r-space. To simplify the notation we often refer to the r-space X instead of
the more proper form (X, 9).

175



2. Adherent points and semiopen sets

In the sequel X will be an r-space, & the class of all open subsets and 7 the class
of all closed subsets of X.

Definition 1. If A = X, B e 9 and x € X, then x is said to be an adherent point of
A relative to B if VNA+#@ for each neighbourhood V of x containing the
preneighbourhood Vi=Bu{x} of x.

If AcDc X and D € J, then we denote the set of all adherent points of A
relative to (X — D) by PA.

As an immediate consequence of Definition 1 we have

Corollary 1. Let A « Bc X, where B is a closed set and let x € X. Then x € °A
iff VanA+# @ for each neighbourhood V of x that contains the preneighbourhood
({x}u(X - B)) of x.

Now suppose that Ac B< X and B is closed. It is clear that if xe€ A, then
VAnA#@ for each neighbourhood V of x. From this it follows A c®A by
Corollary 1. '

Next it is evident that if x € (x — B), the set V= (X — B) is a neighbourhood of x
containing the preneighbourhood ({x}u(X — B)) of x and such that VnA =.

Therefore if xe(X —B), then x¢®A again by Corollary 1. This means that
BA cB.

Thus we may conclude
Theorem 1. If AcBc X and B is closed, then A c2A c B.

Definition 2. A subset A of X such that A < B, where B is closed, is said to be
a semiclosed set relative to B if PA=A.

From Corollary 1 it follows that if A =B <X and B is closed, then x ¢ A iff
there is a neighbourhood V of x containing the preneighbourhood ({x}u(X — B))
and such that VA A =@. From this and from Definition 2 we have the following
characterization of semiclosed sets.

Corollary 2. Let AcBc X and let B is closed. Then BA = A iff for each
xeX—A and the preneighbourhood V,=({x}u(X—B)) of x there exists
a neighbourhood V of x such that Vic V and VnA =4¢.

Theorem 2. A subset A of an r-space X is closed iff for each closed subset B of
X such that A c B the set A is semiclosed relative to B (i.e. PA = A).

Proof. Let first A = Bc X, where A, B are closed sets. We shall prove that
BA=A.If xe X— A, then V=X — A is a neighbourhood of x, since A is closed.
From A cB it follows, that ({x}u(X—-B))=V and VnA =0. But then by
Corollary 2 PA =A.

To prove the converse, suppose that A = Bc X, B is closed and V; =(Vu{x})
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is a preneighbourhood of x such that VinA =§. Since VinA = and therefore
A c(X—-V), where (X — V) is closed, by our assumptions *~Y’A = A. Apllying
Corollary 2 we see that for ((X—(X—-V))u{x}) = Vu{x}=V, there exists
a neighbourhood V; of x such that V; = V, and V.n A = . But then by Corollary 3
of [5] it is clear that A is closed, which completes the proof.

In [5] the author proved that if X is an r-space, A = B c X and B is a closed set,
then B is a closure of A iff VN A # @ for each neighbourhood V of x including the
preneighbourhood V, = ({x}u(X — B)) of x. By Corollary 1 this means that if B is
a closure of A, then Bc®A. Since from Theorem 1 it follows ®A < B, we thus
have

Theorem 3. Let A « B X, where B is a closed set. Then B is a closure of A iff
PA =B.

It is natural to define the notion of a semiopen set as dual to the notion of
semiclosed set.

Definition 3. Let Bc A < X and let B be an open set. Then A is semiopen
relative to B iff (X — A) is semiclosed relative to (X — B), i.e. * (X -A)=
(X-A).

From this, from Corollary 2 and Theorem 2 we have the following two
statements.

Corollary 3. Let Cc D < X and let C be an open set. Then D is semiopen
relative to Ciff for each x € D and the preneighbourhood V, = Cu{x} of x there is
a neighbourhood V of x satisfying V., V< D.

Theorem 4. A subset D of X is open iff D is semiopen relative to each Cc D,
where C is open.

The operator PA assigns to each pair A, B of subsets of X, where A = B and B
is closed, the subset A of X. It is clear that it ispossible to define an operator dual
to PA as follows: Let A, B be subsets of X, where B is an open set and B < A. Let
us denote .

(1) pA=X—-XB(X—A),
As an immediate consequence of (1) and Corollary 1 it follows

(2) BA ={x€ A: for the preneighbourhood V,=Bu{x}
there is an neighbourhood V of x such
that V,c Vc A}.

As a consequence of (2) and Corollary 3 we have

Corollary 4. Let Cc D c X and let C be an open set. Then D is semzopen
relative to C iff cD =D.
From this and from Theorem 4 it follows
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Corollary 5. A subset D of X is open iff ¢cD =D for each open subset C of
X such that Cc ..

