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STATISTICAL MAPS II. 
OPERATIONAL RANDOM VARIABLES AND 

THE BELL PHENOMENON 

SLAWOMIR B U G A J S K I 

(Communicated by Anatolij Dvuredenskij ) 

ABSTRACT. The concept of operational random variable generalizing that of 
random variable is discussed and shown to be implied by the operational descrip­
tion of measurement. It is proved that any family of operational random variables 
having independent outcomes can be well represented by a single standard ran­
dom variable. Nevertheless, it is demonstrated that some families of operational 
random variables show the Bell phenomenon, what is impossible in the framework 
of traditional probability theory. That indicates that the proposed generalization 
of the concept of random variable provides a nontrivial extension of the traditional 
one. 

1. Introduction 

1.1. It is clear that the classical (Frechet-Kolmogorov) probability theory is ba­
sic for the classical statistical mechanics. It is equally clear that the classical 
probability theory does not play the same role with respect to the quantum 
mechanics (nor to the quantum statistical mechanics). Indeed, it is widely rec­
ognized that Bell's analysis [1], see also [2], [3], shows that some objects of 
microworld generate families of probability measures which cannot be in any 
way obtained in the framework of the traditional probability theory. The subse­
quent confirmation of that phenomenon in a series of precise experiments proves 
that Nature refuses to obey the rules of Kolmogorovian probability theory. We 
have to agree that the standard probability theory (in the sequel we will use the 
abbreviation SPT) is of a restricted validity, hence the need for its appropriate 
generalization becomes evident. Actually there is an almost common agreement 
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Key words: statistical map, operational random variable, Bell phenomenon, operational prob­
ability theory. 
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among physicists and philosophers of physics that the probabilistic structure un­
derlying quantal theories is to some extent, and in a some sense, "nonclassicar. 

Among various proposals of a generalized "non-Kolmogorovian" probability 
theory the best developed one is the noncommutative probability theory founded 
on the condition that generalized random variables form a (noncommutative in 
general) algebra which is assumed to be an abstract C*- or W*-algebra (among 
a great variety of relevant publications let us notice [4], [5], [6]). That mathemat­
ical model, although powerful and formally elegant, is not free of disadvantages; 
it does not provide a natural description of the special class of random variables 
appearing in the operational quantum mechanics and called there unsharp or 
generalized observables or POV measures (for POV measures see [7] and refer­
ences quoted therein). 

As the generalized observables of operational quantum mechanics become an 
indispensable tool of quantum physics (it is well demonstrated by the mentioned 
monograph o f B u s c h , G r a b o w s k i and L a h t i [7]), it seems natural to ap­
ply to SPT the same method of extension which proved successful in transform­
ing standard quantum mechanics into the operational one. The generalization 
of SPT obtained in that way is called operational probability theory (also fuzzy 
probability theory, OPT for brevity), see [8], [9], [10], [11]. The transformation 
of SPT into OPT is done essentially by extending the set of traditional random 
variables; the random variables of OPT are called operational random variables 
(o.r.variables for brevity), they are formally described by statistical maps (see 
Subsection 1.3 below). 

In Section 2 we show how the concept of operational random variable is 
implied by elementary considerations of statistical experiments, we outline also 
some basic notions of OPT. Section 3 is devoted to a question of representing 
o.r.variables by standard random variables; it is proved that an arbitrary family 
of o.r.variables such that their outcome spaces are mutually independent admits 
a satisfactory representation in terms of standard random variables. That result 
could explain why o.r.variables (and OPT as well) have been ignored up to now. 

Having in mind that during the last century the well established standard 
concept of random variable has not been seriously challenged (in spite of warn­
ings issued by quantum mechanical theorists), one can wonder why we actually 
need to extend it at all, and why in the particular manner mentioned above. 
In Section 4 we formulate precisely an argument which demonstrates the need 
for generalizing SPT into OPT. We show namely that OPT, contrary to SPT, 
is able to describe the so called Bell phenomenon [3], which manifests itself in 
quantum mechanics in the form of well known Bell inequalities (see Section 5). 
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1.2. Let (£7, #($!)) be a measurable space, we assume that all singletons {u}, 
(j Gfi, are measurable. M1

+(f2) denotes then the convex set of all cr-additive 
probability measures on (ft, £(£))), it will be seen as the base of the base normed 
Banach space M(J1) of all bounded cr-additive signed measures on (fi, B(Q)). 
The set of all measurable functions on fi taking values in the real interval [0,1] 
will be denoted £(f2); measurable subsets of fl will be identified with their 
characteristic functions, so B(Q) C £(ft). The set £(f2), called the set of effects 
on ft., will be considered as an order interval of the vector lattice F(VL) of all real 
measurable bounded functions on f2, elements of B(ft) form the set of extreme 
elements of the convex set £(£2). The integral defines the natural duality between 
Banach spaces M(fJ) and JF(f2). The dual pair (M(Jl),^r(fi)) of Banach spaces 
provides the basic framework for OPT. For more details see [12]. 

