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Math. Slovaca 35,1985, No. 2,175—184 

BASES IN r-SPASES 

IGOR ZUZCAK 

In [5] a new class of spaces, called r-spaces, was introduced and studied as 
a generalization of topological spaces. In the present paper som other properties of 
r-space are investigated. 

1. INTRODUCTION 

Throughout this paper we shall use the notations from [2] and 2X will denote the 
class of all subsets of X. 

Let X be a nonempty set and 3 be a classes of subsets of X satisfying the 
following conditions: 

Q1: 0,Xe3 
Q2: for each A czX and Be3 such that Be: A there is a maximal 

element C of {Me 3: MczA} such that BczCczA. 

The pair (X, 3) is called an r-space and 3 the class of open subsets of this r-space. 
The class 3 define uniquely a relation o on 2X by: AoB iff A is a maximal 

element of the class {Me 3: MczB}. The relation o is called a relation of the 
interior and if AoB, then A is called an interior of B. A subset A of X is said to be 
closed if (X — A) is open. We say that B is a closure of A if (X — B)o(X — A). 

A subset of X of the form {JC}UA, where JCGX and A is open is said to be 
a preneighbourhood of x. By a neighbourhood of a point x e X we mean any open 
subset containing x. 

In some sense the paper is a continuation of [5] and some results from [5] will be 
used essentially in the sequel. 

In the second section we introduce the notion of an adherent point relative to an 
open set and the notions of semiopen and semiclosed sets. In terms of this notions 
closed sets, closures of the sets and some of their properties are characterized. 

The third section is devoted to the questions of bases in r-spaces. 
If (X, 3) denotes an r-space, then 3 always means the class of all open subsets 

of this r-space. To simplify the notation we often refer to the r-space X instead of 
the more proper form (X, 3). 
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2. Adherent points and semiopen sets 

In the sequel X will be an r-space, 2) the class of all open subsets and 5" the class 
of all closed subsets of X. 

Definition 1. If A cz X, B e 3) and xeX, then x is said to be an adherent point of 
A relative to B if VnA£0 for each neighbourhood V of x containing the 
preneighbourhood VI = BU{JC} of x. 

If A c D c X and D e 3~, then we denote the set of all adherent points of A 
relative to ( X - D ) by DA. 

As an immediate consequence of Definition 1 we have 

Corollary 1. Let AczBczX, where B is a closed set and let x eX. Then x eBA 
iff VnA^0 for each neighbourhood V of x that contains the preneighbourhood 
( { J C } U ( X - B ) ) ofx. 

Now suppose that AczBczX and B is closed. It is clear that if JCGA, then 
VnAi=0 for each neighbourhood V ofjc. From this it follows AczBA by 
Corollary 1. 

Next it is evident that if JC e (x - B), the set V = (X — B) is a neighbourhood of JC 
containing the preneighbourhood ( { J C } U ( X - B ) ) of JC and such that VnA=0. 
Therefore if xe(X-B), then xiBA again by Corollary 1. This means that 
BAczB. 

Thus we may conclude 

Theorem 1. If AczBczX and B is closed, then AczBAczB. 

Definition 2. A subset A of X such that AczB, where B is closed, is said to be 
a semiclosed set relative to B if BA = A. 

From Corollary 1 it follows that if A cz B cz X and B is closed, then JC i BA iff 
there is a neighbourhood V of JC containing the preneighbourhood ( { J C } U ( X - B ) ) 

and such that VnA = 0. From this and from Definition 2 we have the following 
characterization of semiclosed sets. 

Corollary 2. Let AczBczX and let B is closed. Then BA= A iff for each 
xeX — A and the preneighbourhood VI = ({JC}U(X —B)) of x there exists 
a neighbourhood V of x such that Vi cz V and VnA = 0. 

Theorem 2. A subset A of an r-space X is closed iff for each closed subset B of 
X such that AczB the set A is semiclosed relative to B (i.e. BA= A). 

Proof. Let first A czBczX, where A , B are closed sets. We shall prove that 
BA = A. If JC e X — A, then V = X — A is a neighbourhood of x, since A is closed. 
From AczB it follows, that ( { J C } U ( X - B ) ) c z V and VnA=0. But then by 
Corollary 2 BA=A. 

