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Math. Slovaca 34,1984, No. 2,199—203 

ON THE RIGHT ACTION HIERARCHY 
OF SEMIGROUPS 

P. GORALČÍK, V. KOUBEK 

Dedicated lo Academician Štefan Schwarz on the occasion of his 70th birthday 

A great deal of semigroup structure is revealed in the way a semigroup acts on 
itself by the inner translations. For example, the notions of ideals, or Green's 
relations, come out of the study of possible transitions efectuated by the right or left 
action of a semigroup on itself. 

A rough picture of the right action of a semigroup S on itself is provided by its 
left division relation Rs defined by (JC, y) e Rs iff y = xz for some z e S, i.e. iff JC 
divides y on the left. The left division relation R s is always transitive and positive, 
in the sense that for every xeS there is y e S with (JC, y) e Rs. If S is commutative 
then it is also updirected: for every x, y e S we have zeS with both (JC, z)eRs and 
(y,z)eRs. 

The left division relation may happen to be very poor, for example if S is 
a left-zero semigroup (i.e. a semigroup satisfying the identity jcy = JC) then Rs is just 
the diagonal of S x S . On the other hand, if S is right simple (and only in this case) 
then we have Rs = Sx S. Of course, there are intermediate cases. 

It may be rather difficult to characterize the relations R which are equal to Rs for 
some semigroup S. Instead, we propose to compare semigroups with the same 
underlying set by their division relations. A semigroup S is said to be majorized by 
a semigroup T if S and T have the same underlying set and .Rs czKT. 

The majorization defined thus is a preorder (i.e. a reflexive and transitive 
relation) in the class of all semigroups, which will be referred to as the right action 
hierarchy of semigroups. A semigroup S is minimal in the right action hierarchy if 
for any semigroup T majorized by S we have RT = RS. 

In the present note we show that the minimal elements in the right action 
hierarchy are exactly the inflations of left zero semigroups (easy). Further we show 
that a semigroup may not majorize an inflation of a left-zero semigroup, but in this 
case it does majorize an inflation of the product of a left-zero semigroup with the 
infinite cyclic semigroup (not difficult). Finally, we restrict ourselves to the 
commutative semigroups and we show that a commutative semigroup either 
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majorizes a zero semigroup or an inflation of the product of a free semilattice with 
the infinite cyclic semigroup (not quite easy) . 

We have not found in the literature any reference pertaining to the right action 

hierarchy of semigroups; probably the notion has not been treated yet . The facts 

about semigroups we use here are fairly rudimentary . 

Recall that a semigroup S is an inflation of a semigroup T if T is an ideal of S 

such that S2 cz T and there is an idempotent endomorphism, called an inflation 

endomorphism, / : S—*S with f(S) = T . Equivalently, S can be described as a union 

of a family {X,\t e T} of pairwise disjoint sets such that X,nT= {t} and xy = tit iff 

x e X, and yeX„. The passage from the first description of an inflation to the 

second one is done by setting X,=f l(t) for every teT. Conversely, the family 

{X,\teT} defines an inflation endomorphism / : S-^S by f(x) = t for xeX,. 

Theorem 1. (1) If a semigroup S has a minimal right ideal then it majorizes an 

inflation of a left-zero semigroup. 

(2) Every inflation of a left-zero semigroup majorizes only itself, thus is minimal 

in the right action hierarchy. There are no other minimal elements in the hierarchy. 

(3) A semigroup S majorizes an inflation of the product of a left-zero semigroup 

with the infinite cyclic semigroup iff S has no finite right ideal. If this is the case 

then S is not minimal. 

P r o o f . (1) Let S have a minimal right ideal aS and let T be a subset of S which 
meets each right minimal ideal in exactly one point (a transversal of the family of all 
minimal right ideals of S) . For every s e S, the set saS is again a minimal right ideal 
of S, hence it meets T i n one point. Define a m a p p i n g / : S^>S by {f(s)} = TnsaS. 

For te T, we have {f(t)} = TntaS = TntS = {t}, thus / is an idempotent function 
and clearly, / c z R s . Defining a new multiplication in S by x0y = / ( J C ) , T becomes 
a left-zero ideal of (S , o) and / an inflation endomorphism. Note that f=R{s ,. 

(2) If S is an inflation of a left-zero semigroup T then there is a unique inflation 
endomorphism f: S-+S with f(S) = T and we have R s = / . Clearly, when R s is 
a function, it cannot contain properly any positive relation, thus even less so any 
left division relation other than R s . 