Standard random variables are represented by measurable functions on 
measurable spaces. A measurable function, say F: ft -» S, associates with 
any /i G M* (ft) a probability measure fiF on S, called the distribution of F 
at /i. Clearly, 

fxF(X) = ^(F-^X)) = fxF-l(x){") M<M 
n 

for any measurable subset X G B(E). Thus the measurable function F: ft -» S 
extends in a natural way to the afrine map 

DF: M+(n) -> M+(S), DFn := »F , 

called the distribution functional of F. The afrine map DF: M1
+(f2) —> M1

+(S) 
is an example of a statistical map (see [12] for definitions). 

1.3. In order to make clear the latter notion, let us consider an afrine map 
A: M1

+(ft) -> M1
+(S). As M+(ft) generates linearly the Banach space M(fJ) 

of all bounded signed measures on (fi, B(ft)), the map A extends to the lin­
ear map A: M(ft) -» M(S). The map A has to be bounded, what implies 
that there exists the Banach dual A : M(S)* —> M(f2)* which is necessarily 
weak*-to-weak* continuous. The dual map A restricted to £(S) C ^"(S) will 
be denoted _4*. 

It is clear that for any / G £(S) 

(A*af)(fi) := ff(0 (Aji)(dfl = af(Afx), 

where n <E Mf(Q) and af is the affine functional on Mf(E) defined by 

°/("):=//(0Kdf); 
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for details we refer to [12] again. A*a, does not have to belong to £(ft), an 
affine map A: Mf(ft) -> M1

+(S) is called a statistical map if it satisfies the 
condition: 

A*(£(Z))C£(Q). (1) 

An equivalent characterization of a statistical map (see [12; Proposition 
of 2.1]) is: 

(An)(X) = J(A8u))(X)n(duj), (2) 
a 

what implies that any statistical map is uniquely determined by its restriction to 
the set Sft of all Dirac measures on ft. A statistical map A: M + (ft) —> M + (S) 
is called sharp if A(Sft) C *9M1

+(S), where OS denotes the set of all extreme 
points of the convex set 5 , and strict if A(Sft) C <JS. 

1.4. It is evident that in a case of a finite ft, there is no difference between gen­
eral affine maps and statistical maps. Indeed, assume that ft is finite. According 
to the assumed convention, all singletons {u>} are measurable, what implies that 
B(ft) = 2 n . Hence £(ft) contains all functions ft -> [0,1], and consequently all 
affine maps M1

+(fi) —> MX
+(S) with arbitrary measurable spaces S satisfy the 

condition of formula (1). 

1.5. The distribution functional DF: M*(ft) —» M+ (S) uniquely characterizes 
the measurable function F: ft —> S , so one could choose statistical maps instead 
of traditional measurable functions to represent standard random variables. It is 
easy to realize that distribution functionals of measurable functions form a very 
special class of statistical maps: a statistical map A: M^(ft) -> M1

+(S) equals 
DF for some F: ft —> S if and only if A is strict (see [12]). 

Here we find a natural area to extend the standard concept of random vari­
able: all statistical maps M1

+(J1) —> MX
+(S) are considered as formal representa­

tives of operational random variables (also fuzzy random variables, o.r.variables 
for brevity). By operational (or fuzzy) probability theory (OPT for brevity) we 
will understand a theory based on M+ (ft) and assuming all statistical maps 
M1

+(n) -> M1
+(S) to represent (operational) random variables. It should be 

stressed that o.r.variables appear in a natural way in circumstances typical for 
science, examples can be found in [13], [9]. 

The above remarks show that standard random variables can be identified 
with a particular class of o.r.variables, that of strict ones; their characteristic 
feature is that they map Dirac measures into Dirac measures, while a general 
o.r.variable could assign nontrivial probability distibutions to Dirac measures 
on ft. Following common habits of SPT, where usually one does not worry 
about distinguishing between random variables and their formal represent ants, 
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measurable functions, we will identify o.r.variables with the corresponding sta­
tistical maps. Nevertheless, we should mention that there are various formal 
representations of the concept of o.r.variable, formally equivalent to the one we 
adopt here (see [12]). In particular, a natural one-to-one correspondence be­
tween statistical maps and effect valued mectsures ([12; Theorem of 4.5]) makes 
it possible to represent o.r.variables just by effect valued measures; that has been 
proposed recently by S. G u d d e r . 

2. Operational probability theory 

2 . 1 . Let us recall what is stated in numerous textbooks and monographs (here 
we quote [16]): Probability theory will provide us with mathematical models 
for describing experiments with random outcomes. A short reflection suffices to 
realize that general statistical maps are the most natural formal representants for 
such experiments. We restrict our attention to a special (nevertheless sufficiently 
large) class of experiments with random outcomes called measurements (see, for 
instance, [17], [18], or a clear and concise description in [19]). 

It is commonly accepted that any measurement has to consists of three stages: 

- a preparation of the object to be examined, 
- bringing it in contact with another object, the measuring device, 
- an observation of the reaction of the latter. 