To prove the converse, suppose that A cz B cz X, B is closed and Vi = ( Vu {JC}) 

176 



is a preneighbourhood of JC such that VinA = 0 . Since V ^ A = 0 and therefore 
Acz(X- V), where ( X - V) is closed, by our assumptions (X_V)A = A. Apllying 
Corollary 2 we see that for ( ( X - ( X - V ) ) U { J C } ) = VU{JC} = Vi there exists 
a neighbourhood V2 of JC such that Vi c V2 and V2nA = 0. But then by Corollary 3 
of [5] it is clear that A is closed, which completes the proof. 

In [5] the author proved that if X is an r-space, AczBczX and B is a closed set, 
then B is a closure of A iff VnA =£ 0 for each neighbourhood V of JC including the 
preneighbourhood Vi = ( { J C } U ( X - B)) of JC. By Corollary 1 this means that if B is 
a closure of A, then BczBA. Since from Theorem 1 it follows BAczB, we thus 
have 

Theorem 3. Let AczBczX, where B is a closed set. Then B is a closure of A iff 
BA = B. 

It is natural to define the notion of a semiopen set as dual to the notion of 
semiclosed set. 

Definition3. Let BczAczX and let B be an open set. Then A is semiopen 
relative to B iff ( X - A ) is semiclosed relative to (X-B), i.e. ( X _ B ) ( X - A ) = 
( X - A ) . 

From this, from Corollary 2 and Theorem 2 we have the following two 
statements. 

Corollary 3. Let CczDczX and let C be an open set. Then D is semiopen 
relative to C iff for each xeD and the preneighbourhood Vx = CU{JC} of x there is 
a neighbourhood V of x satisfying VxczVczD. 

Theorem 4. A subset D of X is open iff D is semiopen relative to each CczD, 
where C is open. 

The operator BA assigns to each pair A, B of subsets of X, where AczB and B 
is closed, the subset BA of X. It is clear that it ispossible to define an operator dual 
to BA as follows: Let A, B be subsets of X, where B is an open set and BczA. Let 
us denote 

(1) B A = X - ( X " B ) ( X - A ) . 

As an immediate consequence of (1) and Corollary 1 it follows 

(2) BA = {JC e A: for the preneighbourhood Vx = Bu{x} 
there is an neighbourhood V of JC such 
that VxczVczA). 

As a consequence of (2) and Corollary 3 we have 

Corollary 4. Let CczDczX and let C be an open set. Then D is semiopen 
relative to C iff CD = D. 

From this and from Theorem 4 it follows 
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Corollary 5. A subset D of X is open iff CD = D for each open subset C of 
X such that CczD. 

If B czAczX and B is open, then by Theorem 11 of [5] B is an interior of A iff 
Vn(X - A) 4- 0 for each xe(A-B) and each neighbourhood V of x containing 
the preneighbourhood Vx-= {x}uB. This means that B is an interior of A iff 
{x e X : there is a neighbourhood V containing the preneighbourhood {x}uB and 
such that Vcz A} =B. But from this and from (2) it follows 

Corollary 6. An open subset B of A, where AczX, is an interior of A iff 

BA = B. 
The last theorem of this section shows the connection between the sets of the 

form BA and the closures of the set A. 

Theorem 5. Let X be an r-space. Let AczBczX, where B is closed and let 

{As}sbe the class of all closures of A with AsczB for each s e S. Then BA = f] As. 
s 

Proof. By R5 of the definition of an r-space in [5], S is a nonempty set. Since 
for each seSAczAsczB and B is closed, then from Corollary 1 it is easy to see 
that BAczA*A for each seS. Aplying Theorem 3 and using the fact that As is 
a closure of A for each s e S it follows that AsA = As. But this implies BA cz A*A = As 

for each seS and so BAczf]As. To show that BA=f]As it satisfies to prove 
s s 

n As czBA. Suppose f}AsdzBA\ then there is x e f] As with x <£BA. Since xiBA 
s s s 

then there is a neighbourhood V of x that contains the preneighbourhood 
{ J C } U ( X - B) of x with An V = 0. From this it follows A cz ( X - V) cz B. But since 
X - V is closed, then by R5 of a definition of r-space given in [5] there exists 
a closure A,,, si e S of A such that A cz AS1 cz (X - V). This shows that xeX-V 
which contradicts the fact that xeV. Now is the proof complete. 

3. Base and r-base 

Let X be an r-space and 3) the class of all open subsets of X. In [5] the following 
characterization of an open subset of X was given : 

A subset A of X is open iff 

(3) for each xeA and each Ve3) such that Vcz A there 
exists VieS) satisfying ({x}uV)cz ViczA. 

