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HOMOMORPHISMS OF FINITE BIPARTITE GRAPHS 
ONTO COMPLETE BIPARTITE GRAPHS 

BOHDAN ZELINKA 

In [1] F. H a r a r y , D. Hsu and Z. Mi l le r have introduced the concepts of 
a bicomplete homomorphism and bichromaticity of a bipartite graph. 

Let B be a connected bipartite graph on the vertex sets C, D. A bicomplete 
homomorphism of B is a homomorphic mapping tp of B onto a complete bipartite 
graph K,., (where r, s are positive integers) with the property that tp(x) = q>(y) 
only if either both x, y belong to C, or both x, y belong to D. The bichromaticity 
P(B) of the graph B is the maximum value of r + s for all complete bipartite graphs 
K,., onto which B can be mapped by a bicomplete homomorphism. (In [1] only 
finite graphs are considered.) 

In [4] an analogous concept was introduced and studied for infinite graphs. In the 
present paper we shall study it for finite graphs. 

For a connected bipartite graph B the symbol Po(B) denotes the supremum of 
the values min (r, s) for all complete bipartite graphs K,., (where r, s are positive 
integers or infinite cardinal numbers) onto which B can be mapped by a bicomplete 
homomorphism. This definition was so formulated in order that it might have 
a sense also for infinite graphs. If we consider only finite graphs, we may say that 
p\>(B) is the maximum value of min (r, s) for all complete bipartite graphs K,, 
onto which B can be mapped by a bicomplete homomorphism. 

Proposition 1. Let Bbea finite connected bipartite graph. Then /30( G) is equal to 
the maximal value of r for all complete bipartite graphs K,., onto which B can be 
mapped by a bicomplete homomorphism. 

Proof. If r, s are two positive integers, r^s, then evidently there exists 
a bicomplete homomorphism of K,., onto K,.K,. If B can be mapped onto K,., by 
a bicomplete homomorphism, we may supperpose this homomorphism with 
a bicomplete homomorphism of K,., onto K,., and thus we obtain a bicomplete 
homomorphism of B onto K,.„ where r = min (r, s). This implies the assertion. 

A matching of a bipartite graph B is a subset M of the edge set of B with the 
property that no two edges of M have a common end vertex. (This concept was 
defined in [2] in a slightly different way, but this difference is not essential.) 

361 



Proposition 2 . Lef B be a finite connected bipartite graph, let k be the number of 
edges of B. Then 

#,(B).sv* 

Proof. An image of B in a bicomplete homomorphism evidently cannot have 
more edges that B. The graph Krr, where r = ff0(B), has r2 edges, hence r2 — k and 
this implies the assertion. 

Theorem 1. Let B be a finite connected bipartite graph, let m be the maximal 
number of elements of a matching of B Then 

[Vm\^p,(B)^m 

and this inequality cannot be improved. 
Proof. Let the vertex sets of B be C, D. Let M be a matching of B having m 

elements. Denote k = [Vm\. Then k2^m. Choose a subset M0 of M having A:2 

elements. Denote the elements of M0 by e(i, j), where 1 ^ / ' ^ A:, 1 —/= k. For any 
/', / let c(i, j) (or d(i, /)) be the end vertex of the edge e(i, j) belonging to C (or to 
D respectively). Denote by C (or D0) the set of all vertices c(i, /) (or d(i, j) 
respectively) for all pairs /', /. We may define a homomorphic mapping <p of B onto 
Kk.k as follows. For any two vertices c(/'i, / . ) , c(/'2, / ) of C we have <p(c(i\, j )) 
= <p(c(i2, 72)) if and only if /', = i2. For any two vertices d(/'i, / , ) , d(/2, /2) of D we 
have <p(d(i\, /,)) = <p(d(i2, j2)) if and only if /, =/2 . The image in <p of any vertex of 
C - Co (or D — D0) is equal to the image of some vertex of Co (or D0 respectively). 
Evidently <p is a bicomplete homomorphism of B onto Kk k and therefore 

k = \\/m\^p0(B). On the other hand evidently an image of B in a bicomplete 
homomorphism cannot have a matching with more elements than m. The maximal 
number of elements of a matching of Kr.s is min (r, s), hence /Jo(B) —m. 

