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BOUNDED SOLUTIONS FOR SINGULAR BOUNDARY
VALUE PROBLEMS

MARIUS DADARLAT

‘ 1. Introduction

M. Durikoviéova [2] and M. Gregus Jr. [3] have proved the existence
of bounded solutions for certain singular boundary value problems associated
with the equations:

d d ,
(1.1) P t s x(1) = f(1, x(1), x'(1))
respectively
d d d ,
(1.2) P t 7 t ar x(t) = f(t, x(2), x'(1))

where 1€]0, 1] and fis a real valued continuous and bounded function defined
on ]0, 1] x R% These problems are called singular because the leading coefficients
of the involved equations have zeros at the boundary point ¢ = 0.

The aim of the present paper is to improve the quoted results by considering
more general coefficients and also to give some generalizations for the case of
the higher order differential equations and systems with several singularities

Let T be the set obtained by removing the points ¢, < ¢, < ... < ¢, from the
closed unit interval. These points will be the singular points of our problem.
Suppose that k > 1, p > 0, and let us consider the following differential opera-
tors:

d d

de
LX([) =E; Al(t) a Ak(t) JX(I)

and
Px(t) = C, () x?(2) + ... + C,() x(1)

acting between the spaces C*+?(T, R") and C(T, R"). As usual C’(T, R") denotes
the space of all functions defined on T with values in the n-dimensional Eucli-
dian space R" and which are r-times continuously differentiable. The coefficients
iA,, ..., A, are real matrix valued functions such that for any 1 < i <k, A;is an
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_ invertible element of the algebra C'(T, R"*") or equivalently A,e C'(7, R"*") and
A;(t)"" exists for all zin T. The coefficients Cj, ..., C, are taken from C(T, R™*"),

Letf: TxR"”*)x R"4~ — R" be a continuous functions, 1 < g < k. For any
points /,, ..., I, _, from the closed unit interval (if p = 0, no such points are to
be considered) we considered the following boundary value problem which will
be the main subject of our study:

(1.3) Lx(t) + Px(t) = f(1, x(1), ..., x?*47V()), teT
(1.4) x(lp=...=x""(1,_)=0

The boundary conditions (1.4) will be imposed only if p > 0.

If some /;is equal to some singular point 7, then x? (/) = 0 means lim x? (1) =
=0 when t - ¢,.

This problem is called singular because of the gaps {t,}, ..., {t,} where the
coefficients A,, ..., A, are not defined. In fact even if there are smooth extensions
of A’s to [0, 1], these extensions may take noninvertible values in the points
t,, ..., ;. Moreover, if, for example, A, has its limit at the point ¢, and if this limit
is a noninvertible matrix, then it is easy to prove that | A,(z)'|| = oo when ¢t — ¢,.

This suggests that the solutions of the singular problems may be unbounded
(see the examples at the end of the paper) or have other ““bad” properties related
to the singular points. However, under some suitable assumptions involving the
behaviour of the coefficients A,, ..., A, around the singular points and the
growing of the function f, the boundary problem (1.3)—(1.4) has a solution
xe C**7(T, R") such that x, ..., x? ~ " may be extended to continuous functions
on the closed unit interval and x%’ is bounded on T This is in fact the main result
of the paper and it is contained in Theorem 3.1. Of a certain interest, in
connection with the references [1], [2] and [3] are the Corollaries 3.3, 3.4 and the
Theorem 3.5. Before concluding this introductory part we state some notation
and recall two classical theorems needed in the second section of the paper.

We endow the vector space C'(T, R") with the topology of the uniform
convergence on compacta for derivatives, which is a metrizable locally convex
topology and is defined by the family of seminorms:

{I-l, n: meN, m>2b""} where b=min{t,—t]:¢ # 1t}
For xe C'(T, R"), ||x||,. ,, = sup {max {|x(®)|, ..., |x"()[}: te T,} where
k
7, = [0, 1]\ U Jti—m= i+ m'[.

i=1
If r = 0 we write |||l » = Il |l,,. The space C'(T, R") is complete relative to the
uniform topology defined above.
The following theorem is a well-known generalization for the space C(T, R")
of the classical Ascoli-Arzela theorem:
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Theorem 1.1. A subset of C(T, R") is relatively compact with respect to the
locally convex topology of C(T, R") if and only if it is equibounded and equicon-
tinuous with respect to this topology.

