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ON THE RIGHT ACTION HIERARCHY
OF SEMIGROUPS

P. GORALCIK, V.KOUBEK

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

A great deal of semigroup structure is revealed in the way a semigroup acts on
itself by the inner translations. For example, the notions of ideals, or Green’s
relations, come out of the study of possible transitions efectuated by the right or left
action of a semigroup on itself.

A rough picture of the right action of a semigroup S on itself is provided by its
left division relation Rs defined by (x, y) € Rs iff y=xz for some z €8S, i.e. iff x
divides y on the left. The left division relation R is always transitive and positive,
in the sense that for every x € S there is y € S with (x, y) € Rs. If S is commutative
then it is also updirected: for every x, y € S we have z € S with both (x, z) € Rs and
(y, 2)€eRs.

The left division relation may happen to be very poor, for example if S is
a left-zero semigroup (i.e. a semigroup satisfying the identity xy = x) then Rs is just
the diagonal of SXS. On the other hand, if S is right simple (and only in this case)
then we have Rs =S X S§. Of course, there are intermediate cases.

It may be rather difficult to characterize the relations R which are equal to R; for
some semigroup S. Instead, we propose to compare semigroups with the same
underlying set by their division relations. A semigroup S is said to be majorized by
a semigroup T if S and T have the same underlying set and Rs < Rr.

The majorization defined thus is a preorder (i.e. a reflexive and transitive
relation) in the class of all semigroups, which will be referred to as the right action
hierarchy of semigroups. A semigroup S is minimal in the right action hierarchy if
for any semigroup T majorized by S we have Rr = Rs.

In the present note we show that the minimal elements in the right action
hierarchy are exactly the inflations of left zero semigroups (easy). Further we show
that a semigroup may not majorize an inflation of a left-zero semigroup, but in this
case it does majorize an inflation of the product of a left-zero semigroup with the
infinite cyclic semigroup (not difficult). Finally, we restrict ourselves to the
commutative semigroups and we show that a commutative semigroup either
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majorizes a zero semigroup or an inflation of the product of a free semilattice with
the infinite cyclic semigroup (not quite easy).

We have not found in the literature any reference pertaining to the right action
hierarchy of semigroups; probably the notion has not been treated yet. The facts
about semigroups we use here are fairly rudimentary.

Recall that a semigroup S is an inflation of a semigroup T if T is an ideal of S
such that S°c T and there is an idempotent endomorphism, called an inflation
endomorphism, f: S— S with f(S) = T. Equivalently, S can be described as a union
of a family {X,|t € T} of pairwise disjoint sets such that X,nT = {t} and xy = tu iff
x e X, and y e X,. The passage from the first description of an inflation to the
second one is done by setting X, = '(¢) for every te T. Conversely, the family
{X/|te T} defines an inflation endomorphism f: S— S by f(x)=1 for xe X,.

Theorem 1. (1) If a semigroup S has a minimal right ideal then it majorizes an
inflation of a left-zero semigroup.

(2) Every inflation of a left-zero semigroup majorizes only itself, thus is minimal
in the right action hierarchy. There are no other minimal elements in the hierarchy.

(3) A semigroup S majorizes an inflation of the product of a left-zero semigroup
with the infinite cyclic semigroup iff S has no finite right ideal. If this is the case

then S is not minimal.

Proof. (1) Let S have a minimal right ideal aS and let T be a subset of S which
meets each right minimal ideal in exactly one point (a transversal of the family of all
minimal right ideals of S). For every s € S, the set saS is again a minimal right ideal
of S, hence it meets T in one point. Define a mapping f: S— S by {f(s)} = TnsaS.
For te T, we have {f(t)} = TntaS = TntS = {t}, thus f is an idempotent function
and clearly, f < Rs. Defining a new multiplication in S by xoy = f(x), T becomes
a left-zero ideal of (S, o) and f an inflation endomorphism. Note that f=Rs .

(2) If S is an inflation of a left-zero semigroup T then there is a unique inflation
endomorphism f: S— S with f(S)=T and we have Rs={. Clearly, when Rs is
a function, it cannot contain properly any positive relation, thus even less so any
left division relation other than Rs.

If S is not an inflation of a left-zero semigroup then S is not minimal in the right
action hierarchy by (1) and (3).