Now suppose that m is a square of an integer. Consider the bipartite graph B on 
the vertex sets C = {ci, .. , cm}, D= {d\, ..., d„) with the edges c,d, and Cid, for 
/'= 1, ..., m. This graph is in Fig. 1. The maximal number of elements of a matching 

of B is m. Suppose that /30(B)>Vm+ 1. Then B can be mapped by a bicomplete 

homomorphism <p onto a complete bipartite graph Kh h, where /. = Vm + 1. The 
degree of any vertex of K, h is h. Let C be the set of images of vertices of C in <p. 
Each vertex of C — {<p(c\)} must be the image of at least h vertices of C— {ci}, 
because each vertex of C-{c\} has the degree 1 in B. But then C - { c i } must 

contain at least h(h — 1) — m + V m vertices, which is a contradiction. Therefore 

Po(B) = Vm and the lower bound is attained. In the case when B = Km m the upper 
bound is attained. 
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Proposition 3 . For a finite connected bipartite graph B there is fio(B) = 1 // and 
only if B is a tres whose diameter is at most 3. 

Proof. If a connected graph is not a tree, then it contains a circuit. If this graph 
is bipartite, this circuit has an even length at least 4. A circuit of the length 4 is K2.2. 
Consider a circuit C2k of the length 2k, where A: is a positive integer. Let its vertices 
be Mi, ..., u2k and let its edges be u,u,+\ for /' = 1, ..., 2k— 1 and u2kut. Let C. be 

a circuit of the length 4, let its vertices be vu v2, v3, v* and let its edges be V\v2, 
v2Vy, V3V4, VAV\. Define the mapping <p so that <p(u\) = v\, <p(u2) = v2 and for z' = 3 
there is <p(u,) = v3 if i is odd and <p(u,) = v4 if i is even. The mapping <p is 
a bicomplete homomorphism of C2* onto C4 = K2,2. If B contains C2k as 
a subgraph, then this homomorphism can be easily extended to a bicomplete 
homomorphism of B onto K2,2 and B0(B)=^2. Hence B must be a tree. Suppose 
that B contains vertices u, v whose distance is 4. As the distance of u, v is even, 
they may be mapped by a bicomplete homomorphism onto the same vertex and 
thus a circuit of the length 4 is obtained. Therefore there may be (io(B) = 1 only if B 
is a tree of the diameter at most 3. Conversely, if B is a tree of the diameter at most 
3, then evidently it can be mapped by no homomorphism onto a graph with a circuit 
of an even length, therefore fi0(B) = 1. 

Proposition 4 . Let B be a finite connected bipartite graph, let B' be the graph 
obtained from B by deleting an edge which is not a bridge. Then 

/ J o ( B ' ) = ^ ( B ) - l . 

Proof. Let p\>(B) = r, let <p be a bicomplete homomorphism of B onto Krr. We 
may suppose r = 2, because etherwise B would be a tree and all its edges would be 
bridges. Then B' is mapped by <p either also onto K,,r, or onto a graph obtained 
from Kr,r by deleting an edge. The graph in the second case can be evidently 
mapped by a bicomplete homomorphism onto Kr .. , -1 . By superposing <p with this 
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homomorphism we obtain a bicomplete homomorphism of B' onto K,-\.r-\ and 
the assertion is proved. 

Theorem 2. Lef m, r be positive integers such that [Vm]^r^m. Then there 
exists a finite connected bipartite graph B such that p\>(B) = r and the maximal 
number of edges of a matching of B is m. 