We shall need also:

Theorem 1.2. (Tyhonov’s fixed point theorem.) Let Z be a convex closed subset
of a Hausdorff, complete, locally convex space and let Q be a continuous map from
Z to Z. If the image Q(Z) is relatively compact, then Q has a fixed point in Z.
(See ref. [4].)

2. A class of continuous and compact integral operators

For each 1 < i < k let B;e C'(T, R"*"). Let g be a continuous function from
TxR"e*DxR"“-VtoR", (t,u, v)—>g(t, u, v), where te T, u = (u°, ..., u?) and
v=@',...,v7 ) eR"~ D, We recall here that every norm on R" induces a norm
on the space of all nxn real matrices: if B is such a matrux, then ||B| =
= sup{||Bu|| : ueR", |lu|| < 1}.

Throughout this section we suppose that the following conditions are satis-
fied:

(2.1) For every 1 <i<k there is a strictly positive number A; such that
I(t —t)B,(t)| < A forall tinT. Let

l = 1112....2fk.

(2.2) There is F > 0 such that A|g(t, u, v)| < F whenever teT, |u°| <F, ...,
lu?|| < F and veR™@~ ",

(2.3) g is uniformly continuous on KxR"~" for every compact subset K of
TxR"e+D, '

Remark. If g = 1 the condition (2.3) becomes trivial and in this case the
condition (2.2) is satisfied by every bounded and continuous map (¢, u)+—
— g (t, u). Indeed if ||@(¢, u)| < M, then we can choose F = AM.

Let us consider the sets:

Z,={xeC'"Y(T,R"): |x(D| <A ... 44" foralltin T}, 1<i<
Z, ;= {xeC** " (T,R"): |x(D| <F, ..., |x(t)| < F, teT}, 1

The sets Z, , ; will be defined only if p > 1.
We shall study the integral operator Q: Z;, ,— Z, , , given by

r ’l

Qx(t)=J drp._,...f drlf
A L_, /]

pP— P

Sk
dSk Bk(sk) f eee
1 4
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... B, (s,)f ga(s, x(s), ..., x? 17 V(s)) ds

This expression may be suggestive but not very precise. We define Q rigorously
as a product of certain operators. This enables us to prove with little effort some
useful facts about Q. For this purpose we considered the sequences of operators
(U) <i<x and (S), <, <, acting as described in the following diagram:

Z_ U, g U o U o S e S Zk}p_,
UII Sy
Zk+p %Zk-v'-p

Q = Sp"'Sl Uk"' U|

and whose expressions are:

U x(t) = B, (t)f a(s, x(s), ..., xX®*97(s)) ds
Ux(@) = B,-(t)f x(s)ds, 2<i<k

t
Sx(1) = f x(s)ds, 1<j<p

P—J
Finally we close the diagram by choosing @ = S,,... S, U, ... U,. (If p = 0 we take
o=U...0,)

Lemma 2.1. The operator U, is well defined and continuous; the image
U,(Z; . ,) is relatively compact.

Proof. Consider the set
W = {xeC(T, R"): |x(t)| <A~'F for all t in T}
and define the map R: Z, , ,— W, x+— Rx, by setting
Rx(t) = g(t, x(t), ..., xP+1=D(p)).