If Bc A = X and B is open, then by Theorem 11 of [5] B is an interior of A iff
V(X —A)+0 for each x € (A — B) and each neighbourhood V of x containing
the preneighbourhood V, = {x}uUB. This means that B is an interior of A iff
{x € X: there is a neighbourhood V containing the preneighbourhood {x}uUB and
such that V< A} = B. But from this and from (2) it follows

Corollary 6. An open subset B of A, where A cX, is an interior of A iff
sA =B. '

The last theorem of this section shows the connection between the sets of the
form A and the closures of the set A.

Theorem 5. Let X be an r-space. Let A =« Bc X, where B is closed and let

{A,}s be the class of all closures of A with A, c B for eachs € S. Then BA =[) A,.
S

Proof. By R; of the definition of an r-space in [5], S is a nonempty set. Since
for each se S A =« A, = B and B is closed, then from Corollary 1 it is easy to see
that PA =*A for each se€S. Aplying Theorem 3 and using the fact that A, is
a closure of A for each s € S it follows that A = A,. But this implies 2A c*A = A,

for each se S and so A c[] A,. To show that BA =[] A, it satisfies to prove
N N

(1A, =®A. Suppose [)A,&°A ; then there is x €[] A, with x é®A. Since x ¢ A
S S S

- then there is a neighbourhood V of x that contains the preneighbourhood
{x}u(X — B) of x with AnV =. From this it follows A = (X — V) c B. But since
X — V is closed, then by Rs of a definition of r-space given in [5] there exists
a closure A,,, s1€ S of A such that A c A,, (X — V). This shows that xe X— V
which contradicts the fact that x € V. Now is the proof complete.

3. Base and r-base

Let X be an r-space and 9 the class of all open subsets of X. In [5] the following
characterization of an open subset of X was given:

A subset A of X is open iff

(3) for each xe A and each Ve % such that V< A there
exists Vi e @ satisfying ({x}uV)c VicA.

Now we shall show that if 9, is a subclass of & and 9, has some properties, then
the set V in (3) can be considered to be from %, only.

178



Definition 4. A class Doc D is said to be a base for & if Do has the following
properties

I. if Ae 9D and x € A, then there exists V € @, such that xe Vc A.

II. f AcBc X, Ae9, xe B—A and for each V € %,, where V< A, there is
Vi€ D satisfying ({x}uV)c Vic B, then there exists V,€ 9 such that
({x}uA)c V,cB.

Example 1. If (X, @) is an r-space and @, = 9, then it is clear that 9, is a base
for 9.

Example 2. In [5] it was shown that if X is a connected topological space and %
is the class of all connected subsets of X, then (X, @) is an r-space. Let

4) Do={A={x}:xeX).

It is well known (see e.g. [1] p. 170) that each one-point subset of a connected
topological space is a connected subset of X. This means that %, satisfies I of
Definition 4. From Theorem 2 of [1] it follows that %, satisfies the condition II of
Definition 4 too. Thus, %o is a base for 9.

Example 3. Let X be an universal algebra and let & consist of all subalgebras of
X and of the empty set. As it was shown in [5], (X, @) is an r-space.

Let for each Ac X

(5) J(A)=N{Be®: AcB)

be the algebraic closure operator on X (see e.g. [2]). Define the following class of
subsets of X:

(6) Do={A cX: there exists a finite subset B of X
such that J(B)=A}.

Algebraic operator J of closure on a set X has the following properties

(7) if AcX and ae X, then from a e J(A) it follows that
a € J(B), where B is a finite subset of A
(8) if AcBcX, then J(A)cJ(B)
(9) AcJ(A), foreach AcX
(10) Aed iff J(A)=A

We now show that %, satisfies the conditions I and II of Definition 4.

First let x € A € 9. Since A € D, then by (10) J(A)=A and by (8) J({x})c
J(A)=A. Since by (6) J({x})€ Do, then I. holds. To show II, suppose that
AcBcX,Ae%P, xe B— A and for each Ve %, such that Vc A thereis Vie &
satisfying ({x}uV)c V,cB. We want to show that there is V, such that
({x}uA)c Voc B. Consider J(Au{x}). We prove that J(Au{x})c B. By (7), it
suffices to prove that for each C <= A, where C is a finite set, it holds J(Cu{x})c
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B. Let C be a finite subset of A. By our assumptions J(J(C)u{x})c B. But by (9)
C cJ(C) and therefore (Cu{x}) = (J(C)u{x}). From this it follows J(Cu{x})
c JUJ(C)u{x}) = B. Since J(Au{x})e D, it suffices to put Vo=J(Au{x}).

Theorem 6. Let (X, @) be an r-space and 9, be a base for 9. Then a subset
A of X is open iff

(11) for each x € A and each V € 9, such that V< A there
exists Ve D satisfying ({x}uV)c V,c A.