Proof. Take a complete bipartite graph Km.m and choose its spanning subraph 
Bo isomorphic to the graph in Fig. 1. Each spanning subgraph of Km.m which 
contains B0 as a subgraph has a matching with m elements and no matching with 

more than m elements. We have p0(Km,m) = m, Po(B0) = [Vm]. If we delete 
subsequently the edges of Km,m not belonging to B0, according to Proposition 4 we 
must obtain graphs of all values of p\(B) which lie between these two numbers. 

Theorem 3. Let Cbea circuit of the length n, where n is even and n^4. Let r be 
the greatest integer with the property that either r is even and r2^n, or n is odd 
and r(r + l)^n. Then 

/30(C) = r. 

Proof. Suppose that C can be mapped by a bicomplete homomorphism <p onto 
a complete bipartite graph Kh.h. Let H be the multigraph obtained from Kh.h in 
such a way that each edge e of Kh. h is replaced by k edges, where k is the number 
of edges of C which are mapped by <p onto e. Then there exists a one-to-one 
correspondence between the edge set of C and the edge set of H such that if we go 
around C and take the corresponding edges in H, we obtain a closed Eulerian trail 
in H. This implies that H is an Eulerian multigraph, i.e. the degrees of all vertices 
of H are even. Thus the number n of edges of C must be greater than or equal to 
the minimal number of edges of an Eulerian multigraph H whose spanning 
subgraph is Kh. h and which is a bipartite multigraph on the same vertex sets as Khh. 
If h is even, then such a multigraph is Kh, h itself, because it is an Eulerian graph; it 
has h2 edges. If h is odd, then such a multigraph is obtained by adding h edges to 
Khh (because the degrees of all vertices of Kh,h are odd and in H they must be 
even) and has h(h + 1) edges. On the other hand, there exists a homomorphism of 
C onto an arbitrary circuit of an even length less than n in which two vertices have 
the same image only if their distance is even (it can be constructed analogously to 
the proof of Proposition 3). Hence if h is even and h2^n, the graph C can be 
mapped by a bicomplete homomorphism onto Kh. h; this homomorphism can be 
constructed by means of an arbitrarily chosen closed Eulerian trail in Khh. 
Similarly if h is odd and h(h + l)^n. This implies the assertion. 

Theorem 4. Let P„bea snake (path) of the length n. Let r be the greatest integer 
with the property that either r is even and r2^n,orr is odd and r(r+l)^n. Then 
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Po(Pn)=r. 

The proof is analogous to the proof of Theorem 3. 

Theorem 5. Let B be a bipartite graph obtained from a complete bipartite graph 
Kr r, where r^3, by deleting the edges of a linear factor. Then 

Po(B) = [lr). 

Proof. Let the vertex sets of B be C = {ci, ..., cr}, D= {d\, ..., d,} and let the 
vertices c„ d, be adjacent in B if and only if i^j. Let <p be a bicomplete 
homomorphism of B onto a complete bipartite graph Kh,h. Then for each / either 
c„ or d, must have the property that its image in <p is equal to the image of another 
vertex; otherwise the images of c, and d, would not be adjacent in Kh,h, which is 
impossible. This implies that Kh h cannot have more than § r vertices and thus 
/ . ^ [ ' r ] and pn(B)^[lr). Let s = [4r], t = r — 4s. Consider a complete bipartite 
graph Kp p, where p = [I r). If t = 0 or t = 1, then p = 3s ; if t = 2, then p = 3s + 1; if 
f = 3, then p = 3s + 2. Let the vertex sets of Kp p be C = {c\, ..., c'„}, D'= 
{d[, ..., dp}. Put <p(c,) = c'„ <p(d,) = d', for i = \, ...,2s. Further <p(c,) = c', 2l, 
<p(d,) = d', for i = 2s+1, ..., 3s and <p(c,) = c', s, <p(d,) = d'-2l for / = 
3 5 + 1 , ..., 45. If t = 0, the mapping <p is ready. If t = 1, there is still <p(c4l+i) = c'p, 
<p(dAs+\) = d'p. If t = 2, then <p(c4l+,) = <p(c4l+2) = Cp, <p(d4l+1) = <p(d4l+2) = d'p. If 
t = 3, then <p(c4l+1) = <p(c4l+2) = c'p \, <p(cis+i) = cp, <p(c4l+,) = d'p ,, <p(d4l+2) 
= <p(d4l+3) = dp. The mapping <p thus constructed is a bicomplete homomorphism 
of B onto Kp.p and thus the assertion is proved. 