The condition (2.2) together with the continuity of g imply that Rxe W for all
xin Z, , , and therefore the operator R is well defined. Moreover the uniform
continuity of g on the sets I,, = T, x {(°, ..., u?)eR"*+V: ||u’| < F}xR"@~)
(assured by (2.3)) implies the continuity of R. Indeed, for given meN and € > 0
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we find 8> 0 such that for every X, Y€ Z, , , With [|X — ¥llisp—1.m S 6 we have

|Rx — Ryl|,, < & For we have only to choose 6> 0 such that lg (e, lj, v) —
—g(@t, u,, v)| <& whenever (¢, u, v), (t, u, %€, and Il — w5l <6,
o' — vi|l < 8. Now we consider the operator S: W — Z,, defined by

Sx(t) = B, (t)j x(s) ds

If xe W and se T, we have ||x(s)|| < A~'F whence, using (2.1), it follows that
1Sx()|| < (2 —¢)B, ()| A~'F < A, A~'F. Thus Sxe Z, and the operator S is
well defined. In addition we shall prove that S is continuous. Indeed for £ > 0
and ¢ > 1 we find § > 0 and m > 1 such that for all x, ye W the inequality
|x— yl,, < dimplies || Sx — Sy|, < & Todoit, itis enough to choose m > g and
6 > 0 such that

sup{|B,(¢)|: teT}-A"'m'F+ d) < &
" Then for te T, setting 1 = signum (¢ — ¢,) we may write

ISx(1) — Sy =

t + nim t
= ” B(1) [J (x(s) — y(s)) ds + J

ty + njm

<

(x(s) — ¥ () dS]

<sup{lIB,(): teT}-(m~2A"'F + |x— yl,) <&

We finish the investigation of this operator by proving that the image S(W) is
relatively compact. In virtue of the Ascoli-Arzela theorem it suffices to prove that
S(W) is equibounded and equicontinuous. The equiboundedness of S(W) is
obvious since S(W) = Z, and Z, is uniformly bounded. To show that S(W) is
equicontinuous, for given f,e T and € > 0 we find § > 0 such that ||Sx(¢) —
— Sx(1,)| < efor all xin W and te T with |t — ¢,| < 6. To do this we choose
& > 0 small enough so that SA~'F|B,(¢)|| < &2 and ||B,(t) — B,(t)|| A~'F <
< g2 forany te T with |t — t,| < &. This choice is possible since B, is continuous
in ;. Now using the identity

Sx(1) — Sx(t,) = Bl(t)f x(s) ds + (B, (2) — Bl(to))j x(s) ds

we get the desired inequality. To complete the proof we return to the operator
U, and observe that U, = SR. Therefore U, is continuous and U,(Z; , ,) = S(W)
is relatively compact.

Lemma 2.2. The operators (U), <, and (S)), <, <, are well defined and con-
tinuous.
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Proof. Since the operators (S)) are very simple the only thing to prove is

the continuity of the operators (U).
Set2 < i< kandconsider U;: Z,_, > Z;,. Let e > 0 and g > 1. We shall find

6>0 and meN such that |Ux— Uyl,_, ,< & whenever x, yeZ,_, and
X = ylli -2 m < 6. Let

d*B,

Cdrt

and choose m > ¢ large enough and § > 0 small enough such that
MQA, ... A _ A" Fm~ '+ 2719 < ¢

Now for any 0 <j < i— 1 we show that

20<k<i—1}:t€7;}

M = sup {SUP {

&
“d—,f“"“

and this will complete the proof. Let te T, and n = signum (¢ — ¢,). Then we may
write

j : t;+ n/m
& wx-vp =22 [ 9~y as+
dv dv 1
t kB (t) dk_l _
+ f/ (x(s) — y(s)) ds] g ( ) A0 -0

whence
“—— (Uix— U (1) “ <
k-1
deé-!
SMQA ... A AT VFm™ ' + 2| x—yl,_ 1)< ¢

<

m

x—y)

SMQA ... 4 A7 Fm™" + | x+ yl,) + Z <) '

k=1

since j<i—1land [x—yl;_y n<IX=ylli_sn<6.
Taking advantage of lemmas 2.1 and 2.2 the main theorem of this section

follows straighforwardly:

Theorem 2.3. The integral operator Q: Z, , ,~ Z; ,,, @=S,...5U,... U,
has at least one fixed point.

Proof. The set Z,,, is nonvoid, convex and closed. The operator Q is
continuous, being a product of continuous operators, and the image Q(Z, . ,) is
relatively compact since it is equal to S,... S, U, ... U;(Z, , ,) and we have seen
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that U,(Z;.,) is relatively compact. Now we apply the Tyhonov fixed point
theorem to obtain the desired conclusion.

