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CONVERGENCE OF SEQUENCES OF REAL FUNCTIONS
WITH RESPECT TO SMALL SYSTEMS

JERZY NIEWIAROWSKI

Small systems were introduced by Riecan [3] and studied by many authors
(see [2 p. 498], for references).

In this paper we define the convergence with respect to a small system. In [4]
Wagner defined the convergence with respect to an o-ideal. We shall study the
instances when both the convergence with respect to a small system and that
with respect to a suitable o-ideal are equivalent.

Definition 1. Let (X,S) be a meacurable space and {N,}*_, a sequence of
subfamilies of S such that

(1) OeN, for r=1,2, ..

(2) For each positive integer r, there exists a sequence {k;}> , of positive
integers such that E.e N, (i =1, 2, ...) implies |J EeN.,.

i=1
(3) For each positive integer r, if EEN,, F < E, Fe S, then Fe N,.
4) N,oN,,, for r=1,2,...

(5) For each positive integer r, if EEN,, Fe (| N,, then EL FeN,.
r=1

0

The sequence {N,}_, satisfying all the above properties will be called a small
system on S and will be denoted by N".

It is not difficult to verify (see [2, p.491]) that N = ﬂ N, is a o-ideal on S.
r=1

Definition 2. A small system N will be called upper semicontinuous if and only
if, for every nonicreasing sequence of the sets {E;}}> | the following is true: if there

exists a positive integer ro such that E;¢ N, (for i=1, 2, ...), then () E:i¢N.
i=1

Let I be an o-ideal in an o-field S. We say that /-almost every point of E = X
has some property (or that this property holds I-almost everywhere, in ab-
breviation /-a.e., on E) if and only if the set of points in E at which this property
does not hold belongs to the o-ideal 1.

Definition 3. We say that a sequence {f,};-  of S-measurable functions defined
on X converges with respect to I to an S-measurable function f defined on X if and
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only if each subsequence {f, 4 | of {f,}\ | contains a subsequence {f, }'
) -
. L. )
converging to f I-a.e. on X. We shall use the notation f, — f.
n-— x

Definition 4. Let A" be a small system on S and { f,},_ | a sequence of S-measur-
able functions defined on X. We assume that ilie functions fand f, (n =1, 2, ...)

b
are N-a.e. finite (where N=) N,>. We say that { f,},_ | converges with respect
r=1

to the small system A to an S wieasurable function f defined on X if and only if,
Sfor each € > 0 and for each positive integer m, there exists a positive integer n
such that, for each positive integer n = n, ,,, the set

e

{x: 1 fnX) = f(0)] 2 €}e N,

! X
We shall use the notation f, — f.
) o

We say that two S-measurable functions f and g are equivalent if and only if
f-g vanishes N-a.e. on X.

It is not difficult to observe that both the limit with respect to the small system
A" and that with respect to the o-ideal N are determined up to equivalent
functions. In the above definitions we can also suppose that all functions f, and
f are defined only N-a.e. on X (see definition 1(5)).

From now on, we shall use only the properties (1)—(4) from definition 1. We
shall assume that all functions f,, f under consideration are S-measurable and
N-a.e. finite <N =) N,)-

r=1

Remark 1. If f, =f for every n, then f, Tb*f. Iff,,-—“—vf, then, for

each subsequence {f,,m}j',?:, of {f,}x_,, we have I, —4—> f.

20

Lemma 1. Let A be a small system; then there exists a sequence {k;} | of

x
positive integers such that, if E;€ N, , then {_) E;€ N, for each positive integer n.
Proof. For each positive integer j, there exists a sequence {k'}7~, of pos-
[e 0}
itive integers such that, if E,€ N, o, then () E;€ N, Let k, = maxk”, E€N,,
i i jsi '

i=1,2,.. Ifi>n, then k; = &, hence E,e N w and (J E€N,.

Theorem 1. If a sequence {J,}»~ of functions converges on X with respect to
a small system A" to a functior f, then there exists a subsequence { f, 7= 1 of {/u}2-
converging to f N-a.e. on X.