Finally we shall mention direct products of graphs. The direct product G\ x G2 of 
the graphs G\, G2 is the graph whose vertex set is the set of all ordered pairs 
[«i, u2], where U\ is a vertex of G\ and u2 is a vertex of G2 and in which the vertices 
[u\, u2], [v\, v2] are adjacent if and only if either ut = v\ and the vertices u2, v2 are 
adjacent in G2, or u2 = v2 and the vertices ut, v\ are adjacent in G\. In [1] the 
authors suggested the problem of determining fi(B X K2) in terms of fi(B). In [3] 
this problem was solved by determining the lower bound and the upper bound for 
P(B x K2) in terms of /3(B); these bounds cannot be improved. We shall prove an 
analogous theorem on p\(B x K2). 

Theorem 6. Lef B be a finite connected bipartite graph. Then 

Po(BxK2)^Po(B) + \ 

and this inequality cannot be improved. There exists no upper bound for 
0o(B x K2) in terms of p\>(B). 

Proof. Let the vertices of K2 be uu u2. Let B\ (or B2) be the subgraph of B x K2 

induced by the set of all vertices of the form [x, U\] (or [x, u2] respectively), where 
x is a vertex of B. Evidently B\ = B2 = B. Let p\>(B) = r. Then also Po(B\) = r and 
there exists a bicomplete homomorphism <po of B\ onto Kr.r. Consider the complete 

365 



bipartite graph Kr+,.,+, containing Kr,r as a subgraph. Then q>o can be extended to 
a bicomplete homomorphism q> of Bx K2 onto Kr+,.r+, in such a way that the 
restriction of q> onto B2 will be a bicomplete homomorphism of B2 onto the 
subgraph of Kr+,,r+, induced by the set {c, d}, where c, d are the vertices of 
Kr+,,r+, which are not contained in Kr,r. Therefore (}0(BxK2) = r + l = 
Po(B) + 1. New suppose that B = Kh, H for some A. In [3] it was proved that in that 
case fi(BxK22) = ($(B) + 2. Evidently P(B)^2fio(B) for each finite connected 
bipartite graph B, hence also 0(B x K2) = 2/%(B x K2), which implies /S0(B x K2) 
= ij8(B) + l = A + l = /3o(i9)+l and the inequality cannot be improved. 

Now let B be a complete bipartite graph K,.m. Then fio(B) = l. In the graph 

BxK2 there is a matching with m + 1 edges, therefore j8o(B x X2) = Vm + 1 
according to Theorem 1. The number m can be arbitrarily large, hence also 
j8o(B x JC2) can be arbitrarily large and there is no upper bound for it in terms of 
A>(B). 
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ГОМОМОРФИЗМЫ КОНЕЧНЫХ ДВУДОЛЬНЫХ ГРАФОВ НА ПОЛНЫЕ 
ДВУДОЛЬНЫЕ ГРАФЫ 

Богдан Зелинка 

Резюме 

Биполный гомоморфизм конечного связного двудольного грава В на множествах вершин С, 
Д есть гомоморфное отображение <р графа В на полный двудольный граф, такое, что <р(х) = 
<р(у) только тогда, когда вершины х, у принадлежат или обе множеству С, или обе множеству О. 
Число г%(В) есть максимум всех чисел г, таких, что В можно отобразить биполным гомоморфиз­
мом на полный двудольный граф К,,. В статье исследовано число Д>(В) для конечных 
двудольных графов. 
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