In general, a measurement is performed on a statistical ensemble of identi­
cally prepared objects, so it results in a probability distribution on the space 
of outcomes of single individual measurements. It can happen that two differ­
ent preparation procedures produce the same result for every measuring device, 
also two different measuring devices could show the same final response at every 
preparation. That leads to natural equivalence relations on the set of all prepa­
ration procedures and on the set of all measuring devices; equivalence classes 
defined by them are called respectively states and observables (measurable prop­
erties). Now, an abstract description of an observable (or: of a measurement of an 
observable, if we would wish to distinguish between measurable properties and 
the way they are measured) is a map which transforms states into probability 
distributions on the space of outcomes of the observable. 

We should take into account that various statistical ensembles can be mixed 
together; that induces a convex structure on the set S of states with extreme 
points of S representing most precise preparations (physical: pure states). All 
observables we are going to consider react linearly on the mixing of ensembles; 
thus, an observable is an affine (i.e. convexity preserving) map of a convex set 
S of states into a convex set M^~(E) of probability measures on the outcome 
space S. 
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Finally, we assume that the "experiments with random outcomes" we are 
interested in are performed on "classical" (as opposed to "quantal") objects. It 
is commonly accepted that the "classical" nature of an object manifests formally 
as S = M1

+(J1) for some measurable space Q. Now, if we extend the property 
of preserving convexity over "uncountable mixtures", we end with the concept 
of statistical map. 

Thus we have found that a natural mathematical model of an "experiment 
with random outcomes" performed on a "classical" object is provided by a sta­
tistical map A: M^(Q) —•> M*(E). The remarks of Section 1 indicate that some 
special statistical maps provide (via the concept of the distribution functional) 
an equivalent description of traditional random variables; nevertheless, there are 
statistical maps which do not correspond to standard random variables. The 
above discussion indicates that the latter have the same operational interpre­
tation as the former, so there is no a priori reason to deny them as possible 
models of "experiments with random outcomes". Hence, we admit all statistical 
maps as representing generalized random variables (o.r.variables); o.r.variables 
corresponding to standard random variables will be called strict 

Separating for a moment the operational concept of an o.r.variable from its 
formal model, one can say that an o.r.variable is an experimentally measurable 
property of a "classical" statistical system which, when tested at a fixed most 
precisely prepared state, produces a (nontrivial, in general) probability distribu­
tion on its outcome space. A direct inspiration comes, of course, from quantum 
mechanics, because quantal "observables" usually generate nontrivial probability 
distributions at pure states. 

The distinction between standard and nonstandard o.r.variables is in fact 
of a deep nature. The traditional notion of random variable is based on the 
deterministic paradigm: given cause (a state prepared in the most precise way) 
implies always the same well defined result (the value of a classical random 
variable at that state). The operational notion of random variable is intrinsically 
indeterministic: given cause (a state prepared in the most precise way) implies 
in general a nontrivial statistical scatter of possible results (as the probability 
measure attached by the operational random variable to that state does not 
have to be concentrated at one point). Thus the classical probability theory 
describes merely a lack of a complete information in a deterministic world, while 
the operational probability theory is able to describe an essential randomness 
— either inherent or induced by an uncontrolled outer influence. 

It would be worth to mention here that o.r.variables cannot be identified as 
fuzzy random variables (in spite of the original misinterpretation, [8]). A fuzzy 
random variable (f.r.variable for short) would be described by a function F: 
Q —r £ (A) for some measurable spaces Q and A, comp. [14], [15]. Now the 
remarks of [12; Subsection 4.7] show that o.r.variables and f.r.variables are rep-
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resented by essentially different formal concepts. In view of the discussion above, 
one can say that f.r.variables belong to the class of standard (i.e. deterministic) 
random variables; namely, they are just these standard random variables which 
have outcomes in families of fuzzy sets. 

One could ask why the concept of o.r.variable, being so evident and natural 
from the general point of view of the theory of measurement, is ignored by SPT. 
One of possible reasons could be the classical deterministic paradigm which 
seems to underlay SPT and makes it to accept only these uncertainties which 
results from an incomplete knowledge of causes. Another hypothetical reason 
would be a rather unexpected fact: one can easily show that o.r.variables can be 
well represented by standard random variables. We will show that in Section 3, 
now we have to introduce some basic concepts and facts of OPT. 

