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HOMOMORPHISMS OF FINITE BIPARTITE GRAPHS
ONTO COMPLETE BIPARTITE GRAPHS

BOHDAN ZELINKA

In [1] F. Harary, D. Hsu and Z. Miller have introduced the concepts of
a bicomplete homomorphism and bichromaticity of a bipartite graph.

Let B be a connected bipartite graph on the vertex sets C, D. A bicomplete
homomorphism of B is a homomorphic mapping ¢ of B onto a complete bipartite
graph K., (where r, s are positive integers) with the property that @(x)=@(y)
only if either both x, y belong to C, or both x, y belong to D. The bichromaticity
B(B) of the graph B is the maximum value of 7 + s for all complete bipartite graphs
K... onto which B can be mapped by a bicomplete homomorphism. (In [1] only
_ finite graphs are considered.)

In [4] an analogous concept was introduced and studied for infinite graphs. In the
present paper we shall study it for finite graphs.

For a connected bipartite graph B the symbol So(B) denotes the supremum of
the values min (7, s) for all complete bipartite graphs K, , (where r, s are positive
integers or infinite cardinal numbers) onto which B can be mapped by a bicomplete
homomorphism. This definition was so formulated in order that it might have
a sense also for infinite graphs. If we consider only finite graphs, we may say that
Bo(B) is the maximum value of min (r, s) for all complete bipartite graphs K, .
onto which B can be mapped by a bicomplete homomorphism.

Proposition 1. Let B be a finite connected bipartite graph. Then o(G) is equal to
the maximal value of r for all complete bipartite graphs K, , onto which B can be
mapped by a bicomplete homomorphism.

Proof. If r, s are two positive integers, r=s, then evidently there exists
a bicomplete homomorphism of K., onto K, K.. If B can be mapped onto K, . by
a bicomplete homomorphism, we may supperpose this homomorphism with
a bicomplete homomorphism of K, . onto K., and thus we obtain a bicomplete
homomorphism of B onto K, ,, where r=min (r, 5). This implies the assertion.

A matching of a bipartite graph B is a subset M of the edge set of B with the
property that no two edges of M have a common end vertex. (This concept was
defined in [2] in a slightly different way, but this difference is not essential.)
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Proposition 2. Let B be a finite connected bipartite graph, let k be the number of
edges of B. Then

Bo(B)=Vk

Proof. An image of B in a bicomplete homomorphism evidently cannot have
more edges that B. The graph K. ,, where r = By(B), has r edges, hence * =< k and
this implies the assertion.

Theorem 1. Let B be a finite connected bipartite graph, let m be the maximal
number of elements of a matching of B Then

[Vm]=B(B)<m

and this inequality cannot be improved.
Proof. Let the vertex sets of B be C, D. Let M be a matching of B having m

elements. Denote k =[Vm]. Then k*=m. Choose a subset M, of M having k*
elements. Denote the elements of M, by e(i, ), where 1 =i=k, 1=j=k. For any
i, jlet c(i, j) (or d(i, j)) be the end vertex of the edge e(i, j) belonging to C (or to
D respectively). Denote by G, (or Do) the set of all vertices c(i, j) (or d(i, j)
respectively) for all pairs i, j. We may define a homomorphic mapping @ of B onto
K. « as follows. For any two vertices c(i1, j1), c(&, j) of C we have @(c(i, j))
= @(c(iz, J»)) if and only if i, = i,. For any two vertices d(iy, ji), d(i2, j2) of D we
have @(d(ii, j1)) = @(d(iz, j»)) if and only if ji = f,. The image in @ of any vertex of
C — G (or D— Do) is equal to the image of some vertex of G, (or D, respectively).
Evidently ¢ is a bicomplete homomorphism of B onto K. and therefore

k =[Vm] = Bo(B). On the other hand evidently an image of B in a bicomplete
homomorphism cannot have a matching with more elements than m. The maximal
number of elements of a matching of K., is min (r, s5), hence Su(B)=m.

Now suppose that m is a square of an integer. Consider the bipartite graph B on
the vertex sets C={c, .., ¢cm}, D={d,, ..., dn} with the edges cd, and ¢ d, for
i=1, ..., m. This graph is in Fig. 1. The maximal number of elements of a matching

of B is m. Suppose that Bo(B)=Vm+ 1. Then B can be mapped by a bicomplete

homomorphism @ onto a complete bipartite graph K, », where h=Vm+ 1. The
degree of any vertex of K. » is h. Let C' be the set of images of vertices of C in ¢.
Each vertex of C' — {@(c1)} must be the image of at least 4 vertices of C—{c},
because each vertex of C—{c} has the degree 1 in B. But then C— {c,;} must

contain at least A(h —1)— m +Vm vertices, which is a contradiction. Therefore

Bo(B) =Vmand the lower bound is attained. In the case when B = K, . the upper
bound is attained.
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Proposition 3. For a finite connected bipartite graph B there is fo(B)=1 if and
only if B is a tres whose diameter is at most 3.