Proof. If a subset A of X is open, then (11) follows immediatelly from (3).

To prove the converse suppose that a subset A of X satisfies (11). By (3), it
suffices to prove that if xe A, Vc A, where Ve @D, there is Ve D satisfying
({x}uV)c V,c A. But by (11) for each Vo< V and x, where V, € 9o, there exists
V, € @ such that (Vou{x})c V, < A. But then by II of Definition 4 there is Vi€ @
satisfying ({x}u V)< Vic A, which completes the proof of the theorem.

Remark 1. If X is a topological space and @ the class of all open subsets of X,
then a class 9o 9 satisfying I of Definition 4, is a base for & (in the sense of the
terminology used in the theory of topological spaces). In topological spaces the
condition II of Definition 4 follows from I.

Now we give an example illustrating that if (X, 9) is an r-space, Zoc %P and D,
satisfies I of Definition 4, then an open subset A of X cannot be described by (11).

Example 4. Let X be an infinite set and & be the class of subsets of X consisting
of

— all subsets of X consisting of 10 - k elements, where k=1, 2, 3, ..
— all infinite subsets of X.

It is not difficult to verify that & satisfies €2; and Q, of the definition of an r-space
and therefore (X, 9) is an r-space. Consider the class

9,={A < X: A has precisely 10 elements}.

It is clear that @, = @ and 9, satisfies I of Definition 4. Now let A be a subset of X
having exactly 25 elements. The set A has the following property:

For each x€ A and V e &, there exists Ve @ such that (Vu{x})c Vic A.

We see that A is described by (11), but from the definition of the class @ it
follows that A is not open.

On the other hand, let V< A and let V be a 20-point set. It is clear that Ve @
and for each V;c V, where V,e @, and for eeach x e A — V there is V, e @ such
that (Viu{x})c Vo.c A. But there does not exist an element V;e @ satisfying
(Vu{x})c Vsc A. This means that %, does not sytisfy Il of Definition 4 and
therefore.
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As an immediate consequence of Theorem 6 and Theorem 7 of [6] we have the
following assertion.

Theorem 7. Let (X, @) and (Y, 9,) be r-spaces, o be a base for %, and f be
a mapping from X into Y. Then f is continuous mapping iff for each x € X and each
Ue 9, such that f(x)eU and Ve P, where f(V)c U, there exists Vie &,
satisfying ({x}uV)c V, and f(V,)c U.

Theorem 8. Let (X, @) be an r-space, Do be a base for @ and let A c Bc X,
where A is open. Then A is an interior of B iff

(12) for each xe B— A there exists V.e€ %o, where V.c A such that
V(X —B)+#@ for each V e 9 satisfying (V,u{x})c V.

Proof. If (12) holds, then it is clear that for each Ve 9 such that (Au{x})c
V. we have V, c V; and therefore V,n(X — A)+#@. But then from Theorem 11 of
[5] it follows that A is an interior of B.

To prove the converse, suppose that A is an interior of B, but (12) is not true. It
is clear that (12) is not true iff there exists a point a € (B — A) such that for each
Vo€ %o, where Vo A, there is Ve @ satisfying (Vou{a}) < Vi< B. Since D, is
a base for D, then by II. of Definition 4 there is V> € D such that (Au{a})c V,c
B. But then again by Theorem 11 of [5] A is not an interior of B, which is
a contradiction.

Theorem 9. Let (X, @) be an r-space, %, be a base for @ and let Ac Bc X,
where A € 9. Then x € AB iff x € cB for each C € %o such that Cc A.

Proof. Let xeaB and let C e %, such that Cc A. Since x € AB, then there
exists Ve® such that ({x}UuA)c VcB. But Cc A and therefore also
({x}uC)c V< B. This means that x € cB. To prove the converse, suppose that
x € cB for each C € %, such that Cc A. If x € A, then from Definition 1 it follows
immediately that x € AB. Noe it suffices to consider the case x¢ A. But by
definition of the set cB for each C = A, where C € 9, there exists V € P satisfying
(Cu{x})<c Ve B. From this and from II of Definition 4 it follows that there is
Vie 9 such that ({x}uA)c V,c B. So we have x € B.

From this, from Corollary 4, Theorem 8 and Corollary 5 we have the following
three corollaries.

Corollary 7. Let (X, @) be an r-space, %o be a base for 9 and AcBc X,
where A is open. Then B is semiopen relative to A iff B is semiopen relative to each
C of C, such that Cc A.

Corollary 8. Let (X, @) be an r-space and @, be a base for @. A subset A of
X is open iff for each C € %, such that C c A it holds cA = A (e.g. A is open iff A is
semiopen relative to each C € %o such that Cc A).
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Corollary 9. Let (X, @) be an r-space, %o be a base for 9 and let AcBc X,
where A is open. Then A is an interior of B iff for each x € B— A there exists
C e 9o, where C < A such that x ¢ cB.

