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A CLASS OF DIFFERENTIAL EQUATIONS SIMILAR 
TO LINEAR EQUATIONS 

VALTER $EDA 

In the paper it is shown that certain properties, especially those connected with 
some differential inequalities (monotonicity, disconjugacy, etc.) of a linear diffe­
rential (fort short d.) equation 

xin)+JZPk(t)x
(n-k) = Q(t) 

can be extended to the class of nonlinear d. equations of the form 

xin)+ i>*(f, x, x', ..., x 0- 1 V ~ f c ) = <7 (t, x, x', ..., xin~l)) 
k = \ 

or to a special case of that class. In this way aHartman—Wintner ' s result has 
been generalized. This also extends a theorem ofAnichini—Schuur. The main 
tool in the proof is the application of the Fan and Glicksberg fixed point theorem in 
which a compactness condition plays an important role. Further the existence of 
a solution to a nonlinear boundary value problem is proved, which generalizes 
a result of Kannan—Locker. 

1. First we introduce some notions. Let I = [a,b), 
- o o < f l < b g o o ? / = (-oo5oo). Let C"'1^) be the vector space of all real functions 
(in what follows only real functions'will be considered) which have n — 1 continu­
ous derivatives on J. The topology on Cn~l(I) is introduced by the countable family 
of seminorms 

pm(x)= max max |jt(o(0l 

0 S S „ - l . 6 [ a , f l + m ] 

(if b = oo) and in the case b < oo by 

pm(x)= max max |x(,)(0l 
OSiiSi-i-l 

f e [a , *>-,*,] 

for all m such that a <b .In this topology Cn~l(I) is a Frechet space and the 
convergence xp —> x in this space means the locally uniform convergence in I of xp° 
to x(,) up to the order n — 1. In a similar way the Frechet spaces C°(I), C _ 1 ( / ) , 
C°(J) are defined. 
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Lemma 1 (The Fan and Glicksberg fixed point theorem, see [6], [7], [1, p. 249]). 
// S is a closed, convex, nonempty subset of a Frechet space X and if Tsatisfies: i) 
for each ueS, T(u) is nonempty, compact, convex subset of X; ii) Tis a closed 
mapping; iii) T(S) is contained in a compact subset of S, then there is a ueS such 
that u e T(u). 

Lemma 2.LetPkm e C°(I), Om e C°(I), k = 1, ...,n, m = 1, 2, ..., be bounded in 
the topology of C°(I), i.e. on each compact subinterval of I the sequences 
{Pk,m}Z=u {Qm}Z-i (k = 1, ..., n) are uniformly bounded. Then the following 
statement holds: 

If {xm}Z=i is a sequence of solutions of the d. equations 

(lm) X(n)+J>,Pk,m(t)X(n k)=Qm(t) 
k = l 

which is bounded in the C°(I) topology, then it is relatively compact in the topology 
of Cn~\I). 

Proof. The case n = 1 is clear. Suppose, therefore, n>l. Let [c, d] be 
a compact subinterval of /. Denote by \\ - \\0 the sup-norm on this interval. By the 
assumptions of the lemma there exists an a>0 such that 

(2) \\Pk,m\\0^a, \\xm\\o--a and ^ + ^Pk,mx(^k)^a 

(k = l, ...,n, m = l,2, ...). 

Without loss of generality we can assume that a^l, nl a^(d — c)n. Put 
\\x(n)\\o = Pm. By [10, p. 1260; 3, p. 140], there exist constants an,k>0, k = 
1, ..., n — 1, such that 

Ю\0ѓanW'к)'n fmax (ßm, j ^ - ^ a)Ţ ş 

an,кa
(-1),n |max [ßm, J ajj , к = l,...,n-l. 