3. Bounded solutions

With the same notation as in the introduction we prove now the main result
of the paper. Let P: TxR"™*D > R”, (1, u) > P(t, u) = Cy(Du’ + ... + C,()u°
be the function canonically associated with the differential operator Px. Then we
have the following.

Theorem 3.1. Suppose thast the coefficients A,e C'(T, R"*") and the continuous
functions P(t, u) and f(t, u, v) satisfy the following conditions (derived from
(2.1—2.3)).

(3.1) For every 1 < i< k there is A;> 0 such that ||(t — t)A()"| < A, for
alltinT. Let A= A A4, ... A,.

(3.2) There is F> 0 such that A||f(t, u, v) — P(¢, u)|| < F, whenever teT,
lu® <F, ..., |u”|| < F and ve R"@ D,

(3.3) fis uniformly continuous on KxR"@—" for every compact subset K of
TxR"*D,

Then the singular boundary value problem (1.3)—(1.4) has a solution xe
€ C?**(T, R") which can be extended to a function belonging to C”~'([0, 1], R").
Moreover |x(t)| < F, ..., |x?(t)| < F forall tin T.

Proof. Consider the operator Q defined in the second section with A~
instead of B; and f(¢, u, v) — P(t, u) instead of g(¢, u, v). By Theorem 2.3 the
operator Q has a fixed point xe Z, , ,. One will differentiate the equality Ox = x
to see that x satisfies equation (1.3) and xe C?+*(T, R"). Now since xe Z; , ,, it
is clear that x, ..., x? are bounded by the constant F. To end the proof observe
that for p > 1 the equality x= S, ... S, U, ... U, x implies

x("")=(Sp_,.+,...Uk...Ul)(x)(t)=J;. (S,_, e Up oo U) (1) (5) ds,

1<j<p
and since S, _;... U,... U, xis an element of Z, , ,_;, which is a set consisting of

continuous bounded functions, the previous formulae can be used to extend x
to a function in C?~'([0, 1], R"). It is also clear that x/~"(/,_,) = 0.

Corollary 3.2. Suppose that the function fis bounded and satisfies the condition
(3.3) of Theorem 3.1. If in addition

k

34 sup (f‘, IIC,-(t)Il)' [] sup Il — A" < 1,
teT \j=0 teT

i=1
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each member of the product being finite, then the singular boundary problem
(1.3)—(1.4) has a solution xe C? **(T, R") such that the derivative x?' is bounded
on T. Therefore x can be extended to a function be'onging to C?~'([0, 1], R").

Proof. Set A, = sup ||(t — £)A,(t)"'|| < 00, A = 4, ... 4, and
y4
n=A4sup (2 nt:,(t)u) <l

If ||£(t, u, v)| < M, then we may choose F = AM(1 — 1)~ to verify the con-
dition (3.2). Indeed if |u°| < F, ..., |u”|| < F, then

AL, u, v) — P(t, )| < AM + A (i ||C,-(t)|\'||u’ll) SAM + nF=F
=1

and so we may apply Theorem 3.1.

Corollary 3.3. Consider the singular boundary value problem :

3.5) a(®)x"(t) + b()x'(t) + c(t)x(2) = f(¢, x(t), x'(¢))

(3.6) x(1)=0 te]0, 1]

where ae C'(]0, 1]), b, ce C(]0, 1]) and fe C(]0, 1] x R?) is bounded. Assume that
(3.7 Jinf [7'a() > sup () = (O] + le(o))

Then the problem (3.5—(3.6) has a solution x € C*(10, 1)) such that x and x’ are
bounded.

Proof. Apply the previous corollary with n = 1, T =10, 1]
Lx = g a(t) di x(t), Px=(—=a'(t) +b@)x'(t) + c(t)x(2).
t t
Since ¢ = 1 the condition (3.3) is trivial.

