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A CLASS OF DIFFERENTIAL EQUATIONS SIMILAR
TO LINEAR EQUATIONS

VALTER SEDA

In the paper it is shown that certain properties, especially those connected with

some differential inequalities (monotonicity, disconjugacy, etc.) of a linear diffe-
rential (fort short d.) equation

x™+ "ZPk(t)x("_"’= Q(1)

can be extended to the class of nonlinear d. equations of the form
x4+ 3 pet, x, x', L xTx =g (£, x,x', .., x"7")
k=1

or to a special case of that class. In this way a Hartman—Wintner’s result has
been generalized. This also extends a theorem of Anichini—Schuur. The main
tool in the proof is the application of the Fan and Glicksberg fixed point theorem in
which a compactness condition plays an important role. Further the existence of
a solution to a nonlinear boundary value problem is proved, which generalizes
a result of Kannan—Locker.

1. First we introduce some notions. Let I=[a,b)
—w<g<b=w,J=(—om, »). Let C""'(I) be the vector space of all real functions
(in what follows only real functions-will be considered) which have n — 1 continu-

ous derivatives on I. The topology on C"~'(I) is introduced by the countable family
of seminorms

@)
pn()= max, max  x“(0)|

(if b = ») and in the case b <® by
pm(x)= max  max lx ()]
=T fela, bt
for all m such that a<b —-’1;. In this topology C"~'(I) is a Fréchet space and the

convergence x, — x in this space means the locally uniform convergence in I of x$’

to x® up to the order n — 1. In a similar way the Fréchet spaces C°(I), C"'(J),
C°(J) are defined.
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Lemma 1 (The Fan and Glicksberg fixed point theorem, see [6], [7], [1, p. 249]).
If S is a closed, convex, nonempty subset of a Fréchet space X and if T satisfies : i)
for each u €S, T(u) is nonempty, compact, convex subset of X; ii) T is a closed
mapping; iii) T(S) is contained in a compact subset of S, then there is a u € S such

that ue T(u).
Lemma2.Let P, ,,€C°(I),0,eCI). k=1,...,n,m=1,2, ..., be bounded in

the topology of C°(I), i.e. on each compact subinterval of I the sequences

{P.mYm=15 {On}m_i (k=1, ..., n) are uniformly bounded. Then the following

statement holds :
If {x,.}m-1 is a sequence of solutions of the d. equations

(1) x4 SP (X" = 0n(0)

which is-bounded in the C°(I) topology, then it is relatively compact in the topology

of C"7'(I).

Proof. The case n=1 is clear. Suppose, therefore, n>1. Let [c, d] be
a compact subinterval of I. Denote by [|- ||, the sup-norm on this interval. By the
assumptions of the lemma there exists an a >0 such that

(n—k)

x4+ D Pk ” =a
k=1 0

(2) 1Pemllo=a, |[xm]lo=a and

(k=1,..,n, m=1,2,..).

Without loss of generality we can assume that a=1, n! a=(d—c)". Put
% llo=B.. By [10, p.1260; 3, p. 140], there exist constants a,,>0, k=

1, ..., n—1, such that
©f < (n—k)/n ‘o n! k/"<
1x]o = a,.ca max (ﬁ,,,, d=c7 a =

(3)

. n’ (n—1)/n
=a,a" """ [max( ,,.,—na)J ,k=1,..,n—-1.
(d—c)

Two cases should be distinguished.

< nla
1' ﬂm:(d_(,‘)",

n!la
2. =)
In the latter case, by (2), (3),

n—1
- @n=1/np(n—1)/n
m

m ga + Eannn—ka
k=1

<Bo.
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and, hence,

n—1

Bn=a" [1+ za,,_,,_ka("‘”/"] .
k=1
Let

— _'_1!* n = (n—1)/n "
B = max ((d—c)" a,a [1+k2la,,_,.-ka ] ) .

Then ||x&’][o=pB and, again by (3), |[x¥|e=a,.a" """, (m=1,2, ..,
k=1,..,n-1).

Hence, by the Ascoli lemma, any uniformly bounded sequence {x..} in [c, d]
contains a subsequence {X.,.;,} which is uniformly convergent on [c, d] with its
derivatives up to the order n —1. I can be covered by a sequence of compact
subintervals, and, by a diagonalization process, a subsequence {x..;,} can be

extracted such that {x%},)},i=0, 1, ..., n — 1 converges uniformly on any compact
subinterval of I. This means that the sequence {x,} is relatively compact in
c ().