2.2. We start with reminding the concept of a product of statistical maps 
(hence, of o.r.variables) introduced in [12]. 

Let {A{ : i = 1,2,... , n} be a finite set of o.r.variables, A{: M^(Ct) -> 
n 

M1
+(Hi), let X —i denote the Cartesian product H: x H2 x • • • x Hm, which 

i=l 

carry the measurable structure generated in the known way by the ones of 
H-_, H 2 , . . . , Hm. To any u E fi one assigns the product measure 

The obtained map Q —> Ma
+ f X — i) defines the unique o.r.variable M1

+(lQ) —> 
M = I ' 

( n \ n 

X Ei) , denoted (g) Ai and called the product of o.r.variables A1,..., An. 
i = l ' i=l 

It is easy to show that the product of o.r.variables generalizes the correspond­
ing concept of SPT (see [12; Subsection 5.7]). 
L E M M A . Let {.A1,.A2,...,.Am} be a finite collection of strict o.r.variables; 
A{: M1

+(n) -> M1
+(Hi); so every A{ is the distribution functional of a standard 

random variable F{: ft -> E{, i = 1,2, . . . , m . Then the product o.r.variable 
n 

0 Ai is the strict o.r.variable which is the distribution functional of the stan-
i=l n 
dard random variable F: Q —> X ^> 

i=i n 

n3u^F(u) = (F1(u),F2(u),...,Fm(u))e X^i 
»=i 

P r o o f . ( <g> A{)Su = ® (A{SJ = ® 5Fi(u) = 8F{l0). The measurability of 
i=l i=l i=l 

the function u> -> F(u) = (F1 (u>), F2(ui),..., Fm(u)) is a standard fact of SPT, 
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see [16] for instance. Now, 

= / ^ ( c ) W M d w ) = M(E-1W) 
n 

forany X E f i f X ^ ) . D 
v i = i ' 

n / n v 

2.3. A remarkable property of the product (g) A{: M a

+(n) -» M^ ( X ^;) °f a 

i= l M = I ' 
family {.Â  : i = 1,2,..., n} of o.r.variables is that one can get back all original 

n 

o.r.variables Ai, i = 1,2,..., n, by composing (g) ̂  with marginal projections 

n i : M + ( X H j ) ^ M + ( S i ) : 
n 

A. = n i0(g)^.. ѓ = l 

This property of the product of o.r.variables leads to the concept of a joint 
o.r.variable. 

DEFINITION. A joint o.r.variable for a family {A{ : i = 1,2,...,n} of 

o.r.variables^: Ma

+(fi) -r M1

+(S i) is an o.r.variable .4: M 1

+(fi)-rM 1

+( X -=0 
M=I ' 

such that Ai=Yiio A for every i = 1,..., n. 

2.4. Any finite collection {^ : i = 1, 2,..., n} of o.r.variables has at least one 
n 

joint o.r.variable: the product (g) A{. It is interesting to observe that if Ai are 
i=l 

not sharp, then there are many joint o.r.variables for {Ai : i = 1,2,..., n}, see 
below. That does not occur if all Ai are strict. 

LEMMA. Let {A{ : i = 1,2, . . . ,n} 6e a family of strict o.r.variables. Then 
n 

2fte product & -4̂  w tffte unique joint o.r.variable for {A{ : i = 1,2,..., n} . 
i = l 

P r o o f . If 2?: M1

+(fi) -» Ma

+ ( X s J would be another joint o.r.variable 
v i = i ' 

for the family {A^ : i = 1, 2,..., n}, then 
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for all i = 1,. . . , n and u G ft, where F{: ft —> Ei are the standard random 
variables corresponding to the deterministic o.r.variables A{, % = 1,..., n. This 
implies that 

-Ч, = *ғ(«) = (®-4<V. 
^ t = l ' 

n 
where F: f2 -> X ^t ^s defined in Lemma of 2.2 above. Hence, _B is a strict 

t = l n 
o.r.variable generated by the same standard random variable as ® Ai, what 

n i = i 
means that -B = (g) A i. • 

t = i 

2.5. The fact that a genuine collection of o.r.variables admits many different 
joint o.r.variables can be easily demonstrated on elementary examples, one com­
ing from quantum mechanics can be found in [8], another is provided below 
[10]: 

EXAMPLE. Consider two o.r.variables Ax\ M^(Q) -» M1
+(R), A2: M^(Q) -> 

MX
+(R) such that A1fi = A2/j, for all \x G M1

+(fi). The product o.r.variable 
Ax® A2: M1

+(fi) -> Mj+(R2) is one of their joint o.r.variables, another joint 
o.r.variable for Ax and A2 can be constructed as follows. 

Let A := {(A, A) : A e R } C R2 denote the diagonal of the direct product 
R2; clearly A G 5(R2). For arbitrary v G M1

+(R) we define vQv e M1
+(R2) 

by 

(vev)(x):=v(7v1(xnA)), 
where 7Ta is the coordinate projection R2 3 (A1? A2) —r Xx G R. Then we define 
map tp: ft -> M1

+(R2), ip(u) := A^ © A2Sia for all u G ft. It is easy to show 
that ip is a statistical function (see [12]). Indeed, for a fixed X G Z?(R2) we have 

V(u>)(X) = ( V „ © - V J W = (-V«)(*i(-*" n A)), 

and the resulting function on ft is measurable because At is an o.r.variable. 
Now we take the o.r.variable generated by the statistical function tp (see 

[12]) and call it Ax Q-A2; clearly, At Q)A2 is a joint o.r.variable for Ax and A2 . 
The uniqueness of joint o.r.variable for strict o.r.variables implies that Ax GA2 