Proof. Let A={x; |f(x)| = 40}, 4, = (x:|f,(x)] = + o0}, C=40 U 4,,

n—1
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E (&) ={xeX — C; |f,(x) — f(x)| = ¢}, where {g}? , is a sequence of positive
numbers converging on 0. There exists a sequence {#;};>, such that E,(&)e N,
where {k;}* | is a sequence from Lemma 1, and n, ., > n;fori=1,2, .... Let us
put E; = E, (&), R, = | J E, Q = () R,. By Lemma 1, the sets R, belong to N,

n=1

forn =1,2,.... We assume that Q ¢ N. There exists an n, such that Q¢ N, , but
R, €N,, Q< R, and Qe€S, so QeN, — a contradiction. Hence Qe N. If
Xo€ X — (Q L C), then there exists an i, such that | f, (x,) — f(xo)| < ¢; for each

positive integer i = i,. Since Q U Ce N, we obtain that £, - f N-a.e.on X.

Theorem 2. If a sequence {f,}_, of functions defined on X converges to f with
respect to a small system A", then this sequence converges to f with respect to the

o-ideal N = (") N,.
r=1

Proof. By Remark 1, each subsequence { Jo =1 of {fu}- 1 converges with
respect to the small system 4" to fand, by Theorem 1, there exists a subsequence

{f,,mp};‘,"=I of {/, }m -1 converging to f N-a.e. on X, so f, —_ _,:'m f

Theorem 3. Let A" be an upper semicontinuous small system. If a sequence
{filw-\ of functions defined on X converges to f N-a.e. on X, then {f,}_,
converges on f with respect to the small system N

Proof. Let C be defined as in the proof of Theoreml1, B = {x;

J(x) —— f(x)}, @ = BUC. Of course, Q€ N.

We have defined the sets E,(¢) = {x; | /i(x) —f(x)| = e} fork =1, 2, ... and
each positive € Let R, (¢) = O E(e), M(¢e) = ﬁ R, (¢). If x,¢Q, then
klixg fi(xo) = f(x;) and there ex,i(s—t;l a positive intc;;rl n such that, for each

positive k = n, | fi(x) — f(x,)| < €. Hence x,¢ R,(¢) and x,¢ M;so M < Q. We
obtain that M e N because MeS and Qe N.

Now suppose that the sequence {f,}_, does not converge to f with respect
to #". There exist a positive & and a positive integer m, such that, for every
positive integer i, there exists a positive integer k; = i such that E; (&)¢ N,,.
Hence R, (&)¢ N, fori=1, 2, .... The sequence {R, (&)}~ is a nonincreasing
sequence of sets and the small system .4 is upper semicontinuous, therefore

M ¢ N, which is a contradiction. We obtain that f, %» f.
Lemma 2. If, for each subsequence { S dm=1 of {fuln= 1, there exists a subse-
N N
quence {f, 11 of {/, Ym- such that fn,..,, B f, then f, ﬁf.
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Proof. Suppose that the sequence {f,};_, does not converge to f with
respect to .4". Then there exist g > 0 and a positive integer m, such that, for
each positive integer i, there exists a positive integer »n, > i such that

{x: |fnl('x) _i{(x)| g 80}‘?5 Nlm,'

By our assumption, there exists a subsequence {)‘;,I”},‘,": ,of {£,1, | convergent to

J with respect to 4. Then there exists some p such that {x:

I I'“ ",

If,',’p(x) —f(x)| 2 &}eN,, forp=p, . acontradiction.
Theorem 4. Let A be an upper semicontinuous small system If a sequence

”
{fuhx= | converges to f with respect to an o-ideal N = () N,, then {f,}_, conver-
r=1

ges to f with respect to the small system A"

Proof. Suppose that f, —f—>/ then there exists a subsequence {f, },

m— 1

with no subsequence converging to f with respect to .4". By Theorem 3, no
subsequence {f, },, _, converges to f N-a.e. — a contradiction.