With respect to Corollary 4.1 ([8, p. 73]), the last lemma yields

Corollary. If the sequences {P...} and {Q,.} are locally uniformly convergent to
the functions P, and Q, respectively, onIfork =1, ..., n,and {x,,} is a sequence of
solutions of (1,,) which are uniformly bounded on each compact subinterval of I,
then there exists a subsequence {Xn.,} and a solution x of

¥4+ SPOx"P=Q(1) (tel)

such that {x%,,} uniformly converges to x on each compact subinterval of I for
i=0,1,..,n-1.

Remark. Lemma 2 and its Corollary remain valid when instead of I the open
interval J is considered.

The next lemma describes a property of linear d. equations.

Lemma 3 (Hartman—Wintner, [9, p. 204]). Let m, 0<m=n be fixed. Let
P.eC(),k=1,...,nand P.(t)Z0fork=m+1, ...,nif m<n,and forall tI.
Let the m-th order d. equation

(4) (L(x)=)x"™+ S(—l)““pk(t)x(m—k)=0

possess a set of solutions us, ..., U, satisfying W, (u,, ..., w.) (t)=det (ui~"(¢)) >O,
i,j=1,..,kfork=1,...,m, tel. Then

(L.(x)=)x"+ kg(— D 1P ()x" =0

has a solution x satisfying
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x(t)>0 and (-1)x®()=0 for k=0,1,..,n—m.

Corollary. If P,(¢)=0 is not true in any subinterval of I and 0<m <n, then the
mentioned solution x shows the property

D)x®t)>0 (k=0,...,n—-m—1,tel)

and (—1)"""x®~™ has less than m;— 1 (% + 1) different zeros on I when m is odd

(m is even).
Proof. When x is the considered solution, the function y =x
nonhomogeneous d. equation

(n—m)

satisfies the

(5) LAyﬁi;;K—DﬁﬂUk“*KO,teL

Denote the right-hand side of (5) as #. Then £ does not vanish identically on any
subinterval of I and its sign is equal to (—1)". Further all zeros of y are of

1 ..
different zeros 1, <t,<...<¢,

multiplicity at least 2. If m is odd and y has m;—

+ . .
j =—m—i—1, then the Green function G corresponding to the problem

+1
La)=0, yW)=y'@)=0, k=1,..,"1

is, on the basis of a result of Levin[11, pp. 80—81], nonnegative. y can be written
in the form y(t)=fiG(t, s)h(s) ds, te[ts, t;], which is a contradiction since the

signs on the two sides of this equality are mutually different.

. 1 . .
When m is even and y has 5’2—+1 different zeros, then we consider the Green

function G, of the problem
L(y)=0. y(@)=y'(t)=0, k=1,..7

ﬂm=o,z=§+1

Since G,=0 and y(t)=J’,G,(t, s)h(s) ds, we again have a contradiction. Using

the fact that x® ™™ is of a constant sign and has only finitely many zeros, we get the
statement of the corollary. A
Remarks. 1. Since the lemma and its corollary are based on Theorem 2.1, [8,
p. 592], which is true also on an open interval, in this lemma and its corollary the
interval I can be replaced by J both in the assumptions and in the statements.
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2. If m=1, then (4) clearly satisfies the assumption of Lemma 3. For m>1 a
sufficient condition for the existence of a Markov system of solutions u,, ..., u,, of
(4) (i.e. with Wronskians W, (uy, ..., ) >0, k=1, ..., m, on I), is the existence of
m — 1 functions y,, ..., ym-1 € C™(I) which form a Descartes system on I (i.e. the
Wronskians Wi (yi,, ..., ¥,) 1S <...<ik S m—1,k=1, ..., m—1) are positive
on I), and satisfy the inequalities (—1)"“L,.(y«)()Z0 (k=1, ....,m—1,teI) ([4,
p- 123]). Another sufficient condition on a compact or on an open interval j is that
the equation (4) should be disconjugate on j ([4, pp. 94, 116]).

Lemma 3 and its Corollary will be generalized to the nonlinear d. equation

6) x™+ D (=) pe(t, x)x" T =0.
=1

Theorem 1. Let 1=m=n, p,e C°UXR), k=1,...,n, and if m<n, let

p(t,x)Z0 on IXR, k=m+1,...,n. If 1<m, let there exist m — 1 functions
weC"(I), =1, ..., m—1, which form a Descartes system on I and satisfy

(0 [+ -1 p e w0 |20 e

for each point xeR,l=1, ..., m—1.
Then for any ¢ >0 (6) possesses a solution x on I such that
(7 x(a)=c, x()>0, (-1)x“@)=0

for k=0,1,...,n—m, tel.
If in the case m<n p.(t,x)>0 on I X R, then x satisfies
-D)*®()>0 (k=0,...,n—m—1,tel)

m;— 1 <%l—+ 1) different zeros on I, when m is odd (m is

and x™~™ has less than

even).