= Ar® A2 for strict Ax (and A2, as we have assumed Ax = -A2). It is equally 
evident that Ax O A2 ^ Ax® A2 for genuine o.r.variable Ax ( = ^42). In­
deed, (Ax QA^S^ is concentrated on A, while (Ax ®A2)6U) is concentrated on 
Supp(-416*uJ) x Supp(-42dw) where Supp(l/) denotes the support of the measure 
v. Hence (Ax © A ^ ^ (̂ 41 ® A2)SLJ except the case of A^ = u\ for some 
AGR. 
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2.6. Let us notice a "global" attitude of OPT as opposed to the "local" one 
assumed by SPT: a majority of traditional concepts and results of SPT refers 
to a fixed probability measure on ft, while, in the framework of OPT, one is 
interested rather in concepts and results referring to all probability measures 
on (ft,.B(ft)). Thus OPT is founded on the convex set M^~(Q) instead on a 
probability space (ft, B(ft),/x). That "global" point of view can be traced back 
to the operational approach to statistical physical theories (see [7] and references 
quoted therein), which is the birth-place of OPT. In fact it is not a necessary 
feature, nevertheless it would be rather hard to distinguish OPT from SPT if 
the former, like the latter, would be considered "locally", i.e. for a fixed measure 
on the space of elementary events. It seems that the only "local" effect of OPT 
which cannot be obtained from SPT is the Bell phenomenon (see Section 4). 

3. Representing o.r.variables 
by standard random variables 

3.1. Let A: Ma+(ft) -» M1
+(S) be an o.r.variable on ft. Take the identity 

o.r.variable on ft, In: Ma
+(ft) «-» M1

+(ft), and consider the product o.r.variable 
A ® Fn: M1

+(ft) —r Ma
+(S x ft). It is easy to show that the composed map 

U1o(A® I n ) : M+(ft) -> M+(S x ft) -r M+(S), 

where II1: M1
+(Sxft) —y M1

+(S) is the marginal projection, returns the original 
o.r.variable: 

LEMMA 1. For every o.r.variable A: M1
+(ft) -> M1

+(S), 

A = U1o(A®In). 

P r o o f . As every statistical map is determined by its restriction to Dirac 
measures (comp. formula (2) above), it suffices to show that AS^ = (Ux o 
(A®Ia))^

 for every u G ft. Now (Ux o (A®In))8u = U^AS^ ®InS„) = AS^ , 
because I^ (/x ® v) = ^. • 

LEMMA 2. For an arbitrary o.r.variable A: M^"(ft) -> M1
i"(S), the product 

o.r.variable A® Ln: M1
+(ft) —r Ma

+(S x ft) is infective. 

P r o o f . Taking into account the condition (2) we get: 

((A ® Ia)ii)(X xY) = J ((A ® Ia)Su)(X x Y) M(<M = J(A5J(X) fi(du>) 
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for any X G B(E), Y G B(il), \i G M+(Q). If X = E, then 

((A ® Iӣ)џ) (БxY) = j џ(du) = џ(Y). 

Now it is evident that \xx ^ \i2 implies (A ® l^)\ix / ( A ® - ^ n ) ^ f° r a n y 

3.2. The marginal projection I ^ : M ^ ( S x fi) -» M 1

f ( S ) can be seen as the 
strict o.r.variable defined by the measurable coordinate function TY1 : S x $1 -» S . 
Thus, the original o.r.variable A is the composition of the injective o.r.variable 
A ® In: M^(Q) —.> M + ( S x Q) and the strict o.r.variable I I 1 corresponding to 
the standard random variable 7T1. That proves the following statement (a similar 
result has been obtained recently by S. G u d d e r [11]): 

PROPOSITION. For any o.r.variable A: Ma

+(J1) -> M + ( S ) there are: a mea­
surable space ftf, an injective o.r.variable H: M+(fi) —> M*(nf), and a stan­
dard random variable F: £)' -> S such that 

A = DFoH, 

where DF: M*(fi,f) —r M1
+(S) is the distribution functional of F. 

That result admits the following interpretation. The standard random vari­
able F returns all probability distributions produced by the original o.r.variable 
A on its outcome space S , so could be considered as a faithful representa­
tive of A. Assume now that for some u>0 £ Q the resulting distribution AS 
is not concentrated at one point of the value space S , what is the indica­
tion of an inherent indeterminism of the o.r.variable A. The injective map 
H: M1

+(!T2) -> M1
+(fi') can be understood as resulting from a kind of "hid­

den variables theory", which provides a deeper and more detailed description of 
the set of states of the object under examination. Former most precise prepara­
tions symbolized by Dirac measures Sw, u) G fi, or just by points of fi, disclose 
under H their subtle structure: in the new description, they are represented 
by nontrivial, in general, probability measures HS^ on the new space Q'. The 
equality 

A5„o = DF(H6J 
means now that the new extended description of states provided by H removes 
the original indeterminism demonstrated by A at u)0, because the nontrivial 
probability distribution AS appears "in fact" generated in a "classical" way by 
the standard random variable F at the state of incomplete information HS G 
M1

+(fi '). It is remarkable that this reinterpretation works simultaneously for all 
original pure states, so the "hidden variables theory" symbolized by H together 
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with the standard random variable F representing A eliminate all instances 
of indeterminism which could be showed by the original o.r.variable A. In this 
way the original "indeterministic" o.r.variable become safely reinterpreted and 
absorbed by the standard formalism of SPT. 