Two cases should be distinguished. 

n I a 
í. ßm "(d-cŢ> 

(d-c)n Pm' 
In the latter case, by (2), (3) 

f3m^a+ 2jannn-ka p, 
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n-l 
(2n-l)/nґ>(n-l)/n 



and, hence, 

L k = l J 

Let 

ß =mаx ( ( r f " !

c ) n a , o" [ l + 2«..--*a í"" I V"]") • 

Then Hxrilo^jS and, again by (3), \\x(k)\\0^an,ka
(n-1)/np(n-1)/n, (m = l , 2 , ..., 

k = l , . . . , n-1). 
Hence, by the Ascoli lemma, any uniformly bounded sequence {xm} in [c, d] 

contains a subsequence {xm(p)} which is uniformly convergent on [c, d] with its 
derivatives up to the order n — 1. I can be covered by a sequence of compact 
subintervals, and, by a diagonalization process, a subsequence {xm(r)} can be 
extracted such that {x(

m(r)}, i = 0, 1, ..., n — 1 converges uniformly on any compact 
subinterval of I. This means that the sequence {xm} is relatively compact in 
Cn~\I). 

With respect to Corollary 4.1 ([8, p. 73]), the last lemma yields 

Corollary. 7/ the sequences {Pk,m} and {Qm} are locally uniformly convergent to 
the functions Pk and Q, respectively, on!fork = \, ..., n, and {xm} is a sequence of 
solutions of (\m) which are uniformly bounded on each compact subinterval of I, 
then there exists a subsequence {xm(r)} and a solution x of 

x(n)+j?Pk(t)x
(n~k)=Q(t) (tel) 

k=\ 

such that {xm(r)} uniformly converges to x(l) on each compact subinterval of I for 
i = 0, 1, ..., n-1. 

R e m a r k . Lemma 2 and its Corollary remain valid when instead of I the open 
interval / is considered. 

The next lemma describes a property of linear d. equations. 

Lemma 3 (Hartman—Wintner, [9, p. 204]). Let m, 0<m^n be fixed. Let 
Pk e C°(I), k = 1, ..., n and Pk ( 0 = 0 for k = m + 1, ..., n ifm<n, and for all tel. 
Let the m-th order d. equation 

(4) (Lm(x) = )x(m)+ :Z(-l)k+1Pk(t)x
(m-k) = 0 

k = l 

possess a set of solutions uu ..., um satisfying Wk(uu ..., uk) (t) = det (u(f~1)(t))>0, 
i, j = 1, ..., k for k = 1, ..., m, tel. Then 

(Ln(x)^)x(n)+Jj(-lf^pk(t)x
(n-k) = 0 

k=i 

has a solution x satisfying 
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x(t)>0 and (-l)kx(k)(t)^0 for k = 0, 1, ..., n -m. 

Corollary. IfPn(t)^~0 is not true in any subinterval of I and 0<m<n, then the 
mentioned solution x shows the property 

and (—l)n mx(n m) has less than —-— f — + 1 ) different zeros on I when m is odd 

(-lfx(k)(t)>0 (k = 0, ...,n-m-l,tel) 

xin-m 

(m is even). 
Proof. When x is the considered solution, the function y =x(n~m) satisfies the 

nonhomogeneous d. equation 

(5) Lm(y)= £ (-\)kPk(t)x
(-k\t), tel. 

k=m + l 

Denote the right-hand side of (5) as h. Then h does not vanish identically on any 
subinterval of I and its sign is equal to (— l ) n . Further all zeros of y are of 

multiplicity at least 2. If m is odd and y has —-— different zeros t1<t2<...<tJ, 

j = —-—, then the Green function G corresponding to the problem 

Lm(y) = 0, y(tk) = y'(tk) = 0, k = l , . . . , ^ y l 

is, on the basis of a result of Levin [11, pp. 80—81], nonnegative. y can be written 

in the form y(t)= I G(t, s)h(s) &s, te[tu 4], which is a contradiction since the 

signs on the two sides of this equality are mutually different. 

When m is even and y h 

function Gx of the problem 

m 
When m is even and y has — + 1 different zeros, then we consider the Green 

Lm(y) = 0, y(tk) = y'(tk) = 0, k=\,...,j 

y(f,) = 0, l = ^+\ 

Since Gi_S0 and y(t)= I Gi(t, s)h(s) ds, we again have a contradiction. Using 
Jti 

the fact that x(n~m) is of a constant sign and has only finitely many zeros, we get the 
statement of the corollary. 