Proof. 1. The case m <n. Consider the Fréchet space C"~'(I) topologized as
above. Let S={xeC"'(I): x(a)=c, (—1)*-x*(¢)=0,tel, k=0,1, ...,.n—m).
S is a closed, convex and nonempty subset of C"~'(I). Forue S let T(u)={x€S:
x is a solution of the d. equation

(8.) X+ S (=1 et w()x =0

which satisfies (7)}. By Lemma 3 and linearity of (8,), T(u)# @ and T(u) is
convex. Since T(u)<=S and S is bounded in the topology of C°(I), by Lemma 2,
T(u) is relatively compact in C*~'(I). But T'(u) is also closed, and hence, compact
in the C""! topology. Thus the so defined mapping T: S—2° satisfies the
requirement i) of Lemma 1.
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If u,eS, u,—u, and x, € T(u,), x, — xo, the convergence being considered in
C"'(I), then the functions pi(-, u,(-)) converge locally uniformly on I to
pe(-, uo(+)), k=1, ..., n, and by Corollary 4.1, [8, p. 73], x, — yo, where y, is the
solution of (8,,) satisfying the same initial condition as x,. Therefore x,=y, and
xo€ T(uo). Thus T is a closed mapping.

As S is bounded in the topology of C°(I) and T(S)c S, Lemma 2 guarantees

that T(S) is relatively compact in C"~'(I), hence its closure ﬁcs is compact.
Thus all assumptions of Lemma 1 are satisfied. By this lemma there exists an x € S
such that x € T(x). x is then the searched solution. When p, (¢, x) is everywhere
positive, the Corollary to Lemma 3 implies the last statement of the theorem.
2. If m =n, the definition of S must be changed. The other steps of the proof
remain the same. Consider the functions w,, /=1, ..., n—1. Since cu,, ¢,>0,
=1, ...,n—1,also form a Descartes system on I, we can assume that all &, (a)=c,
I=1,..,n—1.Let S={xeC"'(I): x(a)=c, 0=x(t)=u,(t) (teI)}. Then S is
a closed, convex and nonempty subset of C"~'(I). By Theorem 18 [4, p. 128], there

is a fundamental system U,, ..., U, of (8,) which forms a Markov system and is
such that

ﬂsu_;sy.és gu'l'—‘s "

U w Uy 77w U,

on I. Then by Theorem 12 [4, p. 110] there exists a principal solution U of (8,)
which is positive and W(U, U,)Z0 on I. Therefore %—é%:
solution is uniquely determined by the condition U(a) = c. Using the inequalities
above we come to the conclusion that the set T(u)={xeS: x is the principal
solution of (8,) which satisfies x(a)=c} consists of exactly one element.

Remark. Theorem 1 is a generalization of Theorem 3 in [1, p. 253].

2. In the second part of the paper a theorem of Kannan and Locker dealing
with a nonlinear boundary value problem in [12, p. 3] is strengthened. Here the
function f need not be bounded and the coefficients a; do not belong to C”([a, b])
as we shall see.

Let —wo<a<b<x and denote K =[a, b]. Consider the real Hilbert space
L*(K) with the norm ||-||, and let C*"(K) (C°(K)) be provided with the norm
- lla-s (Il -[lo) defined by

. The principal

Ix|locr = S max |x“()]  (x e C"(K))
=0 f€K
llxtllo= max lx(®)] (xeC(K)).

In accordance with the definition of ||-||.-: the norm |-| in R" will be taken as
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lp|= le.-l (p=(p1, ..., Px)ER").

Let L be an n-th order formal operator given by
9) L(x)=>a(t)x®,
i=0
where a,e C'(K), i=0, 1, ..., n and a,(¢)#0 on K. Let

Bi(x)= _}j:a,-,-x""”(a) + iﬁ.—,x““”(b) (i=1,...,n)

be a set of n linearly independent boundary conditions where a;, 8; (i,j =1, ..., n)
are real numbers.

In [5, p. 463] (Lemma 16, Chapter XII1.2) the following properties of the space
H"(K), the subspace of L*(K) consisting of all functions x e C"'(K) with
x™ e L*(K) have been derived. The second statement gives a useful compactness
condition.

Lemma 4 (See also [12, p. 3]). 1. The space H" (K) is a Banach space under the
norm ||x [l.—1+ [lx]|.