Corollary 1. If N is an upper semicontinuous small system, then both the
convergence with respect to a small system A" and that with rcspect to a o-ideal
0
N = () N, are equivalent.
r=1
Remark 2. If 4" is not upper semicontinuous, then the above-
mentioned convergences are not equivalent. The convergence with respect to an
e
o-ideal N = (") N, does not imply that with respect to ..
r=1
Proof. By the assumption there exists a nonincreasing sequence {E;};_, of
sets belonging to S and, for this sequence, there exists a positive integer r, such

that, for each positive integer i, E; ¢EN, and ﬂ E,eN. Let us put f,(x) = Xg(x)

i—1

and f(x) = 0for xe X. lfx¢ﬂ E, thenf(x) — f(x). Hence/(v) — f(x)

i=1

N-a.e. on X, sof,.:'f. Since, for each i, {x: |f(x) —f(x)| = €} = E,¢N,)

oo
where € > 0, therefore f; = f

Remark 3. Let A", A" be small systems such that N = ﬂ N, = ﬂ N;.

r=1 r—1

The convergence with respect to .4 need not be equivalent to the convergence
with respect to A",
Proof. Let (X, S,m) be a measurable space with the finite measure m. We

put N, = {Ee S:m(E) < l} forr =1, 2, .... The convergence with respect to A~
r
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o0
is the convergence in measure m. The set N = (") N, is the o-ideal of sets of null
r=1
measure. Let N, = N forr = 1, 2, .... The convergence with respect to A"’ is the
uniform convergence almost everywhere on X (i.e. there exists a set 4€ N such
that f, 3 fon X — A). It is easy to show when the convergences with respect to
the different small systems are equivalent. For this reason, we recall the follow-
ing definitions and theorems (see [2, p. 492—493)).

Definition [2]. Let A", # be two small systems on S and N= (N,

r=1

M = () M,. We say that ' is the absolutely continuous system with respect to

r=1

A if and only if, for each positive integer r, there exists a positive integer n, such
that if Ee M, , then E€N,. We use the notation A" < .M. We say that N is
predominated by a system M if and only if M = N. We use the notation /" < M.

Theorem [2]. If N/ < , M, then N/ < M.

Theorem [2). Let A, M be two small systems on S. If N is the upper
semicontinuous system, then the following conditions are equivalent

) N < M

Q <M.

Example 1. Let N, be the family of all measurable subsets of the set

O <n, n+ 3) for r=1, 2, .... Let M, be the family of all measurable
n=1 r+

subsets of the set O <n —

n=1

,n> forr=1,2, ....
r+3

The sequences {N,} and {M,} are small systems such that (") N, = () M,, but

r=1 r=1
A is not absolutely continuous with respect to .# and .# is not absolutely
continuous with respect to A".

Theorem 5. Let A" and M be two small systems. The convergences with respect
to these systems are equivalent if and only if /" < .M and M < N .

Proof. Let there exist for each positive integer m a positive integer n,,

such that if Ee M, , then E€N,,. Let f, * f, then, for each £ > 0 and for

each positive integer m, there exists a positive integer n,,, such that

{x: 1fu(x) —fX)| 2 e}eM, , for n=n,,,

50 {x: |;(x) = f(x)| Z &} N,, and f, —— .

Now we suppose that 4" is not absolutely continuous with respect to ..
Then there exists a positive integer n, such that for each positive integer n there
exists a set E, such that E,e M, and E, ¢ N, . Let f,(x) = X (x), f(x) =0 and
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0 < &< 1. We observe that for each n (x: |f,(x) — f(x)| Z &} = E,¢ N, and

/. ———»‘;—>f but for each positive integer m there exists n,, = m such that for

n 2 n, {x: |£,(x) — f(O)| = e}e M, and f, —— f.