R e m a r k s . 1. Since the lemma and its corollary are based on Theorem 2.1, [8, 
p. 592], which is true also on an open interval, in this lemma and its corollary the 
interval J can be replaced by J both in the assumptions and in the statements. 

436 



2. If m = 1, then (4) clearly satisfies the assumption of Lemma 3. For m > 1 a 
sufficient condition for the existence of a Markov system of solutions ul9 ..., um of 
(4) (i.e. with Wronskians W*(wi, ..., wfc)>0, k = 1, ..., m, on I ) , is the existence of 
m — 1 functions yu ..., ym_i e Cm(I) which form a Descartes system on 7 (i.e. the 
Wronskians Wk (y,,, ...,yIfc) ( l_i i i < . . •< /„ _S m-l9k = l9 ..., ra - 1) are positive 
on J), and satisfy the inequalities (-l)m~fcLm(y*)(0 = 0 (k = 1, ..., m-l9tel) ([4, 
p. 123]). Another sufficient condition on a compact or on an open interval / is that 
the equation (4) should be disconjugate on / ([4, pp. 94, 116]). 

Lemma 3 and its Corollary will be generalized to the nonlinear d. equation 

(6) xM+±(-iy+i
Pk(t,xy-k>=o. 

k=i 

Theorem 1. Let l__m__n, pkeC°(IxR)9 k = l9...9n9 and if m<n9 let 
pk(t9 JC)__0 on IxR9 k = m + l9 ...9n. If Km, let there exist m — 1 functions 
UieCm(I)9 1 = 1, ..., m - 1, which form a Descartes system on I and satisfy 

(-l)m~l [«r(0 + ̂ yi)k+1pk(t,x)u\m-k)(t)^0 (tel) 

for each point x eR9 1 = 1, ..., m — 1. 
Then for any c>0 (6) possesses a solution x on I such that 

(7) x(a) = c, x(t)>0, ( - l ) V k ) ( O i - 0 

for k = 0, 1, ..., n -m, tel. 

If in the case m<n pn(t9x)>0 on IxR, then x satisfies 

(-l)kx(k)(t)>0 (k = 09...9n-m-l9tel) 

and xin'm) has less than —-— (—+ 1] different zeros on I, when m is odd (m is 

even). 
Proof. 1. The case m<n. Consider the Frechet space Cn-1(7) topologized as 

above. Let S = {x eCn~\l): x(a) = c,(-l)k xik)(t)^09t el9 k = 09 19 ...9n-m}. 
5 is a closed, convex and nonempty subset of Cn~l(I). For u e S let T(u) = {x eS: 
x is a solution of the d. equation 

(8M) x ( n )+ i,(-l)k+1
Pk(t, u(t))xin~k) = 0 

k = \ 

which satisfies (7)}. By Lemma 3 and linearity of (8U), T(u)=fc0 and T(u) is 
convex. Since T(u)aS and S is bounded in the topology of C°(I), by Lemma 2, 
T(u) is relatively compact in Cn~l(I). But T(u) is also closed, and hence, compact 
in the Cn _ 1 topology. Thus the so defined mapping T: 5 - » 2 s satisfies the 
requirement i) of Lemma 1. 
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If up eS, up->u0 and xp e T(up), xp-*x0, the convergence being considered in 
Cn~\l), then the functions Pk(-,up(-)) converge locally uniformly on I to 
pk(-, u0(-)), k = \, ..., n, and by Corollary 4.1, [8, p. 73], Jtp—>y0, where y0 is the 
solution of (8^) satisfying the same initial condition as x0. Therefore x0 = y0 and 
jt0eT(u0) . Thus T is a closed mapping. 

As S is bounded in the topology of C°(I) and T(S)c=S, Lemma 2 guarantees 

that T(S) is relatively compact in Cn~l(I), hence its closure T(S)aS is compact. 
Thus all assumptions of Lemma 1 are satisfied. By this lemma there exists an x e S 
such that x e T(x). x is then the searched solution. When pn(t, x) is everywhere 
positive, the Corollary to Lemma 3 implies the last statement of the theorem. 