If S is not an inflation of a left-zero semigroup then S is not minimal in the right 
action hierarchy by (1) and (3). 

(3) If JCS is infinite for every JC e S, and only in this case, we can construct in S a 
subset X= {x,.„ |t e T, n e N } , where T is a large enough left-zero semigroup and N 
is the additive semigroup of the positive integers, such that 

(i) JCS,,„ = JC,,„ iff s = t and m = n, 

(ii) for every t e T, (JC, „, jc,,,I + 1 ) e R s , 
(iii) A " n x S ^ 0 for every j c e S . 

We start the construction by taking an arbitrary te T and an arbitrary JC,.. in S. 
When we have already JC, ,, ..., JC,. „, we can always choose JC,, „ +1 e S — { JC,. I , ..., JC,. ,} 
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such that (x,,n, x,,n + i)eRs. When we have the whole sequence X, = {x,,n\n e N}, 
we form the set X,S_1 = {s e S\X,nsS=fc$}, and we repeate the process by choosing 
a new sequence Xu in S — X,S'\ if it is not void, form the infinite right ideal 
(S — X,S ') — X„S \ and so on. We continue until S is exhausted. 

We turn X into a semigroup isomorphic to T x N by defining xs,moX,,„ =xs,m+n. 
By (iii), we can choose an idempotent mapping / : S-+S with f(S) = X and 
/ n [ ( S - X ) x X ] c K s . Extending the multiplication in X to the whole S by 
Xoy =f(x)of(y), we obtain a semigroup (S, o) which is an inflation of (X, o) and is 
majorized by S. 

If we put x',,n=x,,n + \ for all teT and neN, we obtain a smaller set X' = 
{x',,n\te T, neN} enjoying properties (i)—(iii), thus yielding a semigroup (X', • >) 
with multiplication x's, m^x',,n=x's,m+n. If we extend this multiplication to the 
whole S by x^y =f'(x)^f'(y), where / ' is an inflation endomorphism defined by 
f'(s) = x',,n iff f(s) = x,,n for all seS — X', we obtain a semigroup (S,") strictly 
majorized by (S, o). 

Every right ideal of an inflation of the product of a left-zero semigroup with the 
infinite cyclic semigroup is infinite. If S majorizes T then every right ideal of S 
contains some right ideal of T. 

Theorem 2. (1) A commutative semigroup S has a minimal ideal iff it majorizes 
a zero semigroup. 

(2) The zero semigroups are the only minimal elements in the action hierarchy of 
the commutative semigroups. 

(3) A commutative semigroup S has no finite ideal iff it majorizes an inflation of 
the product of a free semilattice with the infinite cyclic semigroup. If this is the case 
then S is not minimal. 

Proof. Clearly, the zero multiplication jtoy = z with z fixed in the minimal ideal 
of S defines a zero semigroup (S, o) majorized by S. Conversely, if S majorizes 
a zero semigroup (S, o) then zexS for all xeS, thus S has a minimal ideal. 

(2) The zero semigroups are clearly minimal relative to the majorization. By (1) 
and (3), there are no other minimal commutative semigroups. 

(3) Assume that S has no finite ideal. Take a well ordered set (M, ^ ) with 
card (M) > card (S) and extend the well order to the set K(M) of all non-void finite 
subsets of M, by setting 

A < B o m a x [ ( A - B)u(B -A)]eB 

for A, B e K(M). If x is the ordinal corresponding to (K(M), ^ ) then we can label 
the members of K(M) by the ordinals less than x in such a way that K(M) = 
{N(t \a < x} and N„ ^N(i iff a ^ / 3 . Under the set union, K(M) is a free semilattice. 
We make the ordinal x itself into a free join semilattice (x, v ) by defining a v j3 = y 
iff NauN,, = Ny for a, /3 ex. 
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Let vex, v ^ O . If | N V | = 1 then clearly the sets N(, with « < v are all non-void 
finite subsets of { a e M|O < m i n N } thus they form a free subsemilattice of 
( K ( M ) , u ) and (v, v ) is a free subsemilattice of (H , v ) . If | N | > 1 then 
N — (min N, } is non-void, thus equal to N„ for some ordinal /i. We show that if 
v^H + 1 then the sets N„ with / t < a < v form a free subsemilattice of (K(M), u ) 
isomorphic to the semilattice (JT, V ) , where K is the ordinal with NT = {min N. }. 
The isomorphism is established by the assignment / J H - > N | ( U N , , for ft en. Indeed, 
the assignment is injective and respects unions. To show that the assignment is onto 
{ N„ | // < a < v}, consider 