Now we shall show that if 3)0 is a subclass of 3) and Q)0 has some properties, then 
the set V in (3) can be considered to be from 3)0 only. 
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Definition 4. A class 30cz3 is said to be a base for 3 if 30 has the following 
properties 

I. if Ae3 and x e A , then there exists Ve30 such that xeVczA. 
II. if AczBczX, Ae3, xe B—A and for each Ve 30, where Vcz A, there is 

Vxe 3 satisfying ({x}uV)czVxczB, then there exists V2e3 such that 
({x}uA)czV2czB. 

Example 1. If (X, 3) is an r-space and 30= 3, then it is clear that 30 is a base 
for 3. 

Example 2. In [5] it was shown that if X is a connected topological space and 3 
is the class of all connected subsets of X, then (X, 3) is an r-space. Let 

(4) 30={A = {x}:xeX}. 

It is well known (see e.g. [1] p. 170) that each one-point subset of a connected 
topological space is a connected subset of X. This means that 30 satisfies I of 
Definition 4. From Theorem 2 of [1] it follows that 30 satisfies the condition II of 
Definition 4 too. Thus, 30 is a base for 3. 

Example 3. Let X be an universal algebra and let 3 consist of all subalgebras of 
X and of the empty set. As it was shown in [5], (X, 3) is an r-space. 

Let for each A cz X 

(5) J(A) = C\{Be3: AczB} 

be the algebraic closure operator on X (see e.g. [2]). Define the following class of 
subsets of X: 

(6) 30= {AczX: there exists a finite subset B of X 
such that J(B) = A}. 

Algebraic operator J of closure on a set X has the following properties 

(7) if A czX and a eX, then from aeJ(A) it follows that 
a eJ(B), where B is a finite subset of A 

(8) if A cz B cz X, then J(A) cz J(B) 
(9) A czJ(A), for each A czX 

(10) Ae3 iff J(A) = A 

We now show that 30 satisfies the conditions I and II of Definition 4. 
First let xeAe3. Since AeD, then by (10) J(A) = A and by (8) /({JC})CZ 

J(A) = A. Since by (6) J({x})e30, then I. holds. To show II, suppose that 
AczBczX, Ae3, xeB-A and for each V e 30 such that Vcz A there is ViG^ 
satisfying ({x}uV)czViczB. We want to show that there is V2 such that 
({JC}UA)CZ V2czB. Consider J(Au{x}). We prove that J ( A U { J C } ) C Z B . By (7), it 
suffices to prove that for each Ccz A, where C is a finite set, it holds J(CU{JC})CZ 
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B. Let C be a finite subset of A. By our assumptions J ( J (C)U{JC})CZ B. But by (9) 
Ccz J(C) and therefore ( C U { J C } ) <= ( J ( C ) U { J C } ) . From this it follows J ( C U { J C } ) 

cz J ( J ( C ) U { J C } ) cz B. Since J ( A U { J C } ) G ®, it suffices to put V2 = J ( A U { J C } ) . 

Theorem 6. Let (X, 3) be an r-space and 30 be a base for 3). Then a subset 
A of X is open iff 

(11) for each xeA and each Ve3)0 such that VczA there 
exists V\ e 3) satisfying ({jc}uV)c=ViczA. 

Proof. If a subset A of X is open, then (11) follows immediatelly from (3). 
To prove the converse suppose that a subset A of X satisfies (11). By (3), it 

suffices to prove that if xeA, VczA, where V e ® , there is Vi e 3 satisfying 
({JC}U V)cz Vi<= A. But by (11) for each V0cz Vand JC, where V0e 30, there exists 
V2e 3 such that ( V0U{JC})CZ V2cz A. But then by II of Definition 4 there is Vi e 3 
satisfying ( { JC}UV)CZVICZA, which completes the proof of the theorem. 

Remark 1. If X is a topological space and 3 the class of all open subsets of X, 
then a class 30cz3 satisfying I of Definition 4, is a base for 3 (in the sense of the 
terminology used in the theory of topological spaces). In topological spaces the 
condition II of Definition 4 follows from I. 

Now we give an example illustrating that if (X, 3) is an r-space, 30cz3 and 30 

satisfies I of Definition 4, then an open subset A of X cannot be described by (11). 
Example 4. Let X be an infinite set and 3 be the class of subsets of X consisting 

of 

— all subsets of X consisting of 10 • k elements, where k = 1, 2, 3, . . 
— all infinite subsets of X. 

It is not difficult to verify that 3 satisfies Q\ and Q2 of the definition of an r-space 
and therefore (X, 3) is an r-space. Consider the class 

3\ = {A czX: A has precisely 10 elements}. 