Corollary 3.4. Let fe C(10, 1] x R%) be a bounded function which is uniformly

continuous on K xR whenever K is a compact subset of 10, 1]xR2 If ¢,, c,€
e C(]0, 1)) are such that

sup (Ico(D + e, () <1 (over ¢t in 10, 1])
then the following singular boundary value problem
3.8) £2x"(t) + 3tx"(1) + (1 + ¢o(D)x'(t) + ¢, () x(1) =
= f(t, x(2), x'(1), x"(1)), t€]0, 1]
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(3.9) x(1)=0

has a solution x € C*(]0, 1)) such that x and x’ are bounded.

Proof. Apply the Corollary 3.2 withn=1,k=2,¢,=1,=0,p =1,

Lx = d t d t d x(t) and Px = co(t)x'(t) + ¢, (t)x(2).
dt dr d:

Next we revise under weakened hypotheses the main result of D. Andrica [1].

Theorem 3.5. Consider the boundary value problem

(3.10) a()x"(t) + b(t)x'(t) = a(@)h' (1) f(t, x(2), x'(2))
3.11) x(1)=0 te]o, 1]

where a, be C(10, 1)), fe C(]0, 1] x R?) is a bounded function, and he C*()0, 1)) is
a solution of the associated homogeneous equation (i.e., a(t)h"(t) + b(t)h'(t) = 0).
If in addition

sup t|i'(t)| < oo, (overtin]0, 1]),

then the problem (3.10)—(3.11) has a solution x € C*(]0, 1)) such that x and x’ are
bounded. ;

Proof. Let n=1,k=1,p=1,9g=1, t,=0, T=1]0, 1]. Then the func-
tions B,(¢t) = h’(t) and g(t, u) = f(t, u) satisfy the conditions (2.1)—(2.3) with
A = A, = sup(|th’(¢)]) and F = A sup|f(¢, u)|, hence by Theorem 2.3 the operator
0:2,~ 2, '

Ox(1) = J: ' (s) (J; S, x(r), x'(r)) dr) ds

has a fixed point x. One will differentiate the equality x(¢) = Qx(¢) to obtain

x'(t) = h’(t)J; S, x(r), x'(r)) dr
and

x"(t) = h"(t)fof (r, x(r), X'(r)) dr + ' () (2, x(1), x'(1)).

It follows that a(#)x"(z) + b(2)x'(t) = a(t)h’ (1) f(¢, x(¢), x'(t)), which means
that x verifies the equation (3.10). Also x(1) = Ox(1) =0. Since xeZ,, x
and x’ are bounded by F.
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4. Examples and conciuding remarks

Consider the singular equation
@.1) di ‘ di £x(f) + o (OX() + e (Ox(@) = 1, 1€]0, 1]
t t

In virtue of Corollary 3.2 we know that this equation has a bounded solution
if sup (J¢, ()] + |, (D)) < 1.

From the point of view of our approach this restriction seems to be essential,
since if we take c(¢) = 0 and ¢,(¢) = —1, then the corresponding equation has
the general solution x(#) = 27" In(¢) + at~* + b with a, beR and no bounded
solution is available. However, other choices of the coefficients show that this
restriction is not necessary.

Concerning the boundary conditions (1.3) they are maximal, since if one
more condition is added the problem may have no bounded solutions, despite
the fact that all the hypotheses of Theorem 3.1 are satisfied. In this respect, the
following example is conclusive: the problem ¢x’(¢) + x(¢) =1, x(1) =0,
t€]0, 1] has the unique solution x(¢) = 1 — ¢~' which is not bounded.

To explain the relation between the number of the singularities (counted with
multiplicities) and the number of the boundary conditions as it appears in our
approach, we can offer only a not exact argument which is, however, pertinent
in some cases. Generally speaking the solutions of a (k + p)-order differential
equation depend on (k + p) parameters. To obtain bounded solutions there are
needed suitable choices for k parameters that annihilate the undesired behaviour
of the general solution around the singularities ¢,, ..., ¢,. The rest of the p
parameters are available for the boundary conditions.

Acknowledgement. I wish to thank professor I. Muntean at the Uni-
versity of Cluj-Napoca for the suggestion to study this problem and also for
reading the first version of the paper. Special thanks are due to my coleague
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