2. If m = n, the definition of S must be changed. The other steps of the proof 
remain the same. Consider the functions ux, 1=1, ..., n — \. Since duu c z >0, 
1 = 1, ...,n-\, also form a Descartes system on I, we can assume that all ut(a) = c, 
1 = 1, ..., n-1. LetS = {xeCn~l(I): x(a) = c, 0^x(t)^ux(t) (tel)}. Then 5 is 
a closed, convex and nonempty subset of C"~l(I). By Theorem 18 [4, p . 128], there 
is a fundamental system Uu ..., Un of (8M) which forms a Markov system and is 
such that 

U~ux~~U2 un-X~Un 

on I. Then by Theorem 12 [4, p. 110] there exists a principal solution U of (8U) 
U' U' 

which is positive and W(U, C/i) = 0 on I. Therefore — = 77-. The principal 
LJ LJ1 

solution is uniquely determined by the condition U(a) = c. Using the inequalities 
above we come to the conclusion that the set T(u) = {x eS: x is the principal 
solution of (8M) which satisfies x(a) = c} consists of exactly one element. 

R e m a r k . Theorem 1 is a generalization of Theorem 3 in [1, p . 253]. 
2. In the second part of the paper a theorem of K a n n a n and L o c k e r dealing 

with a nonlinear boundary value problem in [12, p. 3] is strengthened. Here the 
function / need not be bounded and the coefficients at do not belong to C~([a, b]) 
as we shall see. 

Let —oo<a<1?<oo and denote K = [a,b]. Consider the real Hilbert space 
L2(K) with the norm || • ||, and let Cn~\K) (C°(K)) be provided with the norm 
I H U ( I H I o ) defined by 

11x11-,̂ = 2max |x ( , ) (0 l (xeCn~\K)) 
1=0 t e K 

||jc||0 = max|jc(OI (xeC°(K)). 

In accordance with the definition of || • ||„-i the norm | • | in Rn will be taken as 
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\p\ = I,\Pi\ {P = (]?i,...,Pn)eRn). 
i = l 

Let L be an rz-th order formal operator given by 

(9) L(x) = ia , (Ox ( , ) , 
i = 0 

where ateC(K), / = 0, 1, ..., n and a „ ( 0 ^ 0 on K. Let 

B I ( x ) = i a ^ ° - > ) + i ^ ° - 1 ) ( & ) 0' = l , - , n ) 
y = i j = i 

be a set of n linearly independent boundary conditions where ai},, #, (/, / = 1, ..., n) 
are real numbers. 

In [5, p. 463] (Lemma 16, Chapter XIII.2) the following properties of the space 
hT(K), the subspace of L2(K) consisting of all functions xeCn~\K) with 
x(n)eL2(K) have been derived. The second statement gives a useful compactness 
condition. 

Lemma 4 (See also [12, p. 3]). 1. The space FT(K) is a Banach space under the 
norm I M U + H*00,!. 

2. If a, eC(K) (i = 0,1, ..., n) andan(t) + OinK, then there exists a constant Mx 

depending only on L, K and n such that for each x eFT(K) 

(10) ||x||1.-I + | |xw | |lSAf1[| |x|| + | |L(x)| |]. 

In fact, the lemma has been proved under the assumption that at e C°°(K), but 
the proof is still valid under a weaker assumption a, eC(K), i = 0, 1, ..., n. 

Suppose the problem 

jr.* L ( * ) = AJC, H,(jc) = 0 (i = l, ..., n) 

is self-adjoint ([2, p. 189]). Then there exists an orthonormal basis for L2(K) made 
up of eigenfunctions &i9 i = 1, 2, ... of n and let At, / = 1, 2, ... be the correspond­
ing eigenvalues of JT. We have that |A,|—>o° as /—><». 

The following theorem generalizes Theorem 1 in [12, p. 3]. 