(3) If xS is infinite for every x € S, and only in this case, we can constructin S a
subset X ={x,.|te T, ne N}, where T is a large enough left-zero semigroup and N
is the additive semigroup of the positive integers, such that

() x.m=x,, iff s=t and m=n,
(ii) for every te T, (X, ., X.n+1) € Rs,
(iii)) XnxS+#@ for every x€S.

We start the construction by taking an arbitrary ¢t € T and an arbitrary x, , in S.

When we have already x, |, ..., X..., we can always choose x, .1 €S — {x..1, ..., X, .}
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such that (x..., x,..+1) e Rs. When we have the whole sequence X, ={x, .|n e N},
we form the set X,S™' = {s € S| X,nsS #}, and we repeate the process by choosing
a new sequence X, in S— XS, if it is not void, form the infinite right ideal
(S—XS )—X.S ', and so on. We continue until S is exhausted.

We turn X into a semigroup isomorphic to T X N by defining x, moX,.. = X, msn.
By (iii), we can choose an idempotent mapping f: S—S with f(S)=X and
fn[(S — X)X X] < Rs. Extending the multiplication in X to the whole S by
xoy =f(x)of(y), we obtain a semigroup (S, o) which is an inflation of (X, o) and is
majorized by S.

If we put x;,=x. .+ for all teT and ne N, we obtain a smaller set X'=
{x..|te T, ne N} enjoying properties (i)—(iii), thus yielding a semigroup (X', ")
with multiplication x!, ,vX}., =X\ .+.. If we extend this multiplication to the
whole S by xoy =f'(x)=f'(y), where f' is an inflation endomorphism defined by
f'(s)y=xi, iff f(s)=x,., for all seS — X', we obtain a semigroup (S, ) strictly
majorized by (S, o).

Every right ideal of an inflation of the product of a left-zero semigroup with the
infinite cyclic semigroup is infinite. If S majorizes T then every right ideal of S
contains some right ideal of T.

Theorem 2. (1) A commutative semigroup S has a minimal ideal iff it majorizes
a zero semigroup.

(2) The zero semigroups are the only minimal elements in the action hierarchy of
the commutative semigroups.

(3) A commutative semigroup S has no finite ideal iff it majorizes an inflation of
the product of a free semilattice with the infinite cyclic semigroup. If this is the case
then S is not minimal.

Proof. Clearly, the zero multiplication x o y = z with z fixed in the minimal ideal
of S defines a zero semigroup (S, o) majorized by S. Conversely, if S majorizes
a zero semigroup (S, o) then z € xS for all x € S, thus S has a minimal ideal.

(2) The zero semigroups are clearly minimal relative to the majorization. By (1)
and (3), there are no other minimal commutative semigroups.

(3) Assume that S has no finite ideal. Take a well ordered set (M, <) with
card (M) > card(S) and extend the well order to the set K(M) of all non-void finite
subsets of M, by setting

A <B<max[(A-B)u(B—-A)]eB

for A, B e K(M). If x is the ordinal corresponding to (K(M), <) then we can label
the members of K(M) by the ordinals less than » in such a way that K(M)=
{N.]a<x} and N, <N; iff a <p. Under the set union, K(M) is a free semilattice.

We make the ordinal x itself into a free join semilattice (%, v) by defining avf =7y
iff N,OUN; =N, for a, € x.
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Let vex, v#0. If [N.|=1 then clearly the scts N, with a <v are all non-void
finitc subscts of {ae M|au<minN,} thus they form a free subsemilattice of
(K(M), u) and (v.v) is a free subsemilattice of (x, v). It |[N.[>1 then
N, = {min N, } is non-void, thus equal to N, for some ordinal u. We show that if
v# 1+ 1 then the sets N, with < a<v form a free subsemilattice of (K(M), )
isomorphic to the semilattice (71, v), where  is the ordinal with N, = {min N, }.
The isomorphism is established by the assignment f3+— N;UN, for 3 € x. Indeed,
the assignment is injective and respects unions. To show that the assignment is onto
IN.|u<a<v}, consider

a=max [(N.—N,)uU(N, —N,)] and b =max[(N.—N,)U(N, —N.)]

for some «a with u<a<v. We have «e N, = N,., be N.—N,, hence a#b. If it
would be « < b then b & (N, — N, )U(N, = N,)). hence be N,, but then be N, — N,
would lead to b=minN, <ua, a contradiction. So we have b<a. Moreover,
a=min N,, for otherwise it would be a4 € N, — N,., whence a <b, a contradiction.
We conclude that for 8 such that Ny =(N.— N,)U(N, — N..) we have < and
N.=N;UN,.

