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ON QUASICONTINUITY OF MULTIFUNbTIONS
TIBOR NEUBRUNN

Various definitions of continuity of multifunctions are given in many papers.
They all reduce to the usual continuity if a single valued function is considered.

The aim of this paper is to present two definitions of quasicontinuity of
multifunctions, which reduce in case of single valued functions to the usual
quasicontinuity and to prove various results for quasicontinuous multifunctions. On
the other hand some examples are given, showing that there are some differences
between the classical results for quasicontinuous single valued functions and those
for multifunctions.

Notations and preliminary results

Given sets X and Y, we denote S(Y) the collection of all nonempty subsets of Y.
A function F: X— S(Y) is called a multifunction. In what follows we say function
instead of multifunction. If we consider a function F: X— Y, we refer to it as to
a single valued function.

If F: X—S(Y), then for Ac Y we denote

F (A)={x: F(x)NnA+#@} and F'(A)={x: F(x)c A}.

Now we give two definitions of quasicontinuous multifunctions.

A function F: X— S(Y) is said to be upper quasicontinuous — briefly
u-quasicontinuous (lower quasicontinuous — briefly I-quasicontinuous) at a point
xo€ X if for any open set V containing F(x,) (for any point z € F(x,) and for any
neighbourhood V containing z) and any neighbourhood U of x,, there exists
a nonempty open set G = U such that F(x) < V, (F(x)n'V+#@) for any x € G. If Fis
u-quasicontinuous (l-quasicontinuous) at any xe€X, then it is said to be
u-quasicontinuous (l-quasicontinuous).

Note that if a single valued function f: Y— Y is given, then under the natural
interpretation of f(x) as a one point set, both above definitions give the usual
definition of a quasicontinuous function as given, e.g., in [4] (compare also the
original definition in [2]).

The u-quasicontinuous, as well as the l-quasicontinuous functions may be
characterized by means of quasiopen sets similarly as the single valued quasicon-
tinuous functions.
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Note that a set A = X is said to be quasiopen if A c A° (E° and E denote the
interior and the closure of the set E respectively).

Proposition 1. A function F: X— S(Y) is u-quasicontinuous (Il-quasicontinu-
ous) if and only if for any open set G the set F'(G) (F (G)) is quasiopen.

Proof. We prove the case of /-quasicontinuity, the other case is similar. Let F
be /-quasicontinuous, V< Y an open set. If F (V) %4, choose xo€ F (V) and an
arbitrary neighbourhood U of xo. Since F(x,)n V#@, we obtain from /-quasicont-
inuity that a nonempty open set W< U exists such that F(x)n V#@ for any x e W.

We have W< (F(V))°, hence x, € (F(V))°. Thus F~ (V) is quasiopen. The case of
F(V)=0 is obvious.

Now let F (V) be quasiopen for any open Vc Y. Let x0€ X, y € F(x,), V any
neighbourhood of y and U any neighbourhood of x,. Since VN F(xo) #@, we have
xo€ F~ (V). Since F (V) is quasiopen and U open, we obtain that F (V)N U is
quasiopen. Thus a nonempty open set Wc F (V)N U exists. Hence F(x)nV#@
for any x € W. Thus the /-quasicontinuity at x, is proved.

For a single valued function f: X— Y the somewhat continuity was introduced in
[1]. A function is called somewhat continuous if for any open V<Y for which
f(V)#0 we have (f (V))°+0.

In a natural way we introduce two notions of somewhat continuity for mul-
tivalued functions.

A function F: X— S(Y) is said to be u-somewhat continuous (I-somewhat
continuous) if for any open set V< Y for which F*(V) #+ @(F (V) ##) we have
(F'(V))° #0(F (V))° # 0. The following proposition relates the u-quasicontinuity
to u-somewhat continuity and /-quasicontinuity to /-somewhat continuity. Since an
analogical result with an analogical proof is known for single valued functions
(see[S]), we omit the proof.

Proposition 2. A function F: X— S(Y) is u-quasicontinuous (Il-quasicontinu-
ous) if and only if there exists a basis B of open sets in X such that the restriction
F| U is u-somewhat continuous (I-somewhat continuous) for any U € %.

Somewhat and quasicontinuity of multifunctions
in product spaces

The classical result of Kempisty (see [2]) asserts that a real function of two real
variables, which is separately quasicontinuous, is quasicontinous as a function of
two variables. In [4] and [5] it was generalized for more general topological spaces.
In [6] some related results for somewhat continuous functions were obtained. In
this part we give some results of somewhat continuity and quasicontinuity of
multifunctions, which generalize the above mentioned. On the other hand we give
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examples showing that a straightforward generalization result of Kempisty is not
possible either for u-quasicontinuity or for /-quasicontinuity. But the results may
be considered as a natural generalization of a theorem from [2] concerning the
quasisemicontinuity of a real function. To obtain it one has to associate with a real
function f a multivalued function x— (— o, f(x)).