Theorem 2. Let the problem JT be self-adjoint. Let h: KxRn->R and f: 
KxRn^>R be two continuous functions such that 

a) there exist real numbers p, q with p^h(t,x)^q, teK, x eRn, 
b) li^\p,q], 1 = 1,2, ..., 

c) liminf — = 0, where Qr= max \f(t,x)\ ( 0< r<oo) . 
r-»oo f teK, \x\^r 
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Then the nonlinear boundary value problem 

L(x)-h(t, x,x', ..., x(n~l))x =f(t, x,x', ..., x(n~l)) 
B\x) = 0 (i = l, ...,n) 

has at least one solution. 
Proof . The proof is a modification of the proof of Theorem 1 in [10]. Instead of 

Hn~\K) its subspace Cn~\K) is used. First, for any function w e Cn~\K) the 
linear boundary value problem 

(11) L(x)-h[t, w(t), w'(t), ..., w(n~1)(t)]x=f[t, w(t), w'(t), ..., w(n~l)(t)] 
B\x) = 0 (i=\,...,n) 

is considered. Since Cn~\K) a Hn~\K), there exists by what has been proved in 
[12, p. 4] a unique solution ueCn(K) n {xeCn(K): Bi(x) = 0, i = \, ...,n) of 
that problem. Then we define a mapping T: Cn~\K)—>Cn(K) by putting 
T(w) = u, where u is the mentioned solution. 

For T(w) we have the inequality 

||T(H>)||n_1 + | | ( r ( H 0 n | _ M 4 | | / ( ^ W(t), ..., rV(—>(/))||, 

which has been proved in [12, p. 5]. Its proof is based on (10). From this inequality 
we obtain 

(12) | |T(w)|| . .1_M4 | | /(f, w(t), ..., w ("- , )( /) | |„(6-a) , / 2 . 

By c) there exists an r0>0 such that Q-0= (u -77- ~O and, thus if ||w||-_i__r0, 

then, by (12), ||T(w)||B_1_iro, too. Hence T maps the ball B = {weCn~\K): 
| |w||n_,_ir0} into itself. 

Continuity of T with respect to the Cn~\K) norm can be proved in a similar way 
as it has been done in [12, p. 6]. Using the same notations as in [12] from the 
inequality 

lk-wo|U, + l k ( n ) ^ 
we get 

| k - - u 0 | | „ - i ^ M 4 r 0 ( ^ ^ 

The uniform continuity of / and h on Kx{xeRn: |x|__r0} implies that \\at — 
a0||o—>0 and ||A-j30||0—»0 as /—>oo. But this gives that ||w, - w0||n_i—>0, which 
means that T is continuous in the Cn~l topology. 

Consider now the compactness of T. On the basis of (12) we have that if 
H w l U ^ M , then | |T(w)||n-1_.M5 , and by this, (11) implies that ||(T(w))(n) | |0 is 
bounded, too, which means that under the mapping T the image of a bounded set is 
relatively compact (in the Cn~l topology). The Schauder fixed point theorem 
completes the proof of Theorem 2. 
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KЛACC ДИФФEPEHЦИAЛЬHЫX УPABHEHИЙ 
ПOДOБHЫX ЛИHEЙHЫM УPABHEHИЯM 

Baльтep Шeдa 

Peзюмe 

B paбoтe пoкaзaнo, чтo нeкoтopыe cвoйcтвa, a ocoбeннo тe, кoтopыe cвязaны c диффepeн-
циaльными нepaвeнcтвaми (мoнoтoннocть, нeocцилляция), линeйныx диффepeнциaльныx ypaв-
нeний мoжнo пepeнecти нa клacc нeлинeйныx ypaвнeний видa 

x(n)+ ]>>*(t, x, x\ ..., л:^-1 V л - k ) = a(t, JC, x\ ..., x(n~iy) 
Д c - 1 

Taким oбpaзoм были oбoбщeны oдин peзyльтaт Xapтмaнa-Bи гнepa и тeopемa Kэ нaнa-
-Лoкepa, кacaющaяcя cyщecтвoвaния peшeния oднoй нeлинeйнoй кpaеKэй зaдaчи. B дoкaзaтель-
cтвax пpименяютcя методы фyнкциoнaльнoгo aнaлизa. 
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