Now we give dual statements to the Theorems 6 and 7.

Theorem 10. Let (X, D) be an r-space, A c Bc X, where B is closed and let
%o be a base for 9. Then B is a closure of A iff for each x € B— A there exists
V. € 9 such that (V.nB)=0 and VnA+0 for each V € D such that (V,u{x})c
V.

Theorem 11. Let (X, D) be an r-space, %, be a base for 9. Then a subset B of
X is closed iff for each x ¢ B and each C € %, such that CnB =0 there is Ve %
satisfying ({x}uC)c V and VnB =4.

In the rest of this section we shall show that if a base %o = @, where 9 is the class
of all open subsets of an r-space (X, D) satisfies the following condition

III. ifAeP, xeA and Ve Ppsuchthat Ve A, then there is V; € 9, satisfying
({x}uV)cV,cA,

then each open subset of X can be described by the sets of the class %o only.

Definition 5. Let (X, @) be an r-space. A base %@, for @ is said to be an r-base
for @ if %D, satisfies the condition II1.

Theorem 12. Let (X, 9) be an r-space and 9, be an r-base for @. A subset
A of X is open, iff

(13) for each xe A and V € 9, such that Vc A, there exists V€ Do satisfying
{x}uV)c VicA.

Proof. If A is open, then half of the proof follows from III of Definition 5.

To prove the converse, suppose that A « X and A satisfies (13). To prove that A
is open, by Theorem 6 it suffices to show that if Voc A, where Voe %o and x€ A,
then there is V€ @ such that ({x}uVo)c Voc A. If Vo=4, then according to
I there exists a V€ Do D such that ({x}uVo)c Voc A. Let Vo#0. If xe V,,
then we can put V, = V,. Let x# V. But then by (13) there exists V, € @ 9 such
that (Vou{x} = Vic A which completes the proof of the theorem.

Remark 2. The base %, defined in Example 3 satisfies also the condition III.
and is therefore an r-base for &. To show this, suppose that A is an subalgebra of
X,xeA, Vc A and Ve %,. Since V € 9, then there is a finite subset B of A such
that J(B)=YV. Consider now J(Bu{x}). Since Bc(Bu{x}), then J(B)c
J(Bu{x}) by (8) and (J(B)u{x}) = J(Bu{x}) < J(A)=A by (9). From this
again by (8) it follows J(J(B)u{x}) ¢ J(A)=A. To prove (13) it suffices to put
Vi=J(J(B)u{x}), since then (Vu{x})c Vic A.
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Remark 3. Itis easy to see that the base 9, defined in Example 2 and consisting
of all one-pointed subsets of X does not satisfy III of Definition S and therefore is
not an r-base for 9.

Finally we give an example showing that if a class %o = 9, where 9 is the class of
all open subsets of an r-space X, satisfies the conditions I and III, but does not
satisfy II, then the open subsets of X cannot be described as the subsets of X
satisfying (13).

Example 5. Let X be an infinite set and let the class & of subsets of X consists
of:

— the set X

— all subsets of X containing exactly 10 - k elements, where k=1, 2, 3, ...

— all infinite subsets of X of the form B=X — A, where A =X and A has 10
or more elements.

It is easy to see that 9 satisfies the conditions Q; and €, of Definition of r-space
given in the first section of this paper, which means that (X, @) is an r-space.

If 9y={Mc X: M consists of 10 - k elements, where k=1, 2, 3, ...}, then @,
has properties I and III of Definitions 4 and 5, respectively. Let B=X — N, where
N c X and has precisely 5 elements. It is not difficult to verify that for each x € B
and V € 9, such that V < B, there exists V, € 9P, satisfying ({x}u V) c Vi< B. This
means that B satisfies the condition (13), but on the other hand from the definition
of @ it follows B ¢ 9.

Now let A c B, where A has the form X — M and M consists of 10 elements. If
x€B — A and Ve Do such that V< A, then it is clear that there is V, € @ satisfying
({x}uV)c VicB. But there is no Vze @ such that ({x}UA)c V.c B, which
means that & does not satisfy II of Definition 4.
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BA3UCHI B r-ITPOCTPAHCTBAX
Igor Zuzcéak
Pe3iome
r-npoCTPaHCTBa ABISAIOTCS 0GOGIEHUAMU TOMOJIOTHYECKUX MPOCTPAaHCTB. B HacTposwe# pabote

BBOJHUTCA MOHATHE TOYKH, 6HH3KOCTH, MOJYOTKPBLITOTO MHOXECTBA U MOHATHA 6a3ucoB u H3y4arTca
HEKOTOpbIE CBOHCTBa r-rnpoCTpaHCTB, CBA3aHHbIC C 3THMH NOHATHUAMH.
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