Theorem 1. Let X be a Baire space, Y second-countable and Z a normal
topological space. Let F: XX Y— S(Z) be a function assuming as values only
closed sets. Let the sections F, be u-somewhat continuous for every x € X and the
sections F” u-somewhat continuous and [-quasicontinuous for every y€ Y. Then
F is u-somewhat continuous.

Proof. Suppose F not to be u-somewhat continuous. Then there exists an open

set Hc Z such that
F'(H)#0 and (F'(H))°=0.

Hence the set of those points (x’, y’) for which
F(x', y)nH' +0 (1)

is dense in X' X Y. (E’ denotes the complement of the set E.)
Let (xo, yo) € F*(H). Since F(xo, yo) is a closed set and Z a normal space, there
exists an open set H; such that

F(xo, y)c Hic Hic H.

The function F is u-somewhat continuous and (F*)*(H,)# @, hence an open
set G exists such that

F*(x)cH,, forany xeG.
Denote by {V,}7-1 the countable base of Y and put for n=1, 2, ...
A.={x:x€G, V,c F;(H)}.
We have
G=Ua, @
The inclusion O A, c G is trivial. Now let x € G. Since F.(yo) = F°(x)c H,, we
have F.(H)) 4:;; Hence by u-somewhat continuity of F, we obtain
(FXx(H))° #0.
From the last it follows that a number » exists such that
V. (Fi(Hy)) = Fi(Hy)
proving that x € A,. Thus (2) holds. '
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Now we prove that any of the sets A, is nowhere dense in G. Let W< G be
a nonempty open set. According to (1) there exists a point (x’, y'), x' € W for
which F(x', y")nH'#@. Let ze F(x', y’)nH'. Choose a neighbourhood V of z
such that VnH;=@. Owing to the /-quasicontinuity of F>" at x’ we have that
a nonempty set Wc W exists such that F(x, y')nV+#@ for any xe W. Since
y' € V,, we have x ¢ A, for any x e W. Thus Wn A, =@, proving that the set A, is
nowhere dense. It follows from (2) that G is of the first cathegory, in contradiction
to to the assumption that X is a Baire space. The theorem is proved.

Remark 1. It is easily seen from the proof that the assumption that F, are
u-somewhat continuous for all x € X may be weakened. It is sufficient to suppose
that F, are u-somewhat continuous with the exception of a set of the first category.

Theorem 2. (Theorem on product u-quasicontinuity.) Let X be a Baire space.
Y Iocally second-countable and Z normal. Let F: X— S(Y) be closed-valued with
u-quasicontinuous x-sections for every x € X and let for every y € Y the y-sections
be both u-quasicontinuous and l-quasicontinuous. Then F is u-quasicontinuous.

Proof. The collection of all sets UX V, where U, V are open in X and Y
respectively, is a base of open sets in X X Y. Since Y is locally second-countable,
we may suppose, with no loss of generality, that V is second-countable. From the
assumptions of the theorem, we have immediately that F; is u-quasicontinuous and
hence u-somewhat continuous on any fixed V, for every x belonging to a fixed U,
and similarly F” is both u-quasicontinuous and /-quasicontinuous on U for every
y € V. Thus by Theorem 2 we have that F/U X V is u-somewhat continuous. Since
it is true for arbitrary U X V, we obtain from Proposition 1 that F is u-quasicont-
inuous.

Neither Theorem 1, no Theorem 2 may be proved if we omit the assumption that
F? is [-quasicontinuous. Thus a straightforward analogy of the Kempisty Theorem
for single valued functions is not true for multifunctions.

Example 1. Let us consider R? with the usual topology. Let S be a countable
subset of R?, dense in R? and such that on any horizontal and any vertical line there
is at most one point of the set S. Such set may be constructed as follows.

Denote by {B.}-: the sequence of all mutually distinct spheres with rational
centres and rational diameters. Choose (p1, 1) € Bi. Suppose that for given n=1
the points (p:, g:) were constructed for i =1, 2, ..., n such that on every horizontal
and every vertical line there is at most one of them. Now take (Pn+1, n+1) € Basi
such that p..«1 # pi, gn1#qifor i=1,2, ..., n. Then evidently on every horizontal
and every vertical line there lies at most one of the points p,q)(i=1,2, ..., n).
The set of values of such a constructed sequence {(p., g.}.-1 may be taken for S.