a = max f(N, - N ) u ( N - N,) ] and b = max f(N(, - N„)u(N„ - N(,)] 

for some a with // < « < v. We have a e N, — N„, r> e N , — N„, hence <7^ fr. If it 
would be a < b then b £ (N(, - N ) u ( N , - N„), hence b e N , but then b e N, - N, 

would lead to l) = min N ^</ , a contradiction. So we have b<a. Moreover, 
a = min N , for otherwise it would be a e N„ — N(,, whence a ^ f r , a contradiction . 

We conclude that for ji such that N/f = (N , - N„)u(N„ - N a ) we have / 3 < J T and 
N, = N / ; uN„. 

We next define a cofinal (relative to R s ) subset X cz S by the following transfinite 
induction: 

I. Select in S a sequence X„= {x0l\i e N } , with all elements pairwise distinct and 

such that (.v„ ,, .v ) e R s for all ; e N, and set X „ = {x e S | X ( ) n x S ^ 0} . 

II. If sequences X„ are already defined for all a , a<fi, and we have S— U 
<r / i 

\ \ ^ 0 , then (since Rs is updirected) we can select a sequence X/{ = {x, , | i e N} in 

S U X " w * t n a " elements pairwise distinct and such that (jt,,.,, x/,., + i ) e R s and 

(A,, ,, v/5 ,)eRs for all ieM and all a such that N ^ N , , , N,.=£N,,, and set 

X/; = \x e S - U X,t\XnnxSj=0 . Clearly, for some v, v < x , this construction will 
i ,t- /f i 

end up with S = U X < - If | N | = 1 we put X = U * < - ^ | N | > 1 and 

N - { m i n N } = N„, then if v =/< + 1 we put X = X„ and X = X„, if v=£ n + 1 we 

put X = U X, and X = U X . 
/<- << \- , 1 - « v 

We show that X is cofinal in S. Clearly, X is cofinal in X. Let s e S - X. Then for 
an arbitrary x e X, say x e X(t, there is (by updirectedness) some z e S, say z e X{ , 
with (.v, z), (x , z ) e .Rs. It cannot be fi<a, because by the construction we would 
have xeXj i , thus zeX. We have (z,t)eRs for some t e X , hence by the 
transitivity of R s we have (S, f ) e R s . 

To close with, we make X into the product of a free semilattice with the additive 
semigroup (N, + ) of non-negative integers by defining x,t,,ox{ , = A \ , V / . , + ,. Since 

202 



XnsS^0 for every seS, we can find an idempotent mapping /: S-+S with 
f(S) = X and / n [ ( S - X ) x X]<= Rs, and inflate (X, o) by / to (S, o) which 
obviously is majorized by S. 

All ideals of an inflation of the product of a free semilattice with (N, +) are 
infinite, therefore a commutative semigroup S which majorizes it cannot have 
a finite ideal. 

Finally, S is shown not to be minimal in a similar way as in (3) of Theorem 1. The 
proof is complete. 
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ИЕРАРХИЯ ПРАВЫХ ДЕЙСТВИИ НА ПОЛУГРУППАХ 

Р.Оога.сГк—V. КоиЬек 

Р е з ю м е 

Каждой полугруппе 5 сопоставляется бинарное отношение левой делимости Кх = 
{(*, гу)|х, у е 5} . Сравнивая полугруппы по их левой делимости, мы говорим, что полугруппа 5 
мажорирует полугруппу Т, если у е 8 и Т одинаковые элементы и К т с К 8 . Изучается отношение 

мажорирования в классе всех полугрупп и в классе всех коммутативных полугрупп. В частности, 

описываются полугруппы минимальные по мажорированию как инфляции полугрупп левых 

нулей. Доказывается, что каждая полугруппа 5, у которой все правые идеалы бесконечны, 

мажорирует некоторую инфляцию произведения некоторой полугруппы левых нулей и беско­
нечной циклической полугруппы. Если, более того, 5 коммутативна, то она также мажорирует 

некоторую инфляцию произведения некоторой свободной полурешетки и бесконечной цикли­

ческой полугруппы. 
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