2.Ifa,e C'(K) (i=0,1, ..., n) and a,(¢) # 0 in K, then there exists a constant M,
depending only on L, K and n such that for each x € H" (K)

(10) [l s+ llx P = Ml ]| + L GO

In fact, the lemma has been proved under the assumption that @, e C*(K), but
the proof is still valid under a weaker assumption a; € C'(K), i=0, 1, ..., n.
Suppose the problem

mw:L(x)=Ax, Bi(x)=0 (i=1,...,n)

is self-adjoint ([2, p. 189]). Then there exists an orthonormal basis for L*(K) made
up of eigenfunctions &,,i=1,2,...of x and let A, i =1, 2, ... be the correspond-
ing eigenvalues of 7. We have that |A;|— o as i— .

The following theorem generalizes Theorem 1 in [12, p. 3].

Theorem 2. Let the problem & be self-adjoint. Let h: KXR"—R and f:
K X R"—R be two continuous functions such that

a) there exist real numbers p, q with p=h(t,x)=q, teK, xeR",

b) L élp.qli=1,2,..,

¢) lim inf%=0, where Q,= max If(¢, x)| (0<r<w).

K, |x|sr
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Then the nonlinear boundary value problem

L(X)—/’l(t, X, x’, ceey X("_l))x zf(t’ X, x', “.’x(n-l))
B.(x)=0 (i=1,...,n)

has at least one solution.

Proof. The proof is a modification of the proof of Theorem 1 in [10]. Instead of
H"'(K) its subspace C""'(K) is used. First, for any function w e C"7'(K) the
linear boundary value problem

(11) L(x)=h[t,w(t), w' (1), ... w" Ol =ft, w(t), w'(t), ..., w" ()]
Bi(x)=0 (i=1,...,n)

is considered. Since C"~'(K)< H" '(K), there exists by what has been proved in
[12, p. 4] a unique solution u e C"(K) n {x e C"(K): B:(x)=0,i=1,...,n} of
that problem. Then we define a mapping T: C" '(K)— C"(K) by putting
T(w)=u, where u is the mentioned solution.

For T(w) we have the inequality

ITOW) s+ T NN =Ml (2, w(), ... w20,

which has been proved in [12, p. 5]. Its proof is based on (10). From this inequality
we obtain '

(12) ITOW) s EMUIfE, w(@), ... w2 (O ]lo(b —a)™”.

1 -
Vi —ay7 o ands thus if [lwl. - =,
4

then, by (12), ||T(w)||.—1=r,, too. Hence T maps the ball B={we C"'(K):
Iwll.—1=ro} into itself.

Continuity of T with respect to the C"~'(K) norm can be proved in a similar way
as it has been done in [12, p. 6]. Using the same notations as in [12] from the
inequality

By c¢) there exists an r,>0 such that Q,, =

llsts = wo| s + (|l — u” | = M| (0 — ato)uio + B: = ol
we get
||u,~ - u0”n—1§M4"0(b - a)m”ai - a0||0+M4(b _a)m”ﬁ-' —.30”0-

The uniform continuity of f and # on K X {x e R": |x|=r,} implies that ||a; —
aollo—0 and ||B; — Bollo—0 as i— . But this gives that ||u; — uo|.-,— 0, which
means that T is continuous in the C"' topology.

Consider now the compactness of T. On the basis of (12) we have that if
Iwll.-: =M, then || T(w)|l.—.=Ms;, and by this, (11) implies that ||(T(w))®|lo is
bounded, too, which means that under the mapping T the image of a bounded set is
relatively compact (in the C"™' topology). The Schauder fixed point theorem
completes the proof of Theorem 2.
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KJIIACC JU®PEPEHIIMAJILHBIX YPABHEHUN
MMOOJOBHbBIX JIUHEWHBIM YPABHEHUSIM

BansTep llena
Pe3ome

B pa6oTe moxa3aHo, YTO HEKOTOpbIE CBOMCTBA, a OCOGEHHO T€, KOTOPhIE CBA3aHbl ¢ audpepen-
LMATLHBIMH HEPAaBEHCTBaMH (MOHOTOHHOCTb, HEOCUWUISLMS), JIMHEHHbIX NH(dEpEeHIMaNbHbIX ypaB-
HEHMH MOXHO NMEPEHECTH HA KJIACC HEJIMHEHWHBIX YPAaBHEHHH BHAA

.
X+ 3 pe(t, x, X'y xR =g, x, X, ., x70)
k=1

Takum o6pazoM Gbuin 06GOOWIEHBI OauH pe3yabTaT XapTMaHa-BunTHEpa M Teopema Kannana-
-Jlokepa, Kacarowascsi CyLeCTBOBaHUS PELICHHsS ONHOM HenmHeHo# kpaeKai 3anayn. B nokasarens-
CTBaX NPUMEHSIOTCH METOAb! (DYHKIMOHANBLHOIO aHAJIN3A.
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