Define F: R*— S(R") as follows:

_[{0}, if (x,y)¢€S,
Fx, Y)_{{o, 1,2, .., n}, if (x,y)=(p 9)-
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The sections F;, F’ are u-quasicontinuous for every x and every y, respectively.
Let us check it for F.. If x# p,, where n=1, 2, ..., then F,(y)= {0} for every real
number y and the u-quasicontinuity of F, is evident. If for some n x =p,, then
F.(y) is equal {0}, with the exception of exactly one point y=g., where F.(g.)
= F(p., ¢.) = {0, 1, 2, ..., n}. But the u-quasicontinuity in this case is obvious
too. Analogical reasoning shows that F’ is u-quasicontinuous for any real y.

The function F is not u-quasicontinuous at any (x, y)e R®. Because if
(x0, yo) € R?, we have F(xo, yo) = {0, 1, 2, ..., n}, where n=0. Choose the open
interval (-1, n+1). We have (—1,n+1) > F(x,, yo). Now let U be any
neighbourhood of (xo, yo) and W< U any nonempty set. Evidently W contains
a point (p«, q«), where k>n. Hence F(pi, qi) = {0, 1,2, ..., k} & (-1, n+1).
Thus F is not u-quasicontinuous at (xo, o). In an analogical way we may prove that
F is not even u-somewhat continuous.

Theorem 3. Let X be a Baire space, Y second-countable and Z a regular
topological space. Let F: XX Y — S(Z) be a multifunction such that F, is
l-somewhat continuous for every x € X, F” is both l-somewhat continuous and
u-quasicontinuous for every y € Y. Then F is l-somewhat continuous.

Proof. Suppose F not to be /-somewhat continuous. Then there exists an open
set Hc Z such that

F (H)+#0 and (F (H)-=0.

Hence the set of all (x', y') for which F(x', y')nH=@ is dense in XX Y. Let
(%0, yo) € F (H) and let z € F(xo, yo)nH. Choose a neighbourhood H; of the point
z such that

HicH.cH (3)

From the fact that ze F(xo)nH; we have (F*) '(H:)#@. Hence from the
l-somewhat continuity of F”° a nonempty open set G exists such that

F°(x)nH,#+0 foreveryxeG.

Let { V.}~-1 be a countable base of Y. We can proceed analogicaly to the proof
of Theorem 1, but we put

A.={x:x€G, F(x, y)nH,+ forany ye V,}.
Using the /-somewhat continuity of the sections F, we prove similarly as in the

proof of Theorem 1 that G= O A,.

n=1
Now to obtain a contradiction, we have to prove that A, is nowhere dense for
n=1,2,...
If W is a nonempty open set, W< G, take in WX V, a point (x', y’) such that
F(x', y')= H'. According to (3) the set H; is an open set containing H'. Hence
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F(x', y") < Hj. The u-quasicontinuity of F*" at x’ implies that a set W< W, which
is nonempty and open, exists and F(x, y')< H; for any x € W. Thus

F(x, y)=F'(x)nH,=0.

Since y'€ V., we have x¢ A,. Hence WnA, =0, proving that A, is nowhere
dense. The proof is finished.

In the same way as Theorem 2 was proved by means of Theorem 1, we obtain
from the preceding result the following

Theorem 4. (Theorem on /-continuity in the product.) Let X be a Baire space,
Y locally second-countable and Z regular. Let for every x € X the sections F, be
I-quasicontinuous and for every y € Y the sections F’ are both u-quasicontinuous
and I-quasicontinuous. Then F is I-quasicontinuous.

Remark 2. The somewhat continuity in Theorem 3 as well as the quasicon-
tinuity of the sections F; in Theorem 4 may be weakemed in a similar way as it was
done for the u-somewhat continuity in Theorem 1. (See Remark 1).

Since the case of a single valued function implies that u-quasicontinuity and
I-quasicontinuity coincide with the usual quasicontinuity, we obtain from
Theorem 4 a general variant of the Kempisty Theorem for single valued functions.

Corollary. (See [5]). Let X be a Baire space, Y second countable and Z regular.
Let f: XX Y— Z be a single valued function with f, quasicontinuous for every
x € X and with f quasicontinuous for every y € Y. Then f is quasicontinuous.

Remark 3. An analogical Corollary may be obtained from Theorem 3, guaran-
teeing the somewhat continuity of the point functions f: XX Y— Z under the
assumptions of the somewhat continuity of their x-sections and the quasicontinuity
of the y-sections (See [6]).

The assumption of u-quasicontinuity of F” in theorems 3 and 4 may not be
omitted.