It is clear that 3\ cz 3 and 3\ satisfies I of Definition 4. Now let A be a subset of X 
having exactly 25 elements. The set A has the following property: 

For each JCGA and Ve3\ there exists V\e3 such that (VU{JC})CZ ViczA. 
We see that A is described by (11), but from the definition of the class 3 it 

follows that A is not open. 
On the other hand, let VczA and let V be a 20-point set. It is clear that Ve3 

and for each Vi cz V, where Vi e 3\ and for eeach x e A — V there is V2 e 3 such 
that (VIU{JC})CZ V2czA. But there does not exist an element V3e3 satisfying 
(VU{JC})CZ V3cz A. This means that 3\ does not sytisfy II of Definition 4 and 
therefore. 
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As an immediate consequence of Theorem 6 and Theorem 7 of [6] we have the 
following assertion. 

Theorem 7. Let (X, S>i) and (Y, 32) be r-spaces, 30 be a base for 3\ and f be 
a mapping from X into Y. Then f is continuous mapping iff for each xeX and each 
Ue32 such that f(x)eU and Ve30, where f(V)cU, there exists VIG2>I 

satisfying ({JC}U V)c= Vi and / ( V i ) c U. 

Theorem 8. Let (X, 3) be an r-space, 30 be a base for 3 and let Ac Be X, 
where A is open. Then A is an interior of B iff 

(12) for each xeB — A there exists Vxe30, where Vxc=A such that 
V n ( X - B ) - £ 0 for each Ve3 satisfying (Vxu{JC})c V. 

Proof. If (12) holds, then it is clear that for each Vi e 3 such that (AU{JC})C= 

Vi we have Vx c Vi and therefore V i n ( X - A) + 0. But then from Theorem 11 of 
[5] it follows that A is an interior of B. 

To prove the converse, suppose that A is an interior of B, but (12) is not true. It 
is clear that (12) is not true iff there exists a point ae(B — A) such that for each 
V0e 30, where V0c= A, there is Vie 3 satisfying (V0u{a})c= Vic=B. Since 2>0 is 
a base for D, then by II. of Definition 4 there is V2eD such that (Au{a})c= V2c= 
B. But then again by Theorem 11 of [5] A is not an interior of B, which is 
a contradiction. 

Theorem 9. Ler (X, 3) be an r-space, 30 be a base for 3 and let AcBcX, 
where A e 3. Then xeAB iff xecB for each Ce30 such that C c A. 

Proof. Let jceAB and let Ce30 such that Cc=A. Since JCGAB, then there 
exists Ve3 such that ({JC}UA)C= Vc=B. But CcA and therefore also 
({JC}UC)C= Vc=B. This means that jce c B. To prove the converse, suppose that 
xecB for each C e 30 such that CcA.If xe A, then from Definition 1 it follows 
immediately that JCGAB. Noe it suffices to consider the case JC^A. But by 
definition of the set CB for each Cc= A, where Ce 30, there exists Ve3 satisfying 
(CU{JC})C= Vc=B. From this and from II of Definition 4 it follows that there is 
VIG2> such that ({JC}UA)C= Vic=B\ So we have JCGAB. 

From this, from Corollary 4, Theorem 8 and Corollary 5 we have the following 
three corollaries. 

Corollary7. Let (X, 3) be an r-space, 30 be a base for 3 and AcBcX, 
where A is open. Then B is semiopen relative to A iffB is semiopen relative to each 
C of C0 such that CcA. 

Corollary 8. Let (X, 3) be an r-space and 2>0 be a base for 3. A subset A of 
X is open iff for each Ce30 such that C c A it holds CA = A (e.g. A is open iff A is 
semiopen relative to each Ce30 such that Cc=A). 
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Corollary 9. Let (X, 3) be an r-space, 30 be a base for 3 and let A czB czX, 
where A is open. Then A is an interior of B iff for each x e B — A there exists 
Ce30, where Cc=A such that xicB. 

Now we give dual statements to the Theorems 6 and 7. 

Theorem 10. Let (X, 3) be an r-space, AczB czX, where B is closed and let 
30 be a base for 3. Then B is a closure of A iff for each xeB - A there exists 
Vxe30such rhaf (V ,nB) = 0and VnA±0 for each V eD such that (Vxu{x})cz 
V. 

Theorem 11. Let (X, 3) be an r-space, 30 be a base for 3. Then a subset B of 
X is closed iff for each x &B and each Ce30 such that CnB = 0 there is Ve 3 
satisfying ({x}uC)c= V and VnB = 0. 