Proof. If a connected graph is not a tree, then it contains a circuit. If this graph
is bipartite, this circuit has an even length at least 4. A circuit of the length 4 is K; ».
Consider a circuit C,« of the length 2k, where k is a positive integer. Let its vertices
be u, ..., ua and let its edges be wu,., for i=1,...,2k—1 and wxu,. Let C, be

Fig. 1

a circuit of the length 4, let its vertices be vy, vz, vs, ve and let its edges be v,v,
V2U3, V3Vs, Vath. Define the mapping @ so that @(u,) = v, ¢(u2) = v, and for i=3
there is @(u)=wv; if i is odd and @(u)=v. if i is even. The mapping @ is
a bicomplete homomorphism of G onto Ci=K,, If B contains G, as
a subgraph, then this homomorphism can be easily extended to a bicomplete
homomorphism of B onto K: . and Bo(B)=2. Hence B must be a tree. Suppose
that B contains vertices u, v whose distance is 4. As the distance of u, v is even,
they may be mapped by a bicomplete homomorphism onto the same vertex and’
thus a circuit of the length 4 is obtained. Therefore there may be Bo(B) =1 only if B
is a tree of the diameter at most 3. Conversely, if B is a tree of the diameter at most
3, then evidently it can be mapped by no homomorphism onto a graph with a circuit
of an even length, therefore So(B)=1.

Proposition 4. Let B be a finite connected bipartite graph, let B’ be the graph
obtained from B by deleting an edge which is not a bridge. Then

Bo(B")Z Bo(B) — 1.

Proof. Let Bo(B) =r, let @ be a bicomplete homo'morphism of Bonto K, ,. We
may suppose r =2, because etherwise B would be a tree and all its edges would be
bridges. Then B’ is mapped by ¢ either also onto K, ,, or onto a graph obtained
from K., by deleting an edge. The graph in the second case can be evidently
mapped by a bicomplete homomorphism onto K, , .. By superposing @ with this
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homomorphism we obtain a bicomplete homomorphism of B’ onto K-, ,-, and
the assertion is proved.

Theorem 2. Let m, r be positive integers such that [Vm]|=r=m. Then there
exists a finite connected bipartite graph B such that o(B)=r and the maximal
number of edges of a matching of B is m.

Proof. Take a complete bipartite graph K., .. and choose its spanning subraph
B, isomorphic to the graph in Fig. 1. Each spanning subgraph of K., .. which
contains B, as a subgraph has a matching with m elements and no matching with

more than m elements. We have Bo(Kn.m)=m, Bo(Bo)= [\/;]. If we delete
subsequently the edges of K. ., not belonging to B,, according to Proposition 4 we
must obtain graphs of all values of So(B) which lie between these two numbers.

Theorem 3. Let C, be a circuit of the length n, where n isevenandn Z4. Let r be
thé greatest integer with the property that either r is even and r* = n, or n is odd
and r(r+1)=n. Then

Bo(C)=r.

Proof. Suppose that C, can be mapped by a bicomplete homomorphism ¢ onto
a complete bipartite graph K, ». Let H be the multigraph obtained from K, » in
such a way that each edge e of K. is replaced by k edges, where k is the number
of edges of C, which are mapped by @ onto e. Then there exists a one-to-one
correspondence between the edge set of G, and the edge set of H such that if we go
around C, and take the corresponding edges in H, we obtain a closed Eulerian trail
in H. This implies that H is an Eulerian multigraph, i.e. the degrees of all vertices
of H are even. Thus the number n of edges of C, must be greater than or equal to
the minimal number of edges of an Eulerian multigraph H whose spanning
subgraph is K, , and which is a bipartite multigraph on the same vertex sets as K .
If A is even, then such a multigraph is K » itself, because it is an Eulerian graph; it
has h? edges. If A is odd, then such a multigraph is obtained by adding 4 edges to
K..» (because the degrees of all vertices of K, » are odd and in H they must be
even) and has h(h + 1) edges. On the other hand, there exists a homomorphism of
C. onto an arbitrary circuit of an even length less than » in which two vertices have
the same image only if their distance is even (it can be constructed analogously to
the proof of Proposition 3). Hence if 4 is even and h*=n, the graph C, can be
mapped by a bicomplete homomorphism onto K, ; this homomorphism can be
constructed by means of an arbitrarily chosen closed Eulerian trail in K ».
Similarly if & is odd and h(h+1)=n. This implies the assertion.

Theorem 4. Let P, be a snake (path) of the length n. Let r be the greatest intéget
with the property that either r is even and r* = n, or ris odd and r(r + 1)=n. Then
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Bo(P)=r.
The proof is analogous to the proof of Theorem 3.

Theorem 5. Let B be a bipartite graph obtained from a complete bipartite graph
K, ., where rZ3, by deleting the edges of a linear factor. Then

Bo(B)=[i7].