Example 2. Let S={(p., ¢.): n=1,2, ...} have the same meaning as in
Example 1. Define F: R*— S(R") as follows:

_[{n}, if (x,y)=(pn, q.) (n=1,2,..)),
Fx, Y)*{{l,z, (5 ) E (e ) (1=1,2, ...).

F, and P are [-quasicontinuous for every x € R' and y € R'. It is sufficient to prove
it for F., because the case for F” is symetrical. If x#p, (n=1, 2, ...), then the
I-quasicontinuity is evident, because F.(y)={(1, 2, ...} for all ye Y. If x=p, for
some n, then ' :

— {n}’ if Y =gx,
F'(Y)‘{{l, 2,..), if y#q..

But /-quasicontinuity of a function of this type may also be immediately verified.
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F is not /-quasicontinuous at any point (Xo, yo). In fact there exists at least one
positive integer no such that no€ F(xo, yo). The interval (no—1, no+1) is
a neighbourhood of no. If we choose a neighbourhood G of (xo, yo) and any
nonempty open set W< G, then evidently W contains a point (pa, g») # (Pno Gno)-
We have

F(pny g2)(n0—1, no+1)={n}A(no—1, ny+1) =9,

hence F is not /-quasicontinuous at (xo, Yo).

F is even not /-somewhat continuous, because if we take for any n the set
F((—n—1,n+1)), it is a nonempty set which does not contain a dense set
{(pxs q), k#n (k=1, 2,....) Thus (F ((—n—1, n+1)))°=40.

A remark on the topology for u-quasicontinuity

Given two topological spaces X and Y, one has the possibility to define
a topology on S(Y) and to consider the quasicontinuity of F: X— S(Y) as the
quasicontinuity in the usual sense, taking the values of F as points of the
topological space S(Y). ‘

Several topologies were considered on various subcollections of S(Y), to define
various types of continuites of multivalued functions. Some of them were defined
on the subcollection F(Y) = S(Y) of all closed sets of Y, the others on the
subcollection K(Y) of all compact subsets of Y (see e.g. [3] p. 392—393). In (7]
a topology on S(Y) is defined in such a way that the base of all open sets is the
collection of all families S(G) = S(Y) where G is any open set and S(G) denotes
the family of all nonempty subsets of G. By means of such a topology there is
defined a type of continuity (in [7] it is called weak continuity). The following
proposition shows that our notion of u-quasicontinuity may be described in this
topology.

Proposition 3. A function F: X— S(Y) is u-quasicontinuous if and only if it is
quasicontinuous as a single valued mapping into the topological space S(Y) with
the topology defined by means of the base S(G), where S(G) is the collection of all
nonempty subsets of G and G is any open set in Y.

Proof. Let F be u-quasicontinuous at xo € X. Let S(G) be element of the base¢
containing F(x) and U any neighbourhood of xo. Then F(x)c= G and by
u-quasicontinuity there exists a monempty open set W< U such that F(x) = G for
every x € W. The later means that F(x) € S(G). Thus the quasicontinuity at x, is
proved,

Now, let F be quasicontinuous at xo. If G is an open set containing F(xo) and U a
neighbourhood of x,, then there is a nonempty open set W< U with F(x) € S(G)
for every x € W. This means F(x) = G for every x € W and the u-quasicontinuity is
proved. : :
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- Of course the somewhat continuity of the mapping F: X— S(Y) considered in
the usual sense as the somewhat continuity defined by means of the topology on
S(Y) gives the u-somewhat continuity. Thus from the above consederations and
from the known results for single valued functions we may obtain the parts of
Proposition 1 and Proposition 2 concerning the u-quasicontinuous functions.

Note. As the author has found out the notion of quasicontinuity for multifunc-
tions was for the first time introduced in [8] in connection with different results.
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O KBA3HUHEIPEPBIBHOCTH MHOT'O3HAYHBIX OTOBPAKEHWUN
Tu6op Hoit6pyH
Pe3ome

Hccnenyiores 0oToGpakeHHs, ONPENEICHHbIE HAa MPOH3BECHHH ABYX TOMOJIOTHYECKHX MPOCTPAHCTB
X, Y, npyHMMalOIMe KaK 3Ha4YCHHs] HEMYyCThIE MHOXECTBAa TOMOJOTMYECKOro npocrpanctsa Z. On-
pefeNieHbl 1Ba THNA KBa3HHENPEPHIBHOCTH TaKMX OTOOpaxeHWil. I'aBHBIM pe3ynbTaTtoM paGoTsbl
SBNISIOTCH TEOPEMBI, YCTAHOBIIHBAIOIHE CBA3b MEXNY OTAE/IBHOM KBa3HHENPEPLIBHOCTHIO M KBAa3HHEN-
PEPBIBHOCTBIO 3THX OTOOpaXKEHHH.
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