Corollary 2. If A" is not predominated by .4, then the convergence with respect
to M does not imply the convergence with respect to N'.
Corollary 3. If A, M are upper semicontinuous small systems such that

o0 o0
(YN, = () M,, then the convergences with respect to these systems are equiv-
r=%1

alent.
Corollary 4. If N is an o-ideal, N,= N for r =1, 2, ... and .V is upper

o
semicontinuous, and M is a small system such that (Y M, = N, then . is an upper
r=1
semicontinuous system and the convergences wi:l respect to those systems are
equivalent.
Let [f] denote the class of all S-measurable real functions equivalent to fand
M denotes the family of these classes of equivalence.
Definition 5. We say that a sequence {[f,1}v- of elements M converges to

[f1e M with respect to the small system A (ubbr. [f,] ﬁ* LfD if and only if

fo—— f.

Theorem 6. The space M is equipped with the Fréchet topology generated by
the convergence with respect to a small system N".

Proof. By Remark 1, Lemma?2 and Definition5 the space M equipped
with the convergence with respect to .4 is an L*-space ({1, p. 90]). We shall show
that the following condition is fulfilled. By Definition 5 we can formulate this
condition for representatives of suitable classes of equivalence.

N N .
If f; s fandf, —_ 0 fiforj=1,2, .., then there exist two sequences

.. . . N
of positive integers {j,},_, {n,},- | such that fj,,.n,, " f

-
If the above-mentioned L*-space fulfils this condition, then it is equipped
with the Fréchet topology generated by the convergence with respect to A”.
For each positive integer p, there exists positive integers k{” and k{” such that
if E‘eNk,“’” EzeNk;,,, then E, U E,e N,

For each positive integer p, there exists a positive integer j, such that, for each
. 1
positive integer j = j,, 9% |fi(x) —f(x) = E—}EN"W' We may assume that
p 1
Jp+j>Jpyforp=1,2,....
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For each positive integer p, there exists a positive integer n, such that, for each

1
positive integer n = n,, {x: 1f,.n () = £, (0 2 ?}GN/(“’" We may assume that
p 2

1 >n, for p= .... Let £¢>0 and m a positive integer. Let us put
= max <[ ) then, for each p = p,,,, we have the following in-
clusions:

(521,00 = 01 2 2] € {211, () S 2
- {x: £, = (0l 2 }}u{x; () — £ 2 L},
P hp PP P 2p

The last set belongs to N,, thus it belongs to N,,.

The sets {x: |f,-,,‘,,p(x) — f(x)| Z €} belong to N,, for p = p,,, because they are
subsets of sets belonging to N,,.

Since the above-mentioned condition is fulfilled, the proof is completed.

Corollary 5. Let S be the class of sets having the Baire property and N the class
of sets of the first category; then there is no upper semicontinuous small system
such that N = () N,.

r=1
Proof. Suppose that there exists such a small system. Then the conver-
gence with respect to it is equivalent to the convergence with respect to an
o-ideal N and generates the Fréchet topology, a contradiction (see [4, p.93)).
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CXOAUMOCTDb IO MAJIBIX CUCTEMAX
MOCJIEAOBATEJLHOCTU JEUCTBUTEJIbHBIX ®YHKLIUH

Jerzy Niewiarowski
Pe3rome

B 3T0ii paboTe BBEACHO MOHATHE CXOAUMOCTH IO MAJIBIX CHCTEMax. JJokazaHo, YTO CXOAMMOCTh
MO MajblX CHCTEMax M CXOAMMOCTb 1O COOTBETCTBYIOLLEM C-HM/€aJi€ 3KBUBAJCHTHBLI B CJy4ae
MOJIYHEeNPEepbIBHOM CBEPXY MaJIOi CUCTEMBI.

Jlanble paccMaTpUBaeTCs MPOCTPAaHCTBO I Bcex KJIACCOB 3KBUBAJIEHTHOCTH S-M3MEPHUMBIX
JIeACTBUTENbHBIX (GYHKIMHA. Jloka3bIBaeTCs, YTO CXOAUMOCTb 1O MaJIbIX CHCTEMaXx npeobpaxaer
3TO MPOCTPAHCTBO B TOMOJIOrMYECKOE NMPOCTPAHCTBO.
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