In the rest of this section we shall show that if a base 30cz3, where 3 is the class 
of all open subsets of an r-space (X, D) satisfies the following condition 

III. if A e 3, x e A and Ve 30 such that Vc= A, then there is Vi e 30 satisfying 
( { * } u V ) c V , c A , 

then each open subset of X can be described by the sets of the class 30 only. 

Definition 5. Let (X, 3) be an r-space. A base 30 for 3 is said to be an r-base 
for 3 if 30 satisfies the condition III. 

Theorem 12. Let (X, 3) be an r-space and 30 be an r-base for 3. A subset 
A of X is open, iff 

(13) for each xeA and Ve30 such that Vc=A, there exists Vi e 30 satisfying 
({x}uV)czVtczA. 

Proof. If A is open, then half of the proof follows from III of Definition 5. 
To prove the converse, suppose that A c= X and A satisfies (13). To prove that A 

is open, by Theorem 6 it suffices to show that if V0c= A, where V0e 30 and x e A, 
then there is V2e3 such that ({x}uV0)c= V2c= A. If Vo = 0, then according to 
I there exists a V2e30cz3 such that ({JC}U V0)c= V2c= A. Let V o ^ 0 . If xe V0, 
then we can put V2 = V0. Let JC^ V0. But then by (13) there exists Vi e 30cz 3 such 
that (V 0U{JC} c= Vic= A which completes the proof of the theorem. 

Remark 2. The base 30 defined in Example 3 satisfies also the condition III. 
and is therefore an r-base for 3. To show this, suppose that A is an subalgebra of 
X, xeA, V c= A and V e 30. Since Ve30 then there is a finite subset B of A such 
that J(B)=V. Consider now J (Bu{x}) . Since Bc=(Bu{x}), then J(B)c= 
J (Bu{x}) by (8) and ( J ( B ) U { J C } ) c J (Bu{x}) c J(A) = A by (9). From this 
again by (8) it follows J ( J ( B ) U { J C } ) c J(A) = A. To prove (13) it suffices to put 
V1 = J(J(B)u{x}), since then (VU{JC})C= V - c A . 
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Remark 3. It is easy to see that the base 30 defined in Example 2 and consisting 
of all one-pointed subsets of X does not satisfy III of Definition 5 and therefore is 
not an r-base for 3. 

Finally we give an example showing that if a class 30 cz 3, where 3 is the class of 
all open subsets of an r-space X, satisfies the conditions I and III, but does not 
satisfy II, then the open subsets of X cannot be described as the subsets of X 
satisfying (13). 

Example 5. Let X be an infinite set and let the class 3 of subsets of X consists 
of: 

— the set X 
— all subsets of X containing exactly 10 • k elements, where k = 1, 2, 3, ... 
— all infinite subsets of X of the form B = X - A , where A cz X and A has 10 

or more elements. 
It is easy to see that 3 satisfies the conditions Q\ and Q2 of Definition of r-space 

given in the first section of this paper, which means that (X, 3) is an r-space. 
If 30= {MczX: M consists of 10 • k elements, where k= 1, 2, 3, . . . } , then 30 

has properties I and III of Definitions 4 and 5, respectively. Let B = X — N, where 
NczX and has precisely 5 elements. It is not difficult to verify that for each xeB 
and Ve30such that VczB, there exists Vi e 30 satisfying ( { JC}UV)CZVICZB. This 
means that B satisfies the condition (13), but on the other hand from the definition 
of 3 it follows B £ 3. 

Now let A cz B, where A has the form X - M and M consists of 10 elements. If 
xeB- A and V e 30 such that V cz A, then it is clear that there is Vi e 3 satisfying 
({JC}UV)CZ ViczB. But there is no V2e3 such that ({JC}UA)CZ V2czB, which 
means that 3 does not satisfy II of Definition 4. 
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БAЗИCЫ B r-ПPOCTPAHCTBAX 

Igor Zuzčák 

P e з ю м e 

r-пpocтpaнcтвa являютcя oбoбщeниями тoпoлoгичecкиx пpocтpaнcтв. B нacтpoящeй paбoтe 

ввoдитcя пoнятиe тoчки, близкocти, пoлyoткpытoгo мнoжecтвa и пoнятия бaзиcoв и изyчaютcя 

нeкoтopыe cвoйcтвa r-пpocтpaнcтв, cвязaнныe c этими пoнятиями. 
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