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EVERY AT MOST FOUR ELEMENT ALGEBRA HAS 
A MAL'CEV THEORY FOR PERMUTABILITY 

IVAN CHAJDA 

ABSTRACT. It is proven that every at most four element algebra A has permutable 
congruences if and only if there exists a ternary Mal'cev function compatible with all 
congruences on A. 

An algebra A is permutable if 0o 0 = 0o 0 for every two congruences 0, 
0e Con A. A variety if is permutable if each jlef has this property. A is 
called distributive if Con A is a distributive lattice. A is arithmetic if it is 
permutable and distributive. A variety if is distributive (arithmetic) if each 
A e ir has this properyty. A. I. Mal ' cev [3] has shown that a variety 1T is 
permutable if and only if there exists a ternary polynomial p(x, y, z) satisfying 

(*) p(x, z, z) = x and p(x, x, z) = z. 

A. P. Pixley [4] proved that a variety if is arithmetic if and only if there 
exists a ternary polynomial m(x, y, z) satisfying 

(**) m(x, y, y) = m(y, y, x) = m(x, y, x) = x. 

A. F. Pixley [5] has shown that the foregoing result can be "localized" also 
for a single algebra: 

Proposition. Let A be an algebra with finite Con A. A is arithmetic if and only 
if there exists a Pixley function on A compatible with all congruences of A. 

Note that by a Pixley (Mal'cev) function on A is meant a mapping of A3, into 
A satisfying (*) (or (**), respectively). Moreover, I. Korec [2] extended this 
Proposition also for algebras with countable Con A. 

H.-P. Gumm [1] proved that the analogous assertion for permutability 
does not hold, i.e. there exists an algebra A with permutable congruences for 
which no Mal'cev function compatible with all congruences on A exists. In this 
example, A = S x S, where S is a five element loop. The aim of this paper is to 
show that for algebras with at most four elements the Mal'cev theory can be 
localized. 
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Lemma. Let A be a four element permutable algebra. If the lattice Con A is not 
distributive, then Con A = M3 (see Fig. 1) and9for a suitable notation of elements 
{0, a9 b, c} of A9 

01 = ou{(a9b}9 <b, a}9 <c, 0>, <0, c>} 
02 = coKj{(b9c}9 <c, b>, <a, 0>, <0, a>} 
03 = <0u{<a, c>, <c, a>, <b, 0>, <0, b>}. 

Fig. 1 

P roof . Denote by S = {0, a9 b, c} the set of all elements of A. Since A 
has exactly four elements, it can have at most six principal congruences, namely 

(a, b), (b, c), (a, c), 0(0, a). 0(0, b), (0,c). 

Since Con A is not distributive, it must contain a sublattice isomorphic with M 3 , 
thus Con A has at least a three element antichain. Henceforth, at least there of 
the foregoing six congruences must be pairwise different and nontrivial. Without 
loss of generality, suppose that 

0(a9 b) 7- 9(b9 c) ?- 0(a9 c) ?- 0(a9 b) 

are non-trivial congruences. Denote by 0X = 9(a9 b)9 02 = 9(b9 c)9 0 3 = 
= 0(a9 c). Then 

< a9 c > E 0, o 02, which implies < c9 a > e 0X 0 02 

because of the permutability of congruences. Thus there must exist an element 
x e S with<c9 x> e (9, and <x, a} e 02. Analogously, <b, a> e 02 0 6>3 implies 
the existence of j ^ e s with <b, >>> e 6>3, <y, a> e 02\ and ( i , C ) G 0 , 0 3 

implies the existence of z e .S with <c, z> e 0 , , <z, b> e 0 3 . 
(a) Suppose, e.g., x = a. Then clearly 0 , ^ 0 2 and 0 , ^ 0 3 . If ^ = b, then 
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we infer (by a similar argumentation) 6>2 ;___> 6>,, thus 6>, = 6>2 which is a con
tradiction. If y = a, we obtain 6>3 2 6>, and 6>3 2 6>2, which give 6>, = 6>3, a 
contradiction. If y = c, we obtain a contradiction from 0 3 2 0 , , 0 2 2 0 , . 
There remains y = 0, i.e. 

