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ON A SYMBOL OF OPERATORS
GENERATING FINITE DIMENSIONAL ALGEBRAS

JAN HALUSKA

ABSTRACT. We investigate the so called symbol of operator generating finite
dimensional algebras. In our consideration the kernel of the symbol need not be the
subset of an ideal of compact operators.

In the paper [1] there were given examples showing that a finite dimensional
operator algebra over a ring of continuous functions is a natural generalization
of the structure of many important linear operators appering in the research of
singular integral equations. In [1] the authors introduced the notion of the so
called symbol of such an algebra. Moreover, they showed that if the kernel of
the symbol is a subset of the ideal of compact operators then all algebraic and
other properties of such an operator are characterized by the symbol alone. In
this paper wee deal with the case when the kernel of the symbol need not be a
subset of the ideal of compact operators.

Our approach has mainly an algebraic character. How ever, from the general
algebraic point of view the solution of such problems is not known or need not
exist in general. Further, these algebraic problems are specific for the theory of
singular integral equations, e.g. such is the problem of existence of the symbols
of operators themselves. Therefore we prefer to investigate a not general but
suffuciently concrete situation and to use terms which the theory of singular
integral equations deals with.

In the paper we use upper and lower indices. In the case of the exponent we
exclusively use the brackets. The summing is executed always from 1 to K
through the same upper and lower index.

1. Definitions and basic notions

1.1. Let £ be a simple closed smooth curve in the complex plane. Let C (%)
be a space of all continuous functions a: & — C with the usual supremum norm
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- llc - Let X (&) o C(£) be a Banach space of complex valued functions on
& with the norm || . ||y« such that the restriction of || . | y(4, to C (¥) equals the
norm || . | ¢ Let L(X (<)) be a Banach space of all continuous linear opera-
tors Y: X (%) —» X (&) with the supremum norm. Let % be a subring of the
space C (%) such that the operator Y: f — af, fe X (&), ae F, is continuous
in X(2) and | Y| < 1flxion- lallc.

Let & be an ideal of compact operators in X (&).

Let Sy e L(X(Z)), k=1, 2, ..., K, be operators such that

(a) S, =11is a unit operator,

(b) a(S,(f)) — S.(af) = T(f), or shortly aS, — S,a = T, where fe X(£).

aeF,TeD,

(c) Sy (k=1,2, ..., K) are linearly independent over the ring #,

(d) further we suppose that the composition of two operators S,, S, can be
expressed as follows:

K
NERYES Z Vilf/SA+7;./- (1
A=1
where !, e 7, T,,€2,i,j=1,2, ..., K.
Let us consider the opearators 4 € L (X (%)) of the following form:
<
A=Y a'S +T.
k=1
where Te &, a* e 7,k =1, 2, ..., K. The set of such operators clearly forms
an algebra. Denote it by %.
1.2. Let # be a factor algebra # /(2 N #). Every A € % can be unambigously
expressed in the form
- I\’ —-—
A= Z (lASA,
A—1
where S, is the image of the operator S,, k=1, 2, ..., K, in the natural
homogorphism # — 4. Obviously

K
S; S/ = Z %‘ljjSA'l
A=1
where ¥} ,, i, j, k =1, 2, ... K, are the same functions as in (1). Both # and £

are algebras with units. The algebra # is a left and right free module over the
ring .7 . shortly .# -module. We shall say that the system

Sok=1,2,....K =8

forms a basis of the .Z-module 4.
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1.3. Lemma. Let [b/ (1)), i,j = 1,2, ..., K, be a regular matrix for every te ¥
and let

K
Po= % bS 2
j=1

where bl e F for j, k = 1,2, ..., K, is a linear transform of the basis S onto the
basis

P={(P;k=12 .., K.

Let [cf], p, k= 1,2, ..., K, be the matrix of the inverse transform to the (2).
Then (1) implies the following rule of the operator composition:

K
Pmolsnz z nr[v,hnpp’
p=1

where
K K K
— J lioaf
7751."— Z Z Z bmbn yi.jclf’
i=1j=1k=1

andm,n,p=1,2,... K
1.4. For every X € # denote

A= ki j=1,2, .., K

1M =
~

k=1

the matrix of the operator F;: X — Ao X with respect to the basis S. Suppose
further that there exists the following decomposition of det A:

K
det A= 1] o/,
i=1
where

K
o= Aa',

i=1

where A/, i,j =1, 2, ..., K, are some functions from % . Note that in general it
is not always possible, cf. [1]. Now, we define

Sym A = GA = (O-/lia O'i, e O-/Ii() € (‘9'—)1(,
cf. [1], 2°. So, we define the symbol of the operator 4 € £ as the map sym in the
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following way:

sym | i |
o, «— detd «— A

The operation of addition and also of multiplication of symbols are defined
coordinatewisely. Evidently the #-module (#)* is an algebra.
1.5. Lemma. The map sym: # — (F)* is a homomorphism if and only if

K
Al AT =AZ v, M 3)
=1
where i, j,p=1,2, ..., K.
Remark. Let us note that the condition (3) is only necessary for proving
that the function sym preserves multiplication.
1.6. Carollary. If ker (sym) < &, then the function sym: & — (F)* is an
isomorhism. To this end it is enough to have

det [A{ (1)] # O 4)

for every te £, where p, k =1, 2, ..., K, which follows from (3).