3.3. The above method of representing o.r.variables by standard random vari­
ables works also for finite families of o.r.variables (if only we ignore their eventual 
mutual connections, see the next section). 

Let us consider a family {A{ : i = 1 , . . . , n} of o.r.variables, A{: M[*~(fl) -> 

M i 1 " ^ ) . Let A: Mf(Q) - ) ¥ / ( ) ( Et) be a joint o.r.variable of theirs. The 

preceeding considerations show that the o.r.variable A: M^~(Vt) —> Mx
+ ( X E^) 

M = I ' 
is well represented by the marginal projection 

what is symbolized by the equality 

-4 = n ( l , 2 , . . . , n ) ° ( ^ ^ / n ) -

Taking into account that A. - -11 . o i , j = 1 , . . . , n , (see 2.3), we get 

^ • = V n ( l , 2 , . . . , n ) ° ( ^ ® J n ) -

As 11̂ . oII/1)2) i j i )n) is the marginal projection M-+ M X ~i) x ^ p M1
+(E!J.) 

we find that every o.r.variable of the original set {A{ : i = 1 , . . . , n} gets the 

faithful and strict representation on the extended space ( X ^ i ) x ^ • 

Thus we can simultaneously obtain standard representants for any finite fam­
ily of o.r.variables. In fact, that holds also for an arbitrary family of o.r.variables, 
because the product o.r.variable can be defined for arbitrary sets of o.r.variables 
(comp. [12]). 

The elimination of o.r.variables like that described above explains, perhaps 
why SPT could for so long time ignore o.r.variables. A decisive argument in 
favour of the proposed extension of the standard concept of random vanabl 
comes from quantum physics: we demonstrate below that SPT (contrary to 
OPT) is not able to describe the Bell phenomenon. 

4. Bell phenomenon 

4 . 1 . Families of o.r.variables considered up to now were of a rather particular 
form: outcome spaces of o.r.variables they consisted of showed no mutual con-
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nections. We are going to consider finite collections of o.r.variables which are 
free of that limitation. 

DEFINITION. Let ( S a , S 2 , . . . , S n ) be a finite ordered collection of measur­
able spaces. A semi-projective family of o.r.variables on fi with outcome spaces 
(Sp S 2 , . . . , S n ) is a family A of o.r.variables on M1

+(fi) such that: 

(i) for every (il, i 2 , . . . , ir) C (1, 2 , . . . , n) there is in A at most one (i.e. one 
or none) o.r.variable 

-W...-,): M + ( " ) -"M+(H;. x s i 2
 x • • •x E0; 

(ii) if 

A(n ,<„...*.): M + ( f i ) ~> < ( S 4 i X 5 i 2 X • • • x 3 J , 

^W. J . - J . ) : M + ( f i ) "> M + ( S ; , x S i f x • • • x EJm) 

are two members of A and if 

( 2 \ , i 2 , . . . , i r ) n (j^j2...,js) = (fclsfc2>...,fct) ^ 0 , 

then there is in A a statistical map A,k k k ^: M^~(ft) —> M^~(Ek x 
Ek2

 x '"xEkt) such that 

A _ T T ( * l , * 2 , . . . , * r ) J __ T T ( i l , i 2 , . . . , i a ) _ J 
^(fcl,A!2,...,fct) L\kuk2t...M ^(il ,*2,.. . ,ir) - "(fci.fca,...,^) ^(Jl, i2. . . , ia) ' 

where 

n(lV.t::i!): M + ( H n x s*.x • • •x E0 -> < ( s f c l x ~fc2 x • • • x Ekt), 
nji;!;;:^). < ( - , , x H,2 X • •. x s,,) -> M+(~fci x ~fc2 x . . . x ~j 

are the marginal projections; 

(iii) for every i e {1,2, . . . , n } there is Ai £ A such that A{: M^(Q) -> 
M+tSj . 

The o.r.variables A{: Mf(Q) —> M1
+(S i) are called basic o.r.variables for A. 

The concept of a semi-projective family of o.r.variables has been introduced 
in [3] and called there a consistent family of observables. 