<b, O>E0(a, c), <0, a)e0(b, c). 

Since 6>, 2 6>2 and 6>, .2 6>3, also 

<a, 0>, <b, 0>, <0, a}, <0, b> e 0(a, b). The transitivity with <C, a> e 6(a, b) 
(for x = a) give also <0, c>, <C, 0> e 6(a, b), i.e. 0(a, b) = i, which is a 
contradiction. 

(b) If we suppose x = b or x = c, we obtain a contradiction similarly as in the 
case (a). Hence, x = 0 is the only possibility. Then <c, 0>, <0, c) e 0(a, b). 

Analogously we obtain <b, 0>, <0, b) e 6(a, c) and <a, 0>, <0, a} e 
e 0(b, c). Then 

6(a, b) => 0(0, c), 0(b, c) => 0(0, a), 0(a, c) 2 (0, b). 

(c) Since <c, a> e (0, c) o 0(0, a), we have also 

<c, a>G 0(0 , a)o 0(0 , c), 

i.e. there exists an element v e S with 

<c, v>e0(O, a), <v, a>e0(O, c). 

Analogously as in (a), we can proceed to prove the only possibility, namely 
v = b, whence 

0(c, b) <= 0(0, a), 0(a, b) <= 0(0, c). 

Similarly, the identity 9(a, c) _= 0(0, b). 

With respect to (b), 6(a, b), 6(b, c), 6(b, c), 9(a, c) are the only nontrivial 
congruences on A. The rest of the proof is evident. 

Theorem. Let A be an at most four element algebra. A is permutable if and only 
if there exists a MaVcev function compatible with all congruences of A. 

Proof. If a such MaFcev function in A exists, A is evidently permutable. 
Prove the converse implication. Suppose A is permutable. 

(1) If A has the only element, the proof is trivial. If A has exactly two 
elements, then Con A = {co, i}, i.e. it is distributive. Hence, A is arithmetic and, 
by Pixley's result [5], there exists a Pixley function compatible with all congruen
ces on A. However, every Pixley function is a Mal'cev function, thus the 
proposition holds. 

37 



(2) Let A have exactly three elements a, b, c. Suppose Con A is not distri
butive. Then there exists only three nontrivial congruences, namely 

6(a,b), 0(b, c), 6(a, c), 

thus Con A = M3. However, the permutability of congruences together with 
Con A = M3 imply the direct decomposability of A which is impossible since 
card A = 3. Hence, A has permutable congruences if and only if A is arithmetic. 
Further argumentation is the same as in (1). 

(3) Let A have exactly four elements. If Con A is distributive, then A is 
arithmetic and the assertion is evident. Suppose A is not distributive. By the 
Lemma, Con A = M3 (see Fig. 1) and for 0,, 02, 6>3 we have 

0, = cou{{a,b}, <b, a}, <c, 0>, <0, c)} 
02 = cou{(b,c}, <c, b>, (a, 0>, <0, a>} 
03 = cou{(a, c>, <c, a>, <b, 0>, <0, b>}. 

For x 7= y =-= z ?-= x we put p(x, y, z) = v, where v $ {x, y, z} and {x, y, z, v} = 
= {0, a, b, c}, and, moreover, 

p(x, z, z) = x, p(x, x, z) = z, p(x, y, x) = y. 

It is easy to verify that p(x, y, z) is compatible with (9,, 02, 03. 
Remark 1. The Mal'cev function p(x, y, z) constructed in the proof of the 
Theorem for a four element algebra is unique. 
R e m a r k 2. The operations on an algebra A can be: 

(a) trivial (i.e. projections); 
(b) constant (i.e. fa(x], ..., xn) = a for every a, G A) 
(c) A can have, e.g., three unary operations: 

ft(a) = c f2{a) = b f3(a) = 0 
f,(!>) = 0 f2(b) = a Mb) = c 
Mc)=a f2(c)=0 Mc)=b 
M0) = b f2(0) = c f(0) = a. 
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