1.7. Remark. If (4) is valid, then some necessary and sufficient con-
ditions of the noetherness of the operator 4 € # with respect to the symbol
sym (A) are known. In this case we are able to compute the index of operators
with respect to the symbol of operators and to the homotopic invariants of the
ring &, cf. [1], 3°.

2. Case ker (sym) & 2

2.1. The consideration of the case ker (sym) & & is equivalent to determining
such an ideal s which should be a kernel of a homomorphism of the algebra
Z into some module of functions over & . In the paper [1] the authors considered
only the case (4), but this situation is not typical for the algebra #. Indeed, (3)
implies:

K
A—1
and

K
A=Y v AL,

A=1
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where i, j, k, p = 1, 2, ..., K. After subtracting these two equations we get for
every te &:

0= Z (}’,".(j* ?’jlfi)/llf’ ()

k=1

where i, j,p=1,2, ..., K

When (4) is true, then the system (5) of the linear equations with the coef-
ficients Af, p = 1,2, ..., K, for every t € £, has only a trivial solution, and so
the algebra R is commutatwe In other words, if the algebra # is not com-
mutative, then certainly there exists a point 7, € £ such that

det[A/ ()] =0,i,j=1,2, ..., K.
2.2. Theorem. Let A€ X and the symbol o, exists. Then for a fixed m,
m=1,2,..., K, the set
Hy={AeR; af =0} (6)

is a maximal ideal of the algebra A.
Proof. Let us have two operators X, 4 € #. so

K
X¥X=Y x'S, and A=5% a'§
i=1 j=1

Immediately from (b) and (d) we have:

. )
Z a'x’ %‘lf_i S .

K K _ _ K
- % TawSes=3
From (a) and (3) it follows that A" =
We show first that J7,, is an ldeal.
Consider the new basis P = {P;i =1, 2, ..., K} of the #-module # with the

following property:
AP Ay AT AR

o1 0.0
(§I1§2,---7§K)=(P|5 P_)a "-,PK) 0 0 l oo 0 (8)
0 0 O 1

Since 27" = 1, the transform (8) is regular for every re 2. (8), (7) and (3) imply

K

ZOA—,: O‘TPIO-/I\L'-’_ Z },A’:.nakxnlsi' (9)
i=1
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From (8) we have:

K
A=Y dS=0cyP+ ) aP. (10)
i=2

H-M >

i=1

Take A € S, and X e . (9) and (10) imply Ao X e #,, and Xo Ae #,,.
The maximality of the ideal #,, follows from the dimensional reasons.
2.3. Corollary. It follows from (9) that the F -factor module # | #,,, m =1,
2, ..., K, is a comutative algebra.
2.4. Corollary. Again from (9) and the fact that P is a basis of # we obtain that
the nember of the different maximal ideals of algebra R is not greater than K.
2.5. Corollary. If (4) is true, then we may take a matrix [A]],i,j=1,2, ..., K,
istead of the matrix A Am A An

01 0 .. 0
0 01 ..0
0 0 0 1

in the proof of the theorem. Then (9) and (10) can be rewritten in the following
way:
AoX=) oiPoy and A=) o,P.
i=1 i=1
The fact, that the algebra Z is a direct sum of the ideals
H,={AecR, A=a"P},
m=1,2,..., K, isimplied by the diagonality of the matrix A with respect to the

basis P.

2.6. Corollary. Let us denote

K
&= () 7,
m=1

The ideal S is a kernel of the considered homorphism. If the matrix A has a
constant rank, rank A =r, 1 < r < K, over the whole curve £, then # | # —
— (F)" is an isomorphism and the algebra R | # is commutative, where the ideal
H=H +(2nR).

To illustrate our result we give the following example.

2.7. Example. Let X(£) = L,(<), p > 1, I denote the unit operator, S
be a singular operator, and N be an operator with the polar-logarithm kernel.
Recall that

(Sf)(t)=lj SO 4y e 2 fe 7,
TlJy

¢V — 1t
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= f(U) d G 1773
e Lﬂ(u—t)'ln(v—t) ntesjes,

where the operators S and N are defined on a Holder space H,(¥),0 < pu < 1,
as Cauchy singular integrals and then they are extended to L,(¥), p > 1.
The composition rules of operators in our algebra £,

R={AeL(X(L); A=al+bS+ N+ T, Te D},

are given by the properties of operators N and S, cf. [2], Corollary of Theorem
3. Namely:

S?=1,
N = —oN+ T,
SoN=wl +N— S+ T,
NoS=—N+T,

where we #, Te 9. We have

a cw ¢
A=|ba —bo+c —b},
¢  —co a

det A =(a+c)a—bo—c).

So, over the whole curve % rank 4 = 2 = const. We have
H ={AeR,a+c=0 and a—bw—c=0},

l —o —1
OLNS)=,P, )1 0 1],

0O 1 0

H = {d(wl + 2N — aS) € #},
ScN—NoS=wl+2N—-aSe#,

where d, e #. We see that # = % | # is a commutative algebra

2.8. Problem. Does there exist a symbol of the operator 4 € # considered in
317 ‘
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