We next define a cofinal (relative to Ry) subset X < S by the following transfinite
induction:

I. Select in S a sequence X, = {x..,|i € N}, with all elements pairwise distinct and
cuch that (xo .. Yo, )€R, for all ie N, and set X,={x e S|XonxS#0}.

I1. If sequences X, are already defined for all a, a<f3, and we have S—

w

X, # 0, then (since Ry is updirected) we can sclect a sequence X, = {x,,|ie N} in
S

UJ X... with all elements pairwise distinct and such that (x;... x;,..) € R, and

T

(ro s v )ERS for all ieN and all a such that N,.<N,, N.# N;, and set

X, = Ix €S — X | X:nxS+0!. Clearly. for some v, v < x, this construction will
57 | y

« [

end up with S=UJX.. If |[N|=1 we put X=UX,.. If |[N|>1 and
N, —{min N} =N,. then if v=p+1 we put X=X, and X=X,. if v#u+1 we
put X= J X, and X= |J X..

(L (UL

We show that X is cofinal in S. Clearly, X is cofinal in X. Let s € S — X. Then for
an arbitrary x € X, say x € X, there is (by updirectedness) some z € S, say z € X,
with (s, 2), (x, 2) € Rs. It cannot be 3 < a, because by the construction we would
have xe X;, thus ze X. We have (z.t)eRs for some te X, hence by the
transitivity of Ry we have (s, t)e R..

To close with, we make X into the product of a free semilattice with the additive
semigroup (N, +) of non-negative integers by defining x. ,0Xx,, = X..s ,.,. Since
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XnsS#0 for every se S, we can find an idempotent mapping f: S—S with
f(S)=X and fn[(S— X)X X]<Rs, and inflate (X,0.) by f to (S,.) which
obviously is majorized by S.

All ideals of an inflation of the product of a free semilattice with (N, +) are
infinite, therefore a commutative semigroup S which majorizes it cannot have
a finite ideal.

Finally, S is shown not to be minimal in a similar way as in (3) of Theorem 1. The
proof is complete.
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UEPAPXUS IPABBIX JEMCTBHUM HA TOJYTIPYIIIIAX
P.Goraléik—V. Koubek
Pe3iome

Kaxpo#i nonyrpynme S conocraBnseTcss OMHapHOE OTHOLUEHHE JIeBOW [ENUMOCTH Rs=
{(x, xy)|x, y € S}. CpaBuuBas nonyrpynnbl no ux JeBoi A€NHMOCTH, MbI FTOBOPHM, Y4TO noayrpynna S
Maxopupyet nonyrpynny T, ecnu y € S u T ogMHakoBble 3JieMEHTBI U Ry < Rs. M3yuaeTcs oTHoluexune
MaXXOpPHPOBaHUSA B KJIacce BCEX MOJYTPYIN U B KJ1acce BceX KOMMYTAaTHBHBIX noayrpynn. B yactHocTH,
OMHUCBHIBAIOTCA MOJYTPynnbl MUHUMAJIbHBIE MO MAXXOPUPOBAHUIO KaK MHGNSUMM MONYrpynmn neBbIX
Hyne#. [loka3biBaeTcs, 4TO Kaxpaas noayrpymmna S, y KOTOpo# Bce npaBble uaeanbl 6eCKOHEYHb,
Ma>XOpUPYET HEKOTOPYIO WHMIALUMIO NPOU3BEACHUS HEKOTOPOH MOJYrpynmnbl JNeBbIX Hynel U 6ecko-
HEeYHoW LMkaudeckoi monyrpynnel. Ecnu, 6onee Toro, S KOMMYyTaTHBHA, TO OHA TaKXe MaXXOpUpPYET

HEKOTOPYIO MHMNAUMIO NMPOU3BEAEHUS HEKOTOPOH CBOOOLHOMN nonypelleTKM U 6€CKOHEYHON LMKIIH-
YECKOW MOMyrpymnmbl.
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