Proof. Let the vertex sets of Bbe C={c, ..., ¢.}, D={d,, ..., d.} and let the
vertices ¢, d, be adjacent in B if and only if i#j. Let ¢ be a bicomplete
homomorphism of B onto a complete bipartite graph K, ». Then for each i either
¢, or d, must have the property that its image in @ is equal to the image of another
vertex ; otherwise the images of ¢, and d, would not be adjacent in K. 4, which is
impossible. This implies that K, » cannot have more than 3 vertices and thus
h=[ir] and Bo(B)=[ir]. Let s=[ir], t=r—4s. Consider a complete bipartite
graph K, ,, where p=[3r]. If t=0o0r t=1, then p=3s;if t=2,then p=3s+1; if
t=3, then p=3s+2. Let the vertex sets of K,, be C'={ci,...,c;}, D'=
{di, ..., d;}. Put @(c)=ci, @(d)=d. for i=1,...,2s. Further @(c)=c! i,
e(d)=d, for i=2s+1,..,3s and @(c)=c.,, @d)=d.., for i=
3s+1, ...,4s. If t=0, the mapping @ is ready. If =1, there is still @{css+1)=cp,
@(des1)=d,. If t=2, then @(cass1) = @(Case2)=Cp, P(dis) = @(dasr)=d,. If
t=3, then @(cs1) = @(Cesr2)=¢p 1, P(Cass3)=¢p, P(Coser)=dp 1, P(disr2)
= @(du:+3) = d,. The mapping @ thus constructed is a bicomplete homomorphism
of B onto K, , and thus the assertion is proved.

Finally we shall mention direct products of graphs. The direct product G, X G- of
the graphs G,, G; is the graph whose vertex set is the set of all ordered pairs
[u:, uz], where u, is a vertex of Gy and u;, is a vertex of G and in which the vertices
[u\, 1], [vi, v2] are adjacent if and only if either 4, = v, and the vertices u;, v, are
adjacent in G, or u;= v, and the vertices w,, v, are adjacent in G,. In [1] the
authors suggested the problem of determining S(B X K) in terms of S(B). In [3]
this problem was solved by determining the lower bound and the upper bound for
B(B X K3) in terms of B(B); these bounds cannot be improved. We shall prove an
analogous theorem on fo(B X K:).

Theorem 6. Let B be a finite connected bipartite graph. Then
Bo(B X K;)Z o B) + 1

and this inequality cannot be improved. There exists no upper bound for
Bo(B x K3) in terms of Bo(B).

Proof. Let the vertices of K; be u,, u.. Let B, (or B;) be the subgraph of B x K,
induced by the set of all vertices of the form [x, ] (or [x, u.] respectively), where
x is a vertex of B. Evidently B, = B, = B. Let f(B)=r. Then also fo(B;)=r and
there exists a bicomplete homomorphism ¢, of B, onto K,,,. Consider the complete
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bipartite graph K., ,+; containing K.., as a subgraph. Then ¢» can be extended to
a bicomplete homomorphism @ of B X K, onto K,., ,., in such a way that the
restriction of ¢ onto B, will be a bicomplete homomorphism of B; onto the
subgraph of K. ,.; induced by the set {c, d}, where ¢, d are the vertices of
K..1.,«1 which are not contained in K.,. Therefore S(BXK;) Z r+1=
Bo(B) + 1. New suppose that B=K,, , for some h. In [3] it was proved that in that
case B(B X K;:) = B(B)+2. Evidently B(B)Z2p(B) for each finite connected
bipartite graph B, hence also (B X K;) = 2B.(B X K3), which implies fo(B X K;)
= iB(B)+1 = h+1 = Bo(B)+1 and the inequality cannot be improved.
Now let B be a complete bipartite graph K. ... Then So(B)=1. In the graph

B x K, there is a matching with m+ 1 edges, therefore So(BX K:) Z Vm+1
according to Theorem 1. The number m can be arbitrarily large, hence also
Bo( B x K;) can be arbitrarily large and there is no upper bound for it in terms of

Bo(B).
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FTOMOMOP®HU3MbI KOHEYHBIX IBYOOJIBHbIX 'PA®OB HA TOJIHBIE
IBYOOJIbHBIE T'PA®bI

Bornau 3enunka
Pe3iome

BunonHb roMoMopdH3IM KOHEHHOTO CBS3HOTO ABYNOJbLHOTO rpara B Ha MHOXecTBax epilHH C,
M ectb romomopdHoe oTo6paxenne @ rpadpa B Ha monsbt ABynoabHbGl rpad, Takoe, yT0 @(X)=
@(y) TonbKO TOTAA, KOTAA BEPILHHLI X, y MPRHARIEXAT HIH 06e MHOXecTBY C, Kl 06¢ MHOXecTBY D.
Yucno fo( B) ecTh MAKCHMYM BCEX YHCER 7, TAKHX, YTO B MOXHO 0TOGpa3uTs GHNOIHBIM TOMOMOPGH3-
MOM Ha mnonHbmt AByRoabHeii rpad K..,. B cratee uccnemnoBaHo uncno Po(B) Anm KOHCHHBIX

ABYAONbHBIX rpados.
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