4.2. Notice two special kinds of semi-projective families of o.r.variables: 
Considered up to now families of o.r.variables like {A{ : i = l , . . . , n } , 

Ai: M1
+(n) —> M 1

+ (S i ) , satisfy the above definition: they are semi-pro jective 
families as "empty" as possible — containing no o.r.variables besides the basic 
ones. The other extreme form these semi-pro jective families which have no "free 
places" at all. They are called projective families. 
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DEFINITION 2. A semi-projective family A of o.r.variables on Q with outcome 
spaces (H l5 H 2 , . . . , Hn) is projective if instead of (i) we have 

(i)' for every (i1,i2)...,ir) C ( 1 , 2 , . . . , n ) there is in A exactly one o.r.vari-
able 

V < , , . . . « , ) : < ( " ) "> Ml+(Hn X ^ X • • • * 3 . - ) • 

Let ^4 be a semi-projective family of o.r.variables on D, with outcome spaces 
(H-p H 2 , . . . , H n ) , let /x G M^~(Q). It is evident that o.r.variables of A generate, 
acting on /x, a family of probability measures on spaces H j , ^ , . . . , H n and 
eventually on some of their Cartesian products. The obtained family of measures, 
denoted A/i, will be called a semi-projective family of probability measures on 
(Hj, H 2 , . . . , H n ) . If A is projective, then An is a projective family of probability 
measures in the standard sense (see e.g. [16]). 

4 .3 . A projective family of o.r.variables has a very special structure: all its 
members must have the form 

A{iui2,..M = U(iii2^i,) ° ^(1,2,...,n) > ( 3 ) 

so the "top" member A,x 2 ns of such a family generates all other its members. 
That leads to a generalization of the concept of joint o.r.variable. 

DEFINITION. Let A be a semi-projective family of o.r.variables on fi with 

outcome spaces (Hj ,H 2 , . . . , H n ) . An o.r.variable B: M1
+(lT2) -> M{*"( X ^ i ) 

M = I ' 
such that for every A , i i { i \ E A the equality 

A — n(l,2,...,n) R 
^ ( t l , t 2 , . . . , M - 1 1 ( i l , t 2 , . . . , V ) ° ^ 

holds will be called a, joint o.r.variable for A. 

Thus, if a semi-projective family A possesses the "top" o.r.variable A , l 2 s , 
then A,12 x is a joint o.r.variable for A (see formula (3)). One can ask if a 
semi-projective family of o.r.variables which does not possess the "top" member 
can have a joint o.r.variable, or equivalently: if a semi-projective family can be 
extended to a projective one. 

The answer is obviously affirmative if a semi-projective family A contains 
only basic o.r.variables, because then the considerations of 2.4 apply. That ob­
servation generalizes [3]: 

LEMMA. If a semi-projective family A contains only product o.r.variables of its 
basic o.r.variables A^ A2,... ,-An, then Ax ® J 4 2 ® « • *®-4n is a joint o.r.variable 
for A. 

P r o o f . It suffices to realize that a composition of a marginal projection 
and a product o.r.variable is again a product o.r.variable. • 
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Now it is evident that the uniqueness of joint o.r.variables for sets of strict 
o.r.variables implies (see Lemma of 2.4): 

C O R O L L A R Y . If all basic o.r.variables of a semi-projective family A are strict, 
then there is a unique joint o.r.variable for A, equal to the product of its basic 
o.r.variables. 

P r o o f . These o.r.variables of A which are not basic must be joint o.r.vari­
ables of some of basic ones. In fact, they must be product ones because the basic 
o.r.variables are strict (see Lemma of 2.4). Hence we can apply the last lemma. 

• 

4.4. It can be demonstrated that there are semi-projective families of o.r.vari­
ables which do not have any joint o.r.variable. The simplest example [8] is quoted 
below, another one can be found in [3]. 

EXAMPLE. Let fl be a finite set, consider a fixed point CJ0 € fi and a family 
of o.r.variables A— {A1,A2,AS,A12,A23,A13} on ft. Assume that AX,A2,A3 

are basic o.r.variables with two-point outcome spaces 

A1:M1+(f.)->M1+({{1,e2}), 

A2:M+(n)->M+({7?1,7/2})) 

A3:M+(n)->M1+({C1 ,C}), 

while 

A.2: M+(0) -> M+({£a,e2} x {%,r,2}), 

Aj,: M+(0) -> M+({r71)7,2} x {d,C2}) , 

A13: M+(fi) -> M+({«:1,e2} x {CX,C2}) • 

Assume further that 

A^O = K + K ' 
^Ao = l*m + \5m ' 

and choose the o.r.variables Axy A23' ̂ 13 in such a way that: 

Aus
Uo = 5*(€i.m) + 2%,%)> 

A s ^ o = 2 ^'M + 2*(i-.C»)' 
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The measures generated by A12 and A23 at S show a strong correlation, 
while the measure A13S shows a strong anticorrelation of the corresponding 
marginal measures. 

So far we have defined o.r.variables .A1? .A2,-43, A12, A23 , A13 at one point 
of ft. The assumed finiteness of ft implies (see 1.4) that the o.r.variables in 
question can be defined at other points of ft in an arbitrary way. Hence, without 
providing an explicit construction for A1,A2,A3,A12,A23,A13, we state that 
there exist o.r.variables having the listed above properties. 

Now we easily find that there is no probability measure on the 8-point set 
{ l̂? ^2} x {Wvty} x ( d * ^ } which would return the three measures A12S , 

^ 2 3 ^ 0 ' 1-i3^0 (hence the all six measures AS^) as its marginals. Indeed, 
if such a global joint measure did exist, then, for instance, the two measures 
^12^0 anc^ ^23^0 w o u ^ force the third one to be 2^(£i,Ci) ~̂~ 2^(6^2) i n s t e a c ^ 
of ^ . W + l W ) ' 

4.5 . The appearance of semi-projective families of o.r.variables which do not 
have any joint o.r.variable is called the Bell phenomenon ([3]). Corollary of 4.3 
shows that the Bell phenomenon does not appear in SPT, while the above exam­
ple shows that it does in OPT. It is clear that the occurrence of Bell phenomenon 
in OPT and its non-occurrence in SPT are implied by the uniqueness of joint 
random variables in SPT and the non-uniqueness in OPT. 

Finally, let us notice the following simple fact. If A is a semi-projective family 
of o.r.variables on ft which has a joint o.r.variable, then for every /z G M^~(fl) the 
semi-projective family of measures Afi has a joint probability measure. Thus, if 
there exists // G Ma

+(ft) such that the family of measures A\i does not have any 
joint probability measure, then the family A does not have a joint o.r.variable 
(hence shows the Bell phenomenon). This is a typical situation when we observe 
the Bell phenomenon. 

5- The Bell phenomenon in quantum mechanics 

5 .1 . In order to connect the above defined concept of Bell phenomenon with the 
research field initiated by the work of Bell we need some new notions. In what 
follows "quantum mechanics" means the standard version of quantum theory as 
described for instance in the monograph of v o n N e u m a n n [20] as well as its 
modern extension called operational quantum mechanics as described in [7]. 

Let Sn denote the convex set of von Neumann's density operators on a 
complex separable Hilbert space H, let ft^ denote its set of extreme points 
Sn, which formally consists of all trace class self-adjoint operators of trace 1, 
represents the set of states of a quantum-mechanical system, while ft^ is the set 
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of pure states. All physical quantities ("observables") pertinent to the quantum-
mechanical system are represented by affine maps Sn —r M^(E) with 5 — 
an arbitrary measurable space of interest. If we represent an observable in the 
traditional way as a self-adjoint operator on %, the corresponding affine map is 
defined via the spectral decomposition. 

One can construct (see [21], [22]) an affine surjection RM: M^(nn) -» Sni 

called the canonical classical extension of quantum mechanics, which provides 
a natural representation for all quantum observables: an observable A: Sn —> 
M1

+(S) is represented simply by the o.r.variable 

AoRM:M+(nn)-»Sn->M+(E). 

The M i s r a map RM is the connecting bridge between quantum mechanics 
and OPT. 

5.2. Let then A! be a finite family of quantum observables, it can happen that 
the set A := {A o RM: A G A1} of o.r.variables on Qn is an instance of the 
Bell phenomenon. That means that there is /z G M*(fln) such that the family 
of measures Afi = {(Ao RM)fJL : A G A1} does not have a joint probability 
measure. The semi-projective family of me2LSures {(Ao RM)/J> : A e Af} can 
be seen as {A(RMfi) : A G Af} i.e. as generated directly by observables of Af 

from the quantal state a ~ RMH G Sn. The nonexistence of a joint probability 
measure for the semi-projective family of measures {Aa : A G Af} can be 
expressed as a violation of Bell-type inequalities. In this way all instances of the 
Bell theorem find faithful representations in the framework of OPT by means of 
the canonical classical extension of SQM. 

Now it is easy to realize that Bell inequalities of all kinds as well as all Bell-
type theorems in SQM can be reduced to the following observation: there exists 
a family A! of observables of SQM such that the family A := {AoRM : A G A1} 
is a semi-projective family of o.r.variables on Vtn which does not have any joint 
o.r.variable. A family of quantal observables having that property has been for 
the first time constructed by D. B o h m in his discussion of the EPR example 
[23], J. S. B e l l [1] was the first who proved that Bohm's family of observables 
shows what we call the Bell phenomenon. Then it has been noticed by F in e [2] 
that the violation of Bell inequalities means nothing more as the nonexistence 
of a joint probability measure, that idea has been developed above following [3]. 

As the Bell phenomenon cannot occur in SPT (see Corollary of 4.3), all known 
experimental confirmations of violations of Bell's inequalities support the idea 
of generalizing SPT into OPT. 
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6. Conclud ing remarks 

We have demonstrated that operational probability theory (OPT) is an es­
sential and nontrivial extension of the traditional probability theory. Its ability 
to adopt the typically quantal Bell phenomenon shows, together with remarks of 
Subsection 2.1 and Section 5, that OPT could provide an underlying probabilis­
tic framework for both classical and quantal statistical physical theories and, 
possibly, for hypothetical theories of mesoscopic objects. The concept of opera­
tional random variable applies to essentially indeterministic systems in general 
what suggests that OPT should have interesting applications